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Abstract: This study examined the deformation problem of a plate system (formed side-by-side)
composed of multi-structure plates. It obtained numerical approaches of the transmission conditions
on the common border of plates that composed the system. Numerical examples were solved in
different boundary and transmission conditions.
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1. Introduction

Plates are often used in engineering fields, such as in manufacturing of electronic, optical,
and mechanical devices, as well as the military, ship, aerospace, civil, and automotive industries.
The mathematical model of the deformation problem of elastoplastic plates is defined by a boundary
value problem for biharmonic equations. In the literature, researchers have developed various
approaches and methods for the purpose of finding an exact or a numerical solution of these biharmonic
equations with certain boundary conditions. In the deformation problem of rectangular elastic
plates, boundary conditions may generally be given in a total 21 different possible combinations
of simply supported, clamped, or free boundary conditions along each plate edge [1]. Several studies
have been carried out to obtain the plate equation from the equilibrium equation of a deformed
three-dimensional rigid body. The general three-dimensional elasticity solutions for the deformation
problem of elastic plates were studied in detail by various researchers [2-5]. The problem of bending
of a rectangular plate given by symmetrical boundary conditions along its edges under a load was also
investigated [6-8]. Using the monotone potential operator theory, Hasanov developed the variational
approach theory for nonlinear biharmonic equations related to bending of elastoplastic plates [9,10].
There are various research results on multilayered (sandwich) plates based on different fields of
application areas. The plate theory for multilayered and the sandwich plates was developed in
different studies [11-15], and the capacity and deficiencies of the theory were investigated. Most
publications deal with composite materials. There are a limited number of studies related to plates
with internal hinges [16-20].

This study examined the deformation problem of a plate system (formed side-by-side) composed
of inhomogeneous elastoplastic plates with different properties. In order to find a numerical solution
of the problem, the transmission conditions on the common border and their numerical expressions
were obtained.

In Section 2, the problem formulation was given. In Section 3, the transmission conditions were
obtained at the common boundary in order that plates in the system composed of inhomogeneous
elasto-plastic plates with different properties move together. The finite difference equations of both the
equilibrium equation of the plates and transmission conditions were obtained by using the functional
approximation method in Section 4. In Section 5, the test functions were defined to check the accuracy
of the prepared computer program, and then error analyses of the numerical solutions were given.
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In Section 6, the bending of the plates system was examined when different boundary conditions
were given on the boundaries of the system by using the prepared computer program. According
to the change of « and {3 in the plate system, the effect of elasticity modulus E on maximal bending
was analyzed.

2. Problem Formulation
Let us consider a plate system (formed side-by-side) composed of inhomogeneous elastoplastic

k
plates with different properties that filled kdlﬂk = Q) C R® regions, where ko is the number of plates

that formed the system and Q) = {x = (xl,x2)|€§1_1 <xp; < 651,0 <xp <4y, 621 =0,k= 1,k0}.
The problem of bending of the system may be written mathematically with the discontinuous coefficient
von Karman equation, as follows [21]:

92 02 02 02 _
@{Dk(ﬁ+\/kﬁ)] {Dk< + w2y )}Hax]am D= w28 | =q(xpx), ()

where w is the bending of the system corresponding to q(x1,xz) forces applied vertically onto the
plate, and Dy, = Eyh®/ (12(1 — v2)) values are the cylindrical stiffness coefficients of the plates of the
system. Moreover, Ey and vy values are the Young’s modulus and Poisson constants of the plates,
respectively. The thicknesses of all plates composed of the system are the same and equal to h.

Based on the case of plate boundaries, the boundary conditions depending on the physical
meanings for the equilibrium equation are generally classified in two manners: clamped boundary
condition w(x) = dw(x)/dn = 0 and simply supported boundary condition w(x) = d*w(x)/on? =
where n is the unit outward normal to the boundary d0). Since the plates in the system have different
Dy cylindrical stiffness coefficients, the coefficients of Equation (1) lead to discontinuity at the common
boundaries of the system. When such problems are solved based on fields of application, it is necessary
to show the transmission conditions which depend on the shape of the junction on the common
boundaries of the plates (), as well as specific boundary conditions that correspond to the problem.

