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1. Introduction and Preliminaries

Let A denote the class of functions f of the form

f (z) = z +
∞

∑
n=2

anzn, (1)

analytic in the open unit disc U = {z : |z| < 1} and S denote the class of all functions in A which

are univalent in U . Let S∗ (α) , C (α), K (α) ,
∼
S∗ (α) and

∼
C (α) denote the classes of starlike, convex,

close-to-convex, strongly starlike and strongly convex functions of order α, respectively, and are
defined as:

S∗ (α) =

{
f : f ∈ A and Re

(
z f ′ (z)

f (z)

)
> α, z ∈ U , α ∈ [0, 1)

}
,

C (α) =

{
f : f ∈ A and Re

(
(z f ′ (z))′

f ′ (z)

)
> α, z ∈ U , α ∈ [0, 1)

}
,

K (α) =

{
f : f ∈ A and Re

(
z f ′ (z)
g (z)

)
> α, z ∈ U , α ∈ [0, 1) , g ∈ S∗(0) :≡ S∗

}
,

∼
S∗ (α) =

{
f : f ∈ A and

∣∣∣∣arg
(

z f ′ (z)
f (z)

)∣∣∣∣ < απ

2
, z ∈ U , α ∈ (0, 1]

}
,

and
∼
C (α) =

{
f : f ∈ A and

∣∣∣∣arg
(

1 +
z f ′′ (z)
f ′ (z)

)∣∣∣∣ < απ

2
, z ∈ U , α ∈ (0, 1]

}
.

Mathematics 2019, 7, 240; doi:10.3390/math7030240 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math7030240
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/3/240?type=check_update&version=2


Mathematics 2019, 7, 240 2 of 12

It is clear that

∼
S∗ (1) = S∗ (0) = S∗,

∼
C (1) = C (0) = C and K (0) = K,

where S∗, C and K are the classes of starlike, convex and close-to-convex functions, respectively. If f
and g are analytic functions, then the function f is said to be subordinate to g, written as f (z) ≺ g(z),
if there exist a Schwarz function w with w(0) = 0 and |w| < 1 such that f (z) = g(w(z)). Furthermore,
if the function g is univalent in U , then we have the following equivalent relation:

f (z) ≺ g(z)⇐⇒ f (0) = g(0) and f (U ) ⊂ g(U ).

For two functions f of the form of Equation (1) and g of the form

g(z) = z +
∞

∑
n=2

bnzn, (z ∈ U ) .

that are analytic in U , we define the convolution of these functions by

( f ∗ g)(z) = z +
∞

∑
n=2

anbnzn, (z ∈ U ) .

Consider the Lommel function of the first kind Lκ,τ(z) is a particular solution of the
in-homogeneous Bessel differential equation ( see for details, [1,2]):

z2w′′(z) + zw′(z) + (z2 − τ2)w(z) = zκ+1, (2)

and it can be expressed in terms of hypergeometric series

sκ,τ(z) =
zκ+1

(κ − τ + 1) (κ + τ + 1) 1F2

(
1;

κ − τ + 3
2

,
κ + τ + 3

2
;− z2

4

)
,

where κ± τ is a non-negative odd integer. It is observed that Lommel function sκ,τ does not belongs to
the class A. Thus, the normalized Lommel function of first kind is defined as:

Lκ,τ(z) = (κ − τ + 1) (κ + τ + 1) z
1−κ

2 sκ,τ(
√

z), (3)

Lκ,τ(z) =
∞

∑
n=0

(
−1
4

)n

(M)n (N )n
zn+1. (4)

whereM = κ−τ+3
2 , N = κ+τ+3

2 and (a)n shows the Appell symbol which defined in terms of Eulers

gamma functions such that (a)n = Γ(a+n)
Γ(a) = a(a + 1)...(a + n− 1). Clearly, the function Lκ,τ belongs to

the class A. To discuss the close-to-convexity of normalized Lommel functions with respect to the
certain starlike functions, here we define modified form of the normalized Lommel functions

