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Abstract: Properly configuring Evolutionary Algorithms (EAs) is a challenging task made difficult by
many different details that affect EAs’ performance, such as the properties of the fitness function,
time and computational constraints, and many others. EAs’ meta-optimization methods, in which a
metaheuristic is used to tune the parameters of another (lower-level) metaheuristic which optimizes
a given target function, most often rely on the optimization of a single property of the lower-level
method. In this paper, we show that by using a multi-objective genetic algorithm to tune an EA, it is
possible not only to find good parameter sets considering more objectives at the same time but also
to derive generalizable results which can provide guidelines for designing EA-based applications.
In particular, we present a general framework for multi-objective meta-optimization, to show that
“going multi-objective” allows one to generate configurations that, besides optimally fitting an EA to
a given problem, also perform well on previously unseen ones.

Keywords: evolutionary algorithms; multi-objective optimization; parameter puning; parameter
analysis; particle swarm optimization; differential evolution; global continuous optimization

1. Introduction

This paper investigates Evolutionary Algorithms (EAs) tuning from a multi-objective perspective.
In particular, a set of experiments exemplify some of the relevant additional hints that a general
multi-objective EA-tuning (Meta-EA) environment can provide, regarding the impact of EAs’
parameters on EAs’ performance, with respect to the single-objective EA-tuning environment of
which it is a very simple extension.

Evolutionary Algorithms [1] have been very successful in solving hard, multi-modal,
multi-dimensional problems in many different tasks. Nevertheless, configuring EAs is not simple
and implies critical decisions that are taken based, as summarized below, on a number of factors,
such as: (i) the nature of the problem(s) under consideration, (ii) the problem’s constraints, such as
the restrictions imposed by computation time requirements, (iii) an algorithm’s ability to generalize
results over different problems, and (iv) the quality indices used to assess its performance.

Problem Features

When dealing with black-box real-world problems it is not always easy to identify the
mathematical and computational properties of the corresponding fitness functions (such as modality,
ruggedness, isotropy of the fitness landscape, see [2]). Because of this, EAs are often applied acritically,
using “standard” parameter settings which work reasonably on most problems but most often lead to
sub-optimal solutions.
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Generalization

An algorithm that effectively optimizes a certain function should optimize as effectively functions
characterized by the same computational properties. An interesting study on this issue is the
investigation of “algorithm footprints” [3].

Some configurations of EAs, among which “standard” settings are usually comprised, can reach
similar results on many problems, while others may exhibit performance characterized by a larger
variability. While it is obviously important to find a good parameter set for a specific EA dealing
with a specific problem, it is even more important to understand how much changing it can affect the
performance of the EA.

Constraints and Quality Indices

Comparing algorithms (or different instances of the same algorithm) requires a precise definition
of the conditions under which the comparison is made. As will be shown later in the plots Q10K and
Q100K in Figure 7 (top left), convergence to a good solution can occur with very different modalities.
Some parameter settings may lead to fast convergence to a sub-optimal solution, while others may
need many more fitness evaluations to converge, but lead to better solutions. In several real-world
applications it is often sufficient to reach a point which is “close enough” to the global optimum;
in such cases, an EA that is consistently able to reach good sub-optimal results timely is to be preferred
to slower, although more precise, algorithms. Instead, in problems with weaker time constraints, an EA
that keeps refining the solution over time, even very slowly, is usually preferable.

The previous considerations indicate that comparing different algorithms is very difficult because,
for the comparison to be fair, each algorithm should be used “at its best” for the given problem.
In fact, there are many examples in the literature where the effort spent by the authors on tuning and
optimizing the method they propose is much larger than the effort spent on tuning the ones to which
it is compared. This may easily lead to biased interpretations of the results and to wrong conclusions.

The importance of methods (usually termed Meta-EAs) that tune EAs’ parameters to optimize their
performance has been highlighted since 1978 [4]. However, mainly due to the relevant computational
effort they require, Meta-EAs and other parameter tuning techniques have become a mainstream
research topic only recently.