3. Obtaining the Transmission Conditions

For instance, let us consider kg = 2, i.e., two plates with different properties occupying the
rectangular region Q = Q1 Uy = {x = (x1,x0)| — € <x3 < {1, 0 < xp < £} (Figure 1).

» é] 0 Aﬂq X
Figure 1. The plates system.
In the case that the plates are connected through with a beam whose bending stiffness coefficients

are By and torsional stiffness coefficients are Cy on the common boundary x; = 0, the potential energy
of the plate system is [21]
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Here, o is the stiffness coefficient of the hinge of the connected plates, while {3 is the stiffness
coefficient of support (anchorage provided by the hinge). For the loaded elastic body to reach
equilibrium, the Gateaux derivative of the full potential energy of the plates must be equal to zero.
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where t € R and the function ¥ is in the same class as the function w. Thus, we obtain

o = £ fﬂﬁm( w2y )+ 2 (Zy +nly)

k=1
02 2w 9% 2w %9
+2(1 -V )Bxlgiz axlaxz} XmdXQ + f [Bk Ix (-;-J sz + Ck 9dx10%p ax18x2:| dez} (3)
X1 =

éz 0
dxz—f f q(x)9dx;dx; = 0.

X1=

0
+Of{ awae—k[ﬁwﬁ}

ax1 8x1

After calculating the integrals in (3), the terms corresponding to the common boundary x; = 0 of
the plates are written down as follows:

14
a
f{{ Dz( )ax1+8x1 [Dz( + vy aw)]ﬁ Zaxz [Dz 5‘)"(}
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Obtaining the transmission conditions on the common boundary x; = 0 of the plates

firstly involves writing down the terms corresponding to this edge where the coefficients of
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, 32 , & expressions are equal to zero, and then the discontinuity of w is also added on
X1 [y, =0+ X1 |x;=0-

the common border, and the following transmission conditions are obtained:

Jw _ 1 Pw P w Pw Pw J Pw _d Pw
%o T2 {Dz (‘ax{ +v2 E >X1:0+ +Dy (T@ +v1 £ >X1: T (C2 IO ) =0t 0% (Cl Ix10x; axz>xl:0, } 4)
22 2w _ 2w 2w _ i( 2w ) i( ?w )
<D2< ox? +v2 0x3 ))(1:04r Dy ( ox? Vi 0x3 )x10> - {sz C 9X10x) o + Xz G 9x10%2 xq=0- [’ (5)

) 22 ? ) &
{(8)(1 {Dz( ax?) +Vv2 ax“%")} + 255 [Dz(l - vz)axlg,’(ZDX o
1=

(©)
2 2 2 2 2
—(ﬁ[Dl(%T‘z"+VlaaT°z°)] +23%2[D1(1—V1)331§UXZD = (—ﬁw—a%(Bl-l-Bz)aaT%’) :
1 2 X1 =0- 2 2 X1 =0
Here, ‘37“1’ is known as the jump of 37‘*1’ at x; = 0. Usually, based on the shape of the junction of the

plates on the common boundary, there are different meanings of transmission conditions depending
on different values of non-negative constants &, 3, and By, Cy, k =1,2.

4. The Finite Difference Approximations of the Transmission Conditions

Let us define the mesh Oy, = Qp, X Op, = { (xil,xj2) ‘ x € ﬁhl,sz €Oy, ,i=1n, j= m}
sized nxm in the region (2 C R?, where 5}11 , ﬁhz are the uniform meshes on the axes x;, xp, respectively
(also hj, hy are step widths of meshes, n, m are the number of points on the axes x;, Xy, respectively).
In order to obtain the finite difference equations that correspond to the problem described in a previous
study [21], let us use the functional approximation method. Considering the expressions of the
transmission conditions (4)-(6) and o« # 0,Cy = 0, By = B, k = 1,2, we may show the finite difference
approximation of the functional i(w) as