L(z) =
z

1 + z
∗ Lκ,τ(z) =

∞

∑
n=0

1
4n (M)n (N )n

zn+1

= z +
∞

∑
n=1

1
4n (M)n (N )n

zn+1. (5)
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Next, we consider the hyper-Bessel function in terms of the hypergeometric functions defined
below (for details see [3])

Jβc(z) =

( z
c+1
)β1+β2+...+βc

c
∏
i=1

Γ (βi + 1)
0Fc

(
−

(βc + 1);−
(

z
c + 1

)c+1
)

, (6)

where the notation

pFq

((
(β)p

(γ)q

)
; x

)
=

∞

∑
n=0

(β1)n (β2)n ...
(

βp
)

n
(γ1)n (γ2)n ...

(
γp
)

n

xn

n!
, (7)

represents the generalized Hypergeometric functions and βc represents the array of c parameters
β1, β2, ..., βc. By combining Equations (6) and (7) , we get the following infinite representation of the
hyper-Bessel functions

Jβc(z) =
∞

∑
n=0

(−1)n

n!
c

∏
i=1

Γ (βi + n + 1)

(
z

c + 1

)n(c+1)+β1+β2+...+βc

. (8)

Since the function Jβc is not in class A, the normalized hyper-Bessel function Jβc is defined by

Jβc(z) = 1 +
∞

∑
n=2

(−1)n−1

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(βi + 1)n−1

z(n−1)(c+1). (9)

It is observed that the function Jβc defined in Equation (9) does not belong to the class A. Here,
we consider the following normalized form of the hyper-Bessel function for our own convenience.

Hβc(z) = zJβc(z) =
∞

∑
n=0

(−1)n

(n)!(c + 1)n(c+1)
c

∏
i=1

(βi + 1)n

zn(c+1)+1. (10)

To discuss the close-to-convexity of normalized hyper-Bessel functions with respect to the certain
starlike functions, here we define modified form of the normalized hyper-Bessel functions

Hβc(z) =
z

1 + z
∗ zJβc(z) =

∞

∑
n=0

1

(n)!(c + 1)n(c+1)
c

∏
i=1

(βi + 1)n

zn(c+1)+1

= z +
∞

∑
n=2

z(n−1)(c+1)+1

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(βi + 1)n−1

. (11)

Special functions have great importance in pure and applied mathematics. The wide use of
these functions has attracted many researchers to work on the different directions. Recently,
many mathematicians study the geometric properties of special functions with different aspects.
For details, we refer to [4–9]. Certain conditions for close-to-convexity of some special functions
such as Bessel functions, q-Mittag-Leffler functions, Wright functions, and Dini functions have been
determined by many mathematicians with different methods (for details, see [4,10–13]). We need the
following Lemmas to prove our results.
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Lemma 1 ([14]). Let {an}∞
n=1 be a sequence of positive real number such that a1 = 1. Suppose that, a1 ≥ 8a2

and (n− 1) an ≥ (n + 1) an+1, ∀n ≥ 2. Then, f is close-to-convex with respect to starlike function z
1−z2 .

Lemma 2 ([15]). Let f have the series representation of the form of f (z) = z +
∞
∑

n=2
anzn. Suppose that

1 ≥ 2a2 ≥ ... ≥ nan ≥ (n + 1)an+1 ≥ ... ≥ 0 (12)

or
1 ≤ 2a2 ≤ ... ≤ nan ≤ (n + 1)an+1 ≤ ... ≤ 2. (13)

Then, f is close-to-convex with respect to starlike function z
1−z .

Lemma 3 ([16]). Let M(z) be convex and univalent in the open unit disc with condition M(0) = 1. Let F(z) be
analytic in the open unit disc with condition F(0) = 1 and F ≺ M in the open unit disc. Then, ∀ n ∈ N∪ {0},
and we obtain

(n + 1)z−1−n
z∫

0

tnF(t)dt ≺ (n + 1)z−1−n
z∫

0

tn M(t)dt.