We are aware that using as Meta-EA an algorithm whose behavior, as well, depends on its setup,
would imply that the Meta-EA itself should undergo parameter tuning. There are obvious practical
reasons related to the method’s computational burden for not doing so. As well, it can be argued that
if the application of a Meta-EA can effectively lead to solutions that are closer to the global optimum
for the problem at hand than those found by a standard setting of the algorithm that is being tuned,
then, even supposing one uses several optimization meta-levels, the improvement margins for each
higher-level Meta-EA become smaller and smaller with the level. This intuitively implies that the
variability of the results depending on the higher-level Meta-EAs parameter settings also becomes
smaller and smaller with the level. Therefore, even if, most probably, better settings of the Meta-EA
could further improve the optimization performance, we consider that a “standard” setting of the
Meta-EA is generally enough to achieve some relevant performance improvement with respect to a
random setting.

In [5], we proposed SEPaT (Simple Evolutionary Parameter Tuning), a single-objective Meta-EA
in which GPU-based versions of Differential Evolution (DE, [6]) and Particle Swarm Optimization
(PSO, [7]) were used to tune PSO on some benchmark functions, obtaining parameter sets that yielded
results comparable with the state of the art and better than “standard” or manual settings.

Even if results were good, the approach was mainly practical, aimed at providing one set of good
parameters, but no hints about their generality or about the reasons why they had been selected. One of
the main limitations of the approach was related to its performing a single-objective optimization,
which prevented it from considering other critical goals, such as generalization, besides the obvious
one to optimize an EA’s performance on a given problem.
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In this paper, we go far beyond such results, investigating what additional hints a multi-objective
approach can provide. To do so, we use a very general framework, which we called EMOPaT
(Evolutionary Multi-Objective Parameter Tuning), that was described in [8]. EMOPaT uses the
well-known Multi-Objective Evolutionary Algorithm (MOEA) Non-dominated Sorting Genetic
Algorithm (NSGA-II, [9]) to automatically find good parameter sets for EAs.

The goal of this paper is not proposing EMOPaT as a reference environment. Instead, we use
it, as virtually the simplest possible multi-objective derivation of SEPaT, to focus on some of the
many additional hints that a multi-objective approach to EA tuning can provide with respect to a
single-objective one. We are well conscious that more sophisticated and possibly better performing
environments aimed at the same goal can be designed. SEPaT and EMOPaT have been developed with
no intent to advance the state of the art of meta-optimization algorithms but as generic frameworks,
with as few specific features as possible, aimed at studying EA meta-optimization. Consistently with
this principle, within EMOPaT, we use NSGA-II as the multi-objective algorithm tuner, since it is
possibly the most widely available, generally well-performing and easy to implement multi-objective
stochastic optimization algorithm. Indeed, NSGA-II can be considered a natural extension of a
single-objective genetic algorithm (GA) to multi-objective optimization. As well, we chose to test
EMOPaT in tuning PSO and DE for no other reasons than the easy availability and good computational
efficiency of these algorithms. EMOPaT is a general environment and can be used to tune virtually any
other EA or metaheuristic.

EMOPaT is not only aimed at finding parameter sets that achieve good results considering
the nature of the problems, the quality indices and, more in general, the conditions under
which the EA is tuned. It allows one to extract information about the parameters’ semantics
and the way they affect the algorithm by analyzing the Pareto fronts approximated by the
solutions obtained by NSGA-II. A similar strategy has been presented by [10] under the name of
innovization(innovation through optimization).

As well, we show that EMOPaT can evolve parameter sets that let an algorithm perform well not
only on the problem(s) on which it has been tuned, but also on others. Section 2 briefly introduces the
three EAs used in our experiments, Section 3 reviews the methods that inspired our work, and Section 4
describes EMOPaT. In Section 5 we first use EMOPaT to find good parameter sets for optimizing the
same function under different conditions: doing so, we show that the analysis of EMOPaT’s results can
clarify the role of EAs’ parameters and study EMOPaT’s generalization abilities; finally, EMOPaT is
used to optimize seven benchmark functions and generalize its results to previously unseen functions.
Section 6 summarizes all results and suggests possible future extensions of this work.

Additionally, in a separate appendix, we demonstrate that EMOPaT can be considered an
extension of SEPaT and has equivalent performance in solving single-objective problems, as well as
assessing its correct behavior by considering some controlled situations, on which we show it to be
able to perform tuning as expected.