2

L(y) = Y Wi(y) + W (y) — Y qyhjha.
k=1 ﬁ}‘1}‘2

Here, W(y), k = 1,2 are the finite difference approximations of the energy functions on meshes
QO h,- Additionally, WY (y) are the finite difference expressions of the collected terms that belong to
the common boundary y. The expression W (y) is obtained as follows:

2

2 2
h ™ 2 2 ~
Wi (y) = 1§h2{2D(Yxm> + [}% +3 [Dl (1 —(v1) ) +Ds (1 = (v2) )} +(V1+2V2)D] (Y@xz)
N @)
where D = 20h1D1D;/(2D1D; + ahy (D1 + D3)), Ve Vg denote the left-hand derivatives and
Y, Y, denote the right-hand derivatives of function y on the axes x;, X3, respectively. Defining the
following coefficients,
D,l , X = (—hl,Xz)
D;=¢{ 2D , x=(0,x) |, (8)
D2 s X = (hl/XZ)

D, . X (—hy,x2)
D, = }%+%[D1(1—(v1)2)+D2(1—(vz)2)}+%6 L x=(0,%) ©)
DZ ;, X = <h1/X2)
Di(1—vq) + Da(1 —
D = LA D), 10)
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we may rewrite I, (y) by using (8)—(10) as follows:

hyhy 2 2
h(y) = "2 ¥ Di(yan) +D2(se) D10V +V2)¥e, Vi

Onyhy ) ) ) ) (11)
+Dip [(yxm) + (vams) + (5me) " (ne) ] +Bo0a)y* - 2qy},
where the Dirac function is
1/h1, X1 = 0
5 = 12
A e

The I, (y) that was obtained above is a multivariable function that depends on the variables
Vi = y(xd, sz), (xt, xlz) € O, p,- Keeping this in consideration, if the derivative of the functional I (y)
with respect to y(x1, X2) is computed and equated to zero, we can obtain the finite difference expression
of Equation (1) as the following:

(Dly@‘l)ﬁxl + <D2(}:/X2f> - + (Dl Myxm)xy(z o (13)
+ (Dl l7V2)szxz) X1X1 + 4Dkuﬁxlﬁx2 +B(xa)y = q<X11/X]2)'

Using Equation (13), we obtain the finite difference approximations of the transmission conditions
on the points of the common border and their neighbors, i.e., x; = 0, £h;. Firstly, Equation (13) is
turned into (14) for the points (—hl,xlz),j =2,m-—1:

1 (vitva) 1 1
Dy {y><1><1X1X1 o FYXlxl T Vs T2 <2y><1><1><2X2 TR Y h%y><zxz> }

+
-I—D{(Vl Y2) {hl% (YX1X1 + yszz) + }111YX1X2X2:| + hl%Yqu} (14)

+[D1(1 —v1) + D21 = v2)]¥srnion, = Q(*hlfxlz)-

For the points that belong to the common border x; = 0 in ﬁhlhz’ the finite difference expressions
of the transmission conditions are

(V1+V2)

2D Ysaxixix + Yioxaxaxa (YX1X1 + yﬁ) + (Vl + V2)Y§xl§X2

. 2

- (VIZh;/Z) <yx1EXz - yX1X2X2>} { t3 [Dl (1 - () ) +D; (1 - (v2) )} }YTZXZEXZ (15)
+ +

+hl? DaYyx, + D1Ysoxs ) + 2 VZ)( 1)Yx7xz] + (Vlzhlv “(P2Ysax ~ Di¥siax,

F[D1 (1= 1) + Da(1 = ¥2) Yxgpmpng + £3(0) = q(0,%)-

Finally, we reach Equation (16) for the points (h, sz), j=2m-1

1 (vitva) 1 1
Dz{yﬁxlﬁh - h?yﬁxl T Ysaoxe T2 <2yﬁxlﬁxz T R Vs Eyﬁxz)

A (16)
= +
+2D{hi%}’m - w (hilyMixzxz - hl?}’@q) } + [D1(1—v1) +Da(1 - VZ)]Yxﬁxlﬁxz = q<hllez)~

Thus, we obtain the finite difference approximations of the transmission conditions on x; = 0,
£h; as Equations (14)—(16).