2. Close to Convexity of Modified Lommel Functions

In this section we discuss some conditions under which the modified Lommel functions and
modified hyper-Bessel functions are assured to be close-to-convex with respect to the functions

z
1− z2 and

z
1− z

.

Theorem 1. Let κ, τ ∈ R+ := (0, ∞) and κ ≥ τ. Then, Lκ,τ defined in Equation (5) is close-to-convex with
respect to starlike function z

1−z2 .

Proof. Consider

Lκ,τ(z) = z +
∞

∑
n=2

anzn,

where
an =

1
4n−1 (M)n−1 (N )n−1

, (n ∈ N\ {1})

withM = (κ − τ + 3)/2 and N =(κ + τ + 3)/2. Note thatM > 0 and N > 0 by the hypothesis. It is
enough to prove that an satisfies the hypothesis of Lemma 1. Clearly, a1 ≥ 8a2 sinceM > 0 andN > 0.
For n ∈ N\ {1} , consider the following inequality

(n− 1)an ≥ (n + 1)an+1. (14)

Then, Equation (14) is equivalent to

4(n− 1) (M+n− 1) (N+n− 1)− (n + 1) ≥ 0. (15)

SinceM > 0 and N > 0, the inequality in Equation (15) holds for all n ≥ 2. Hence, {an}∞
n=1

satisfies the hypothesis of Lemma 1 which completes the proof of Theorem 1.
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Theorem 2. Let κ, τ ∈ R+ := (0, ∞) and κ ≥ τ. Then, Lκ,τ defined in Equation (5) is close-to-convex with
respect to starlike function z

1−z .

Proof. Consider

Lκ,τ(z) = z +
∞

∑
n=2

anzn,

where
an =

1
4n−1 (M)n−1 (N )n−1

(n ∈ N\ {1}).

withM = (κ − τ + 3)/2 and N =(κ + τ + 3)/2. Note thatM > 0 and N > 0 by the hypothesis.
It is enough to prove that an satisfies the hypothesis of Lemma 2. For n ∈ N\ {1} , consider the
following inequality

nan ≥ (n + 1)an+1. (16)

Then, Equation (16) is equivalent to

4n (M+n− 1) (N+n− 1)− (n + 1) ≥ 0.

SinceM > 0 and N > 0, the inequality in Equation (16) holds for all n ≥ 2. Hence, {an}∞
n=1

satisfies the hypothesis of Lemma 2, which completes the proof of Theorem 2.

3. Close to Convexity of Modified Hyper-Bessel Functions

Theorem 3. Let i ∈ {1, 2, 3, ..., c}, βi > −1 and ζη ≥ 3/2, where

ζ = (c + 1)c+1 and η =
c

∏
i=1

(βi + 1) .

Then, Hβc defined in Equation (11) is close-to-convex with respect to starlike function z
1−z2 .

Proof. Consider

Hβc(z) = z +
∞

∑
n=2

anz(n−1)(c+1)+1,

where an = 1

(n−1)!(c+1)(n−1)(c+1)
c

∏
i=1

(βi+1)n−1

, ∀n ≥ 2. It is enough to prove that an satisfies the

hypothesis of Lemma 1. Clearly, a1 = 1 and a1 ≥ 8a2 for ζη + 8 > 0. To complete the proof, we
find the condition under which (n− 1)an − (n + 1)an+1 ≥ 0. Thus, take

(n− 1)an ≥ (n + 1)an+1

(n− 1)

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(βi + 1)n−1

≥ (n + 1)

(n)!(c + 1)n(c+1)
c

∏
i=1

(βi + 1)n

.

This implies that

η (c + 1)c+1 ≥ (n + 1)
n(n− 1)

, ∀n ≥ 2.

One can easily observe that (n− 1)an − (n + 1)an+1 ≥ 0 for ζ ≥ (n+1)
n(n−1)η , ∀n ≥ 2. This is true

when ζη ≥ 3/2, for all n ≥ 2. Hence, {an}∞
n=1 satisfies the hypothesis of Lemma 1, which completes

the proof.
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Theorem 4. Let Hβc defined in Equation (11) satisfy the following condition:

(c + 1)c+1η ≥ 3/4, ∀n ≥ 2,

where η is defined in Theorem 3. Then, Hβc is close-to-convex with respect to starlike function z
1−z .