2. Background

2.1. Differential Evolution

In every generation of DE, each individual in the population acts as a parent vector for which
a donor vector ~Di is created. A donor vector is generated by combining three random and distinct
individuals ~Xr1, ~Xr2 and ~Xr3 according to this simple mutation equation:

~Di = ~Xr1 + F · ( ~Xr2 − ~Xr3) (1)

where F (scale factor) is usually in the interval [0.4, 1]. Several different mutation strategies have been
applied to DE; in our work, along with the random mutation reported above, we consider best and
target-to-best (or TTB) mutation strategies, whose definitions are, respectively:
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~Di = ~Xbest + F · ( ~Xr1 − ~Xr2) (2)

~Di = ~Xi + F · ( ~Xbest − ~Xi) + F · ( ~Xr1 − ~Xr2) (3)

After mutation, every parent-donor pair generates a child (~Ti), called trial vector, by means of
a crossover operation. Two kinds of crossover are usually employed in DE: binomial and exponential
(see [11] for more details). Both crossover strategies depend on the crossover rate CR. The newly
generated individual ~Ti is evaluated by comparing its fitness to its parent’s. The better individual
survives and will be part of the next generation.

2.2. Particle Swarm Optimization

In PSO ([7]), a set of particles moves within the search space, according to these equations,
that describe particle i’s velocity and position:

~vi(t) = w · ~vi(t− 1) + c1 · rand() · ( ~BPi − ~Pi(t− 1)) + c2 · rand() · ( ~BGPi − ~Pi(t− 1)) (4)

~Pi(t) = ~Pi(t− 1) + ~vi(t) (5)

where c1, c2, and w (inertia factor) are real-valued constants, rand() returns random values uniformly
distributed in [0, 1], ~BPi is the best-fitness position visited so far by the particle, and ~BGPi the best-fitness
position visited so far by any individual in the particle’s neighborhood, that can comprise the entire
swarm or only a subset. In this work, we consider three of the most commonly used neighborhood
topologies (see Figure 1).

Figure 1. The three PSO topologies used in this work: global, ring, and star.

2.3. NSGA-II

The NSGA-II algorithm is basically a classical GA in which selection is based on the so-called
non-dominated sorting. In case two individuals have the same rank, the one with the greater crowding
distance is selected. This distance can take into consideration the fitness values or the encoding of the
individuals, to increase the diversity of the results or of the population, respectively. In this work, NSGA-II
crossover and mutation rates have been set as suggested in [9], while we have set the population size and
the number of generations “manually”, based on the complexity of the problem at hand.

3. Related Work

The importance of parameter tuning has been frequently addressed in the last years, not only
in theoretical or review papers such as [12] but also in papers with extensive experimental evidence
which provide a critical assessment of such methods. In [13], while recognizing the importance of
finding a good set of parameters, the authors even suggest that using approaches to algorithm tuning
that are computationally demanding may be almost useless, since a relatively limited random search
in the algorithm parameter space can often offer good results.

Meta-optimization algorithms can be grouped into two main classes:
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• Parameter tuning: the parameters are chosen offline and their values do not change during
evolution, which is the case of interest for this paper;

• Parameter control [14]: the parameters may vary during evolution, according to a strategy that
depends on the results that are being achieved. These changes are usually driven either by fitness
improvement (or by its lack) or by properties of the evolving population, like diversity or entropy.

Along with Meta-EAs, several methods which do not strictly belong to that class but use
similar paradigms have been proposed: one of the most successful is Relevance Estimation and
Value Calibration (REVAC) by [15], a method inspired by the Estimation of Distribution Algorithm
(EDA, [16]) that was able ([17]) to find parameter sets that improved the performance of the winner of
the competition on the CEC 2005 test-suite [18]. In [19], PSO tuned itself to optimize neural network
training; Reference [20] used a simple metaheuristic, called Local Unimodal Sampling, to tune DE
and PSO, obtaining good performance while discovering unexpectedly good parameter settings.
Reference [21] proposed ParamILS, whose local search starts from a default parameter configuration
which is then iteratively improved by modifying one parameter at a time. Reference [22] used a
Meta-EA as an optimization method in a massively parallel system to generate on-the-fly optimizers
that directly solved the problem under consideration. In [23], the authors propose a self-adaptive DE
for feature selection.