5. Computer Simulations and Results

This section presents the error analyses of the numerical solutions for the purpose of checking
the accuracy of the computer program that was prepared by using MATLAB. Let us take into
account two different examples that correspond to the deformation problem of the plate system
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that fills the Q) = U Qk = {x=(x1,x2)]0 < x3 <2, 0 <xp <1} rectangular region, where () =

{x=(x1,x2)|(k — 1) < x1 <k 0<x<1 },k = 1,2. We may easily show that the following
functions satisfy the simply supported boundary condition and the clamped condition on the
boundaries of () and the common borders x; = 1, respectively as (a) wy(xq,x2) = — sin 7x; sin 7xy,
(b) wa(x1,x2) = —(1 — cos 2mx1) (1 — cos 271xz).

The function wj(x1,xy) is geometrically equivalent such that the plates are connected with an
ideal hinge (x = 0) on the common boundary points, and there is an absolute hard support (f = o)
under the hinge. The function wy(x1,x7) also corresponds to the bending on the common boundary in
the case of x = oo, 3 = co. This means that the plates were composed by welding (« = o) and there is
an absolute hard support ( = o) under the hinge.

The right sides of Equation (1) for functions w1 (xq,x2) and w3 (X1, X2) are, respectively, as follows:

qq(x1,x2) = —4n* sin7xg sin7xa, q,(x1,%2) = 167t (cos 27x1 + cos 271xp — 4 €08 27X €08 271X2) ,

where D; =D, = 1.

Both examples are resolved in different-sized meshes Ny, X Ny, to investigate the effects of
the change in the size of the mesh on the error of the numerical solution. Table 1 shows the
maximal bending maxw?(xl,xz),i = 1,2 and the values of relative error. The relative error of the
approximate solution that is obtained are 8, = 0.13% for wy and 8, = 0.78% for w; when using
dw = || (wij - Yij) / wj; I o Examining the values in the table, it is seen that the results that are obtained

are less than 1% of the relative errors in the mesh that is used and smaller-stepped meshes.

Table 1. The maximal bending (cm) and relative error values obtained on different meshes for different
values of o and .

a:O,ﬁ:oo a:oo,ﬁ:oo
Ny, XNy, maxwy, (x1,X7) Relative Error maxwy, (x1,x7) Relative Error
21 X 21 0.9992 0.0076 4.0827 0.0207
31 X 31 0.9960 0.0014 4.0049 0.0123
41 x 41 1.0013 0.0013 4.0312 0.0078
51 X 51 0.9990 9.9082 x 10~* 4.0054 0.0053
61 X 61 1.0008 7.6638 x 1074 4.0153 0.0038

6. Numerical Experiments

This section examines the numerical solution examples for the bending problem with external
force effects of the system composed of plates with different properties. Let us consider the plate
system composed of two thin plates whose Young’s modulus are E~, E*, and Poisson’s constants
are v—, v, respectively. When the clamped condition is given on the boundaries of the system,
the force q = 200 [kn/cm?] is applied at 21 points in total on the condition that there are nine points
on both the middle of the left and right plates and three points on the common border x; = 0.
In order to examine the effects of Young’s modulus on the bending of the system, we solve the
problem for different boundary conditions and different transmission conditions when v— = vt = 0.3,
(i) E- = 11,000 [kn/cm?], ET = 21,000 [kn/cm?], (i) E- = E* = 21,000 [kn/cm?], and (iii)
E~ = 21,000 [kn/ cmZ}, E* = 11,000 [kn/ cmZ}. Table 2 shows the results that are obtained. o = 0
means that the hinge can ideally move on the common boundary of the plate system, whereas
= const. indicates the presence of support with finite hardness under the hinge. In a special case,
the numerical solutions that are obtained for 3 = 100 are given in Figure 2a—c. For comparison of the
results, the cross sections at x, = ¢»/2 are shown in Figure 2d.
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Figure 2. The bendings of the plate system corresponding to cases (i)-(iii) in (a—c), and the cross sections

of the bendings on x, = ¢, /2 in (d) in the case of x = 0, 3 = 100.