Proof. Let

Hβc(z) = z +
∞

∑
n=2

1

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(βi + 1)n−1

z(n−1)(c+1)+1

= z +
∞

∑
n=2

anzn,

where a1 = 1 and for n ≥ 2,

an =
1

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(βi + 1)n−1

.

Now,

nan − (n + 1)an+1 =
n

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(βi + 1)n−1

− (n + 1)

(n)!(c + 1)n(c+1)
c

∏
i=1

(βi + 1)n

.

To check under which conditions the above expression is positive, consider

n

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(βi + 1)n−1

≥ (n + 1)

(n)!(c + 1)n(c+1)
c

∏
i=1

(βi + 1)n

.

This shows that the sequence {nan}∞
n=1 is a decreasing sequence if n2(c + 1)c+1η ≥ (n + 1),

∀n ≥ 2. This condition is satisfied for (c + 1)c+1η ≥ 3/4, ∀n ≥ 2. Thus, from Lemma 2, Hβc is
close-to-convex with respect to starlike function z

1−z .

4. Strongly Convexity and Strongly Starlikeness of Lommel Functions

In this section, we are mainly interested in finding some sufficient conditions for the normalized
Lommel functions to belong to the classes of strongly convex of order α and strongly starlikeness of
order α functions, respectively.

Theorem 5. Let κ, τ ∈ R. IfMN − 2 > 0, whereM = κ+τ+3
2 and N = κ−τ+3

2 , then Lκ,τ ∈
∼
C (α) , where

α =
2
π

arcsin

(
κ
√

1− κ2

4
+

κ
2

√
1−κ2

)
, (17)

and κ = 1
MN−1 .
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Proof. By using the well-known triangle inequality

|z1 + z2| ≤ |z1|+ |z2| ,

with the inequalities
(n + 1)2 ≤ 4n, (M)n ≥M

n ∀ n ∈ N,

we obtain ∣∣∣(zL′κ,τ(z)
)′ − 1

∣∣∣ ≤ ∞

∑
n=1

(n + 1)2

4n (M)n (N )n

≤ 1
MN

∞

∑
n=1

(
1
MN

)n−1

=
1

MN − 1
= κ. (18)

From Equation (18) , we conclude that(
zL′κ,τ(z)

)′ ≺ 1 +κz ⇒
∣∣∣arg

(
zL′κ,τ(z)

)′∣∣∣ < arcsinκ. (19)

With the help of Lemma 3, take n = 0 with F(z) =
(
zL′κ,τ(z)

)′ and M(z) = 1 +κz, and we get

zL′κ,τ(z)
z

≺ 1 +
κ
2

z. (20)

This implies that
L′κ,τ(z) ≺ 1 +

κ
2

z.

As a result, ∣∣argL′κ,τ(z)
∣∣ < arcsin

κ
2

. (21)

By using Equations (19) and (21) , we obtain∣∣∣∣∣arg

((
zL′κ,τ(z)

)′
L′κ,τ(z)

)∣∣∣∣∣ =
∣∣∣arg

(
zL′κ,τ(z)

)′ − argL′κ,τ(z)
∣∣∣

≤
∣∣∣arg

(
zL′κ,τ(z)

)′∣∣∣+ ∣∣arg
(
L′κ,τ(z)

)∣∣
< arcsin

κ
2
+ arcsinκ

= arcsin

(
κ
√

1− κ2

4
+

κ
2

√
1−κ2

)
.

which implies that Lκ,τ ∈
∼
C (α) for α = 2

π arcsin
(
κ
√

1− κ2

4 + κ
2

√
1−κ2

)
.