Other approaches to parameter tuning include model-based methods like Sequential Parameter
Optimization (SPO) proposed by [24] and racing algorithms [25,26]: they generate a population of
possible configurations based on a particular distribution; members of this population are then tested
and possibly discarded as soon as a statistical test shows that there is at least another individual which
outclasses them; these operations are repeated until a set of good configurations is obtained. A recent
trend approaches parameter tuning as a two-level optimization problem [27,28].

The first multi-objective Meta-EA was proposed in [29] where NSGA-II was used to optimize
speed and precision of four different algorithms. However, that work took into consideration only
one parameter at a time, so the approach described therein cannot be considered a full parameter
set optimization algorithm. A similar method has been proposed by [30]. The authors describe a
variation of a MOEA called Multi-Function Evolutionary Tuning Algorithm (M-FETA), in which the
performance of a GA on two different functions represent the different goals that the MOEA must
optimize; the final goal is to discriminate algorithms that perform well on a single function from those
that do on more than one, respectively called “specialists” and “generalists”, following the terminology
introduced by [31].

In [32], the authors propose an interesting technique, aimed at identifying the best parameter
settings for different possible computational budgets (i.e., number of fitness evaluations) up to a
maximum. This is obtained using a MOEA in which the fitness of an individual is a vector whose
components are the fitness values obtained in every generation. In this way, it is possible to find a
family of parameter sets which obtain the best results with different computational budgets.

A comprehensive review of Meta-EAs can be found in [33].
More recently, MO-ParamILS has been proposed as a multi-objective extension of the

state-of-the-art single-objective algorithm configuration framework ParamILS [34]. This automatic
algorithm produces good results on several challenging bi-objective algorithm configuration scenarios.
In [35], MO-ParamILS is used to automatically configure a multi-objective optimization algorithm in a
multi-objective fashion.

4. EMOPaT, a General Framework for Multi-Objective Meta-Optimization

This section describes EMOPaT’s main structure and operation, introduced in [5] as
a straightforward multi-objective extension of the corresponding single-objective general
framework SEPaT.

SEPaT and EMOPaT share the same very general scheme, presented in Figure 2.
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Figure 2. Scheme of SEPaT/EMOPaT. The lower part represents a classical EA. In the meta-optimization
process, each individual of Tuner-EA represents a set of Parameters. For each set, the corresponding
instance of the lower-level EA (LL-EA) is run N times to optimize the objective function(s).
Quality indices (one for SEPaT, more than one for EMOPaT) are values that provide a global evaluation
of the results obtained by LL-EA in these runs.

The block in the lower part of the image represents a traditional optimization problem in which
an EA, referred to as Lower-Level EA (LL-EA) optimizes one or more objective functions. The Tuner
EA operates within the search space of the parameters of the LL-EA. This means that the tuner evolves
a population of possible parameter sets of LL-EA parameters. Each parameter set corresponds to
an instance of LL-EA that is tested N times on LL-EA’s objective function(s) (from now on, we will
consider “configuration” and “parameter set” as equivalent terms). The N results are synthesized into
one or more “Quality Indices” that represent the objective function(s) of the tuner.

The difference between SEPaT and EMOPaT therefore stands in the different number of
quality indices. In SEPaT, any single-objective EA can be used as Tuner EA, while EMOPaT requires a
multi-objective EA. In the case described in this paper, we used NSGA-II.

It should be noticed that as evidenced in the figure, the tuning of the (usually, but not necessarily,
single-objective) LL-EA may be aimed at finding the best “generalist” setting for optimizing any
number of functions. For instance, in [5] PSO and DE were used as tuners in SEPaT to optimize the
behavior of PSO over 8 objective functions. In that case, an EA configuration was considered better than
another if it obtained better results over the majority of the functions. The quality index, in this case,
was therefore a score computed according to a tournament-like comparison among the individuals.

In [5], the parameter set found by SEPaT was compared to the set found using irace [25,36] and to
“standard” parameters, with results similar to irace and better than the “standard” settings.

On the one hand, using this approach, besides allowing one to synthesize the results as a single
score, brings the advantage that the functions for which the LL-EAs are tuned do not need to assume
values within comparable ranges, avoiding the need for normalization. On the other hand, being based
on a comparison may sometimes limit the effectiveness of this approach. In fact, a configuration may
win even if it cannot obtain good results on some of the functions, since it is required only to perform
better than the others on the majority of them. Therefore, the resulting parameter sets, despite being
good on average, may not be as good on all functions. This is one of the limitations that EMOPaT tries
to overcome (see Section 5.2).