Figure 3 shows the cross sections of the numerical solutions obtained for the bending problem of
the plate system at different « and {3 values.
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Figure 3. Cont.
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Figure 3. The cross sections for different values of « and 3.

The following tables show the values of the maximal bending that corresponds to the constant
force of the computer experiments given above in the geometric interpretations. The results are
presented in Tables 2 and 3 for different values of «, 3, respectively, when the clamped boundary
conditions and the simply supported boundary conditions are given for the boundaries of the system.
Furthermore, the values of w,,, [cm], wl,, [cm], and w;,, [cm] shown in the tables below are
the bending values that occurred on the left plate, the common border x; = 0, and the right

plate, respectively.
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Table 2. The effect of modulus of elasticity E on maximal bending (cm) depending on the change of
and B in the plate system when the clamp condition is given on the boundaries (v~ = vt =0.3).

E~ =11,000 [kN/cm?], E~ = 21,000 [kN/cm?],
E* = 21,000 [kN/cm?] E* = 11,000 [kN/cm?]
Wrmax ~ Dhax Dhax  Omax Ohax Whax Dmax Do O
B=0 27599 2.8839 26897 20280 21534 20280 2.6897 2.8839  2.7599
a=0 B=100 1.0905 03254 06151 0.6088 02966 0.6088 0.6151 03254  1.0905
B=co 09980 0 05229  0.5228 0 0.5228  0.5229 0 0.9980
B=0 21777 21288 20494 15132 1.5354 1.5132 2.0494 21288 21777
«=100 B=100 09252 03744 05364 05449 03354 05449 05364 03744 09252
B=co 07604 0 0.3974  0.4059 0 0.4059  0.3974 0 0.7604
B=0 21425 20529 19862 14449 14519 14449 19862 20529  2.1425
a=co B=100 0.8981 03813 05235 05303 03428 05303 05235 03813  0.8981

B=occ 07177 0 03748  0.3755 0 0.3755  0.3748 0 0.7177

E~ = E* = 21,000 [kN/cm?]

Table 3. The effect of modulus of elasticity E on maximal bending (cm) depending on the change
of @ and B in the plate system when the simply supported condition is given on the boundaries
(v—=vT =03).

E~ =11,000 [kN/cm?], E~ = 21,000 [kN/cm?],

E* = 21,000 [kN/cm?] E* = 11,000 [kN/cm?]
Wiax ~ Dhax Ohax Wmax Ohax Whax Dmax Do O
B=0 84661 88137 83550 62564 6.5669 6.2564 83550  8.8137  8.4661
a=0 PB=100 18143 03946 10167 1.0094 03643 1.0094 1.0167 0.3946  1.8143
B=co  1.6764 0 0.8783  0.8782 0 0.8782  0.8783 0 1.6764
B=0 59141 58201 56692 41040 4.1431 41040 56692 58201  5.9141
a=100 B=100 1.3656 04571 07930 0.8141 04193 08141 07930 04571  1.3656
B=co 11113 0 0.5805  0.5969 0 0.5969  0.5805 0 1.1113
B=0 57824 56090 54816 3.9034 3.9150 39034 54816 5.6090  5.7824
a=oco PB=100 13040 04648 07624 07759 04287 07759 07624  0.4648  1.3040

B=occ 1.0330 0 0.5392  0.5404 0 0.5404  0.5392 0 1.0330

E~ = E* = 21,000 [kN/cm?]

7. Conclusions

This study obtained the transmission conditions on the common boundary in the biharmonic
equation given by the discontinuous coefficient by using the functional approximation method,
and analyzed the numerical results. The method that was used here may be used to find the numerical
solution of problems expressed by mathematical models of differential equations with discontinuous
coefficients. The same approach can be used to derive the sizes and mechanical properties of the plates
forming the system.
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