Theorem 6. Let κ, τ ∈ R. IfMN − 2 > 0, whereM = κ+τ+3
2 andN = κ−τ+3

2 , then Lκ,τ ∈
∼
S∗ (α) , where

α =
2
π

arcsin

(
κ
√

1− κ2

4
+

κ
2

√
1−κ2

)
, (22)

and κ = 1
2(MN−1) .
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Proof. By using the well-known triangle inequality

|z1 + z2| ≤ |z1|+ |z2| ,

with the inequalities
2(n + 1) ≤ 4n, (M)n ≥M

n, ∀ n ∈ N,

we obtain

∣∣L′κ,τ(z)− 1
∣∣ ≤ ∞

∑
n=1

n + 1
4n (M)n (N )n

≤ 1
2MN

∞

∑
n=1

(
1
MN

)n−1

=
1

2 (MN − 1)
= κ. (23)

From Equation (23) , we conclude that

L′κ,τ ≺ 1 +κz ⇒
∣∣arg

(
L′κ,τ(z)

)∣∣ < arcsinκ. (24)

With the help of Lemma 3, take n = 0 with F(z) = L′κ,τ(z) and M(z) = 1 +κz, and we get

Lκ,τ

z
≺ 1 +

κ
2

z. (25)

As a result, ∣∣∣∣arg
(
Lκ,τ(z)

z

)∣∣∣∣ < arcsin
κ
2

. (26)

By using Equations (24) and (25) , it implies that Lκ,τ ∈
∼
S∗ (α) for α = 2

π arcsin
(
κ
√

1− κ2

4 + κ
2

√
1−κ2

)
.

5. Strongly Convexity and Strongly Starlikeness of Hyper-Bessel Functions

Theorem 7. Let i ∈ {1, 2, 3, ..., c}, βi > −1 and ζη > 1
2 , where

ζ = (c + 1)c+1 and η =
c

∏
i=1

(βi + 1) .

Then,Hβc ∈
∼
C (α) , where

α =
2
π

arcsin

(
ψ

√
1− ψ2

4
+

ψ

2

√
1− ψ2

)
, (27)

and ψ = 4ζη(c+1)2(2ζη+1)+(2ζη−1){8ζη(c+1)+2(2ζη−1)}
(2ζη−1)3 such that |ψ| ≤ 1.

Proof. By using the well-known triangle inequality

|z1 + z2| ≤ |z1|+ |z2| ,
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we obtain∣∣∣∣(zH′βc
(z)
)′
− 1
∣∣∣∣ ≤ ∞

∑
n=1

(nc + n + 1)2

n! (c + 1)n(c+1) c
∏
i=1

(βi + 1)n

≤ (c + 1)2

ζη

∞

∑
n=1

n2

(2ζη)n−1 +
2 (c + 1)

ζη

∞

∑
n=1

n
(2ζη)n−1 +

1
ζη

∞

∑
n=1

1
(2ζη)n−1

=
(c + 1)2

ζη

1 + 1
2ζη(

1− 1
2ζη

)3 +
2 (c + 1)

ζη

1(
1− 1

2ζη

)2 +
1

ζη

1(
1− 1

2ζη

)
=

4ζη(c + 1)2(2ζη + 1) + (2ζη − 1) {8ζη(c + 1) + 2(2ζη − 1)}
(2ζη − 1)3 = ψ. (28)

From Equation (28) , we conclude that(
zH′βc

(z)
)′
≺ 1 + ψz ⇒

∣∣∣∣arg
(

zH′βc
(z)
)′∣∣∣∣ < arcsin ψ. (29)

With the help of Lemma 3, take n = 0 with F(z) =
(

zH′βc
(z)
)′

and M(z) = 1 + ψz, and we get

zH′βc
(z)

z
≺ 1 +

ψ

2
z. (30)

This implies that

H′βc
(z) ≺ 1 +

ψ

2
z.