The multiple objectives taken into consideration by EMOPaT may differ depending on the function
under consideration, the quality index considered, or the constraints applied, such as the number
of evaluations, time constraints or others. The output of the tuning process is not a single solution
as in SEPaT, but an entire set of non-dominated EA configurations, i.e., ideally, a sampling of the
Pareto front for the objectives under consideration (see Figure 6 for two examples of Pareto fronts,
highlighted in yellow). This allows a developer to analyze the parameters’ selection strategy more
in depth. We think that this approach can be particularly relevant, in light of the conclusions drawn
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in [37]: according to the outcome of the experiments, even if the Meta-EAs they considered performed
better than SPO and REVAC, the authors pointed out that they were unable to provide insights about
EA parameters.

Parameter Representation

Since the tuner algorithms we consider are real-valued optimization methods, we need a proper
representation of the nominal parameters of the LL-EA, i.e., the parameters that encode choices among
a limited set of options. We opted for representing each nominal parameter as a real-valued vector
with as many elements (genes) as the options available: the actual choice is the one that corresponds to
the gene with the largest value. For instance, if the parameter to optimize is PSO topology, we can
choose between ring, star and global topology. Each individual in the tuner represents this setting
as a three-dimensional vector whose largest element determines the topology used in the LL-EA
configuration. These particular genes are mutated and crossed-over following NSGA-II rules just like
any other. Figure 3 shows how DE and PSO configurations are encoded.

Figure 3. Encoding of DE (left) and PSO (right) configurations in a tuner EA.

5. Experimental Evaluation

In this section, we discuss the results of some experiments in which we optimize different
performance criteria that can assess the effectiveness of an EA in solving a given optimization task.
We take into consideration “classical” criteria pairs, such as solution quality vs. convergence speed,
as well as experiments in which the different criteria are represented by different constraints on the
available resources (e.g., different fitness evaluation budgets).

To do so, we use DE and PSO as LL-EAs and NSGA-II as EMOPaT’s Tuner-EA. Table 1 shows the
ranges within which we let PSO and DE parameters change in our tests. During the execution of the
Tuner-EA, all values are actually normalized in the range [0, 1]; a linear scale transformation is then
performed whenever a LL-EA is instantiated.

Table 1. Search ranges for the DE and PSO parameters. We chose ranges that are wider than
those usually considered in the literature, to allow SEPaT and EMOPaT to “think outside the box”,
and possibly find unusual parameter sets.

Differential Evolution Particle Swarm Optimization

Population Size [4, 300] Population Size [4, 300]
Crossover Rate (CR) [0.0, 1.0] Inertia Factor (w) [−0.5, 1.5]

Scale Factor (F) [0.0, 2.0] c2 [−0.5, 4.0]
Crossover {binomial, exponential} c1 [−0.5, 4.0]
Mutation {random, best, target-to-best} Topology {ring, star, global}

The computation load of the meta-optimization process is heavily dependent on the cost of a
single optimization process. If we term t the average time needed for a single run of the LL-EA (which
corresponds, for the Tuner-EA, to one fitness evaluation), then the upper bound for the time T needed
for the whole process is:

T = t · <Tuner generations> · <Tuner population size> · N (6)

since we can consider the computation time requested by the tuner’s search operators to be negligible
with respect to a fitness evaluation. This process can be highly parallelized, since all N repetitions,
as well as all evaluations of a population can be run in parallel if enough resources are available. In our
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tests, we used an 8-core 64-bit Intel(R) CoreTM i7 CPU running at 3.40 GHz; we chose not to parallelize
the optimization process but we preferred to parallelize independent runs of the tuners.

EMOPaT has been tested on some functions from the CEC 2013 benchmark [38], with the only
difference that the function minima were set to 0.

The code used to perform the tests is available online at http://ibislab.ce.unipr.it/software/emopat.

5.1. Multi-Objective Single-Function Optimization Under Different Constraints

A multi-objective experiment can optimize different functions, the same function under different
conditions, etc. Thus, optimizing a single function under different constraints can be seen as a particular
case of multi-objective optimization. In this section, we report the results of tests on single-function
optimization under different fitness evaluations budgets. Similar experiments can be performed
evaluating the function under different conditions (e.g., different problem dimensions) or according
to different quality indices as we did in [8] where we considered two objectives (fitness and fitness
evaluations budget) for a single function. With respect to that work, the main additional contribution
of this section is showing how EMOPaT can be used to generalize the behavior of an EA in optimizing
a function when working under different conditions. We consider the following set of quality indices:

{QXi } , best results after {Xi} fitness evaluations, averaged over N runs.

We performed four different tests considering, in each of them, one of the four functions shown
in Table 2. Our objectives were the best-fitness values reached after 1000, 10, 000 and 100, 000 function
evaluations, namely Q1K, Q10K, Q100K. Each test was run 10 times. Doing so, we expected we
would favor the emergence of patterns related with the impact of a parameter when looking for
“fast-converging” or “slow-converging” configurations. Table 2 summarizes the experimental setup for
these experiments.

Firstly, we analyze the LL-EA parameter sets evolved under the different criteria. To do so,
we merge the populations of the ten independent runs and, from this pool, we select, for each
objective, the top 10% of the best solutions. For most parameters there is a clear trend as their values
monotonically grow or decrease as the fitness evaluations budget increases (see Table 3). This result
suggests that, in these cases, it may not be necessary to keep track of all possible computational budgets
as in [32], but that the optimal parameters for intermediate objectives may be inferred by interpolating
the ones found for the objectives actually taken into consideration; consequently, a developer can use
this information to tune its algorithm according to his own budget constraints. Nevertheless, while this
can be true for a function, such trends are rarely consistent through different functions, preventing one
from drawing more general conclusions.

Table 2. Single-function optimization with different fitness evaluation budgets. Experimental settings.

EMOPaT settings
Population Size = 64, 60 Generations, Mutation Rate = 0.125, Crossover Rate = 0.9

Function settings
30-dimensional Sphere, Rastrigin, Rosenbrock, Griewank (one for each experiment)
evaluation criterion = best fitnesses after 1000, 10,000, 100,000 evaluations averaged
over N = 15 repetitions.

Let us analyze in more details the results on the Rastrigin and the Sphere functions (similar
conclusions can be drawn for the other functions). Figures 4 and 5 show the boxplots of some
parameters for the top 10% DE and PSO configurations on these two functions. When parameters
are nominal, a bar chart plots the selection frequencies for each option. For the Sphere function,
the boxplots of Q10K and Q100K are very similar, pointing out that for this function, 10,000 evaluations
are usually sufficient to reach convergence.

http://ibislab.ce.unipr.it/software/emopat
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Table 3. Trends of DE and PSO parameter values versus fitness evaluations budget. Upward arrows
denote parameter values increasing with the number of evaluations, downward arrows the opposite.
A dash denotes no clear trend. For nominal parameters, the table reports the most frequently selected
choice. If the choice changes within the top solutions for different evaluation budgets, an arrow shows
the direction of this change as the budget increases.

Differential Evolution

Function PopSize CR F Mutation Crossover

Sphere ↘ ↘ ↗ target-to-best binomial→exponential
Rastrigin ↗ ↗ ↗ − binomial→exponential
Griewank ↗ ↘ ↘ target-to-best→random binomial
Rosenbrock ↗ ↗ ↗ target-to-best→best,random binomial→exponential

Particle Swarm Optimization

Function PopSize w c1 c2 Topology

Sphere ↗ ↘ − ↗ ring
Rastrigin ↗ ↘ ↗ ↘ global
Griewank ↗ ↘ ↗ ↗ ring
Rosenbrock ↗ ↗ ↘ ↗ global→ring

Figure 4. DE parameters of the top solutions (best 10%) for the 30-dimensional Rastrigin (first row) and
Sphere (second row) functions, with an available budget of 1000, 10,000, and 100,000 fitness evaluations.
Bar plots indicate the normalized selection frequency. Descending/ascending trends for all parameter
values are clearly visible.