As a result, ∣∣∣argH′βc
(z)
∣∣∣ < arcsin

ψ

2
. (31)

By using Equations (29) and (31) , we obtain∣∣∣∣∣∣∣arg


(

zH′βc
(z)
)′

H′βc
(z)


∣∣∣∣∣∣∣ =

∣∣∣∣arg
(

zH′βc
(z)
)′
− argH′βc

(z)
∣∣∣∣

≤
∣∣∣∣arg

(
zH′βc

(z)
)′∣∣∣∣+ ∣∣∣argH′βc

(z)
∣∣∣

< arcsin
ψ

2
+ arcsin ψ

= arcsin

(
ψ

√
1− ψ2

4
+

ψ

2

√
1− ψ2

)
.

which implies thatHβc ∈
∼
C (α) for α = 2

π arcsin
(

ψ

√
1− ψ2

4 + ψ
2

√
1− ψ2

)
.

Theorem 8. Let i ∈ {1, 2, 3, ..., c}, βi > −1 and ζη > 1
2 , where

ζ = (c + 1)c+1 and η =
c

∏
i=1

(βi + 1) .
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Then,Hβc ∈
∼
S∗ (α) , where

α =
2
π

arcsin

(
ψ

√
1− ψ2

4
+

ψ

2

√
1− ψ2

)
, (32)

and ψ = 4ζη(c+2)−2
(2ζη−1)2 .

Proof. By using the well-known triangle inequality

|z1 + z2| ≤ |z1|+ |z2| ,

we obtain ∣∣∣H′βc
(z)− 1

∣∣∣ ≤ ∞

∑
n=1

n(c + 1) + 1

n! (c + 1)n(c+1) c
∏
i=1

(βi + 1)n

≤ c + 1
ζη

∞

∑
n=1

n
(2ζη)n−1 +

1
ζη

∞

∑
n=1

1
(2ζη)n−1

=
c + 1

ζη

1(
1− 1

2ζη

)2 +
1

ζη

1(
1− 1

2ζη

)
=

4ζη (c + 2)− 2

(2ζη − 1)2 = ψ. (33)

From Equation (33) , we conclude that

H′βc
(z) ≺ 1 + ψz ⇒

∣∣∣arg
(
H′βc

(z)
)∣∣∣ < arcsin ψ. (34)

With the help of Lemma 3, take n = 0 with F(z) = H′βc
(z) and M(z) = 1 + ψz, and we get

Hβc (z)
z

≺ 1 +
ψ

2
z. (35)

As a result, ∣∣∣∣arg
(Hβc(z)

z

)∣∣∣∣ < arcsin
ψ

2
. (36)

By using Equations (34) and (35) , we obtain∣∣∣∣∣arg

(
zH′βc

(z)

Hβc(z)

)∣∣∣∣∣ =

∣∣∣∣∣arg

(
z

Hβc(z)

)
− arg

(
H′βc

(z)
)∣∣∣∣∣

≤
∣∣∣∣∣arg

(
z

Hβc(z)

)∣∣∣∣∣+ ∣∣∣arg
(
H′βc

(z)
)∣∣∣

< arcsin
ψ

2
+ arcsin ψ

= arcsin

(
ψ

√
1− ψ2

4
+

ψ

2

√
1− ψ2

)
.

which implies thatHβc ∈
∼
S∗ (α) for α = 2

π arcsin
(

ψ

√
1− ψ2

4 + ψ
2

√
1− ψ2

)
.
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6. Some Applications for Strongly Starlikeness of Lommel Functions

Example 1. If κ = 1
2 and τ = 1

2 , then MN − 2 > 0, where M = κ+τ+3
2 and N = κ−τ+3

2 . From
Equation (22) , we get

α =
2
π

arcsin

(
1
2

√
15
16

+
1
4

√
3
4

)
,

and thus from Theorem 6, we have

L 1
2 , 1

2
(z) = 2− 2 cos

√
z ∈

∼
S∗ (α) .

Example 2. If κ = 3
2 and τ = 1

2 , then MN − 2 > 0, where M = κ+τ+3
2 and N = κ−τ+3

2 . From
Equation (22), we get

α =
2
π

arcsin

(
1
4

√
63
64

+
1
8

√
15
16

)
,

and thus from Theorem 6, we have

L 3
2 , 1

2
(z) =

6
√

z− 6 sin
√

z√
z

∈
∼
S∗ (α) .

Remark 1. Examples related to strongly convexity can also be obtained.
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