To evaluate the hypothesis that intermediate budgets can be inferred from the results obtained on
the objectives that have actually been optimized, one can generate new solutions in two ways:

• infer them as the mean of two top solutions found for two different objectives between which the
new objective lies. This approach presents some limitations: (i) the parameter must have a clear
trend, (ii) some policy for nominal parameters must be defined if the two reference configurations
have different settings, (iii) there is no guarantee that all intermediate values of a parameter
correspond to valid configurations of the algorithm;

• select them from the Pareto front by plotting the set of all the individuals obtained at the end of
ten independent runs on the two objectives of interest, estimate the Pareto front based on those
solutions and randomly pick one configuration that lies on it, in an intermediate position between
the extremes (see an example related with the Rastrigin function in Figure 6).
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Figure 5. PSO parameters of the top solutions (best 10% of the population) for the 30-dimensional
Rastrigin (first row) and Sphere (second row) functions, with an available budget of 1000, 10,000,
and 100,000 fitness evaluations. Descending/ascending trends for all parameter values are clearly visible.

Figure 6. Fitness values of all the solutions found in ten independent runs of EMOPaT for the three
criteria, plotted pairwise for adjacent values of the budget. The green and red stars represent the Top
Solutions for each objective, yellow circles are candidate solutions for intermediate evaluation budgets.

Table 4 shows the parameters of the best solutions found for the Rastrigin and Sphere functions
for the three objectives and of four intermediate solutions generated by the two methods. The ones
indicated by A lie between Q1K and Q10K and the ones indicated by B between Q10K and Q100K. It can
be noticed that the values of the parameter sets generated using the Pareto Front differ from both the
ones inferred as a weighted mean of neighboring ones and the top solutions. In some cases (as with DE
on Sphere) these solutions use a mutation type that is never considered by the top solutions. For the
nominal parameters of the inferred solutions, we chose to consider both options when the two top
solutions disagreed, distinguishing the two solutions by an index (e.g., A1 and A2).

Figure 7 shows the performance of the configurations considered in Table 4, averaged over
100 independent runs, for DE and PSO. The solid lines represent the Top Solutions; as expected,
after 1000 evaluations (see the plots on the right) Q1K is the best-performing configuration, while Q100K
is slower in the beginning but is the best at the end of the evolution. In most cases, the inferred
solutions have a performance that lies between the performance of the two top solutions used as
starting points. The results obtained on the Rastrigin function (first row of Figure 7) are particularly
clear: in the first 1000 evaluations, Q1K performs best, then it is surpassed by Inferred A, followed by
Q10K, Pareto B, and finally Q100K; this example seems to confirm our general hypothesis. A relevant
exception is A2 in DE Sphere (Figure 7, last row) that performs worse than all others: since its only
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difference with A1 is the crossover type, this suggests that it is not possible to infer nominal parameters
reliably unless one is clearly prevalent.

Table 4. DE and PSO configurations for the same objective function with three different fitness
evaluations budgets.“Top Solutions” are the best-performing sets on each objective; “Inferred” refers to
the ones obtained averaging Top Solutions; “From Pareto” are extracted from the Pareto front obtained
considering the objectives pairwise (see Figure 6).

Differential Evolution

Method Configuration PopSize CR F Mutation Crossover

R
as

tr
ig

in

Top Solutions
Q1K 9 0.214 0.736 target-to-best binomial
Q10K 7 0.053 0.754 target-to-best exponential
Q100K 7 0.039 0.784 target-to-best exponential

Inferred A1, A2 8 0.134 0.745 target-to-best bin., exp.
B 7 0.046 0.769 target-to-best exponential

From Pareto A 9 0.217 0.763 target-to-best binomial
B 7 0.006 0.769 target-to-best binomial

Sp
he

re

Top Solutions
Q1K 5 0.022 0.229 random binomial
Q10K 14 0.363 0.508 random exponential
Q100K 30 0.043 0.521 random exponential

Inferred A1, A2 9 0.192 0.368 random bin., exp.
B 22 0.203 0.514 random exponential

From Pareto A 8 0.023 0.520 target-to-best exponential
B 15 0.50E− 3 0.498 target-to-best binomial

Particle Swarm Optimization

Method Configuration PopSize w c1 c2 Topology

R
as

tr
ig

in

Top Solutions
Q1K 18 0.560 1.195 0.789 global
Q10K 26 0.579 2.492 0.671 global
Q100K 76 −0.251 2.533 0.487 global

Inferred A 22 0.569 1.844 0.730 global
B 51 0.164 2.513 0.579 global

From Pareto A 27 0.678 0.949 0.587 global
B 60 0.297 3.132 0.481 global

Sp
he

re

Top Solutions
Q1K 11 0.603 1.882 1.105 ring
Q10K 14 0.510 1.998 1.483 ring
Q100K 15 0.449 1.725 1.667 ring

Inferred A 12 0.557 1.940 1.294 ring
B 15 0.480 1.861 1.575 ring

From Pareto A 14 0.649 1.764 1.082 ring
B 15 0.480 1.681 1.635 ring

Finally, to compare EMOPaT with a state-of-the-art tuner, we implemented the Flexible-Budget
method (FBM) proposed by [32]. For a fair comparison, we implemented their method using the same
NSGA-II parameters used by EMOPaT, including the budget of LL-EA evaluations. The secondary
criterion used to compare equally ranked individuals (see [32] for more details) is the Area Under
the Curve. Ten independent runs of FBM were run, after which we selected the solutions that
among all runs, had obtained the best-performing configurations after 1 K, 10 K, 100 K evaluations
(similar to our setting) and 5.5 K and 55 K evaluations (for a comparison with our inferred parameter
sets). Then, we performed 100 runs for each configuration and compared the results to the ones
reported in Table 4 (for intermediate values we used the ones called “From Pareto”) allowing the
same computational budget. Table 5 shows the parameters found by FBM and Table 6 the comparison
between the performance of the two methods. Except for PSO on the Sphere function, for which
the results provided by EMOPaT are always better (Wilcoxon signed-rank test, p < 0.01), the two
tuning methods always obtain equivalent results with budgets of 1 K, 10 K and 100 K evaluations.
With the two intermediate budgets, FBM is better three times, EMOPaT is better twice and once they
are equivalent; therefore no significant difference between the two methods can be observed.
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Figure 7. Average fitness versus number of fitness evaluations for configurations generated for PSO
(first and second rows) and DE (third and fourth) for the 30-dimensional Rastrigin (above) and Sphere
(below) functions. The plots on the right magnify the first 1000 evaluations to better compare the
performance of the “fast” versions.

The results obtained by EMOPaT are also consistent with previous experimental and theoretical
findings, such as the ones reported in [39], which proved that premature convergence can be avoided if:

F >

√
1− CR

2
PopSize

(7)
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Of the fourteen DE instances in Table 4, Sphere Q1K is the only one that does not respect this
condition; this may be an explanation for the fact that this DE version is fast, but generally unable to
reach convergence optimizing such a simple unimodal function.

Table 5. DE and PSO configurations obtained by the Flexible-Budget Method [32].

Differential Evolution

Budget PopSize CR F Mutation Crossover
R

as
tr

ig
in

1 K 5 0.375 0.375 random exponential
5.5 K 9 0.182 0.182 random exponential
10 K 16 0.145 0.145 random exponential
55 K 24 0.146 0.146 random exponential
100 K 75 0.746 0.746 random exponential

Sp
he

re

1 K 16 0.299 0.554 target-to-best binomial
5.5 K 7 0.069 0.751 target-to-best exponential
10 K 7 0.056 0.749 target-to-best exponential
55 K 7 0.057 0.749 target-to-best exponential
100 K 7 0.057 0.749 target-to-best exponential

Particle Swarm Optimization

Budget PopSize w c1 c2 Topology

R
as

tr
ig

in

1 K 11 0.664 1.518 0.638 global
5.5 K 88 0.662 1.062 0.624 global
10 K 119 0.654 1.672 0.607 global
55 K 230 0.650 2.412 0.643 global
100 K 230 0.650 2.412 0.643 global

Sp
he

re

1 K 17 0.837 0.952 0.488 global
5.5 K 32 0.897 0.539 0.545 global
10 K 32 0.897 0.539 0.545 global
55 K 34 0.380 1.135 2.673 global
100 K 34 0.380 1.135 2.673 global

Table 6. Comparison between the performance of the configurations found by EMOPaT and the
Flexible-Budget method (FBM).

Differential Evolution

Budget EMOPaT FBM p-Value Best Method

R
as

tr
ig

in

1 K 7.68E + 01 7.76E + 01 1.42E− 01
5.5 K 4.29E + 00 5.06E + 00 8.53E− 03 EMOPaT
10 K 3.32E− 02 1.04E− 01 4.49E− 01
55 K 5.68E− 14 0.00E + 00 1.43E− 08 FBM
100 K 0.0 0.0 8.33E− 02

Sp
he

re

1 K 1.11E + 02 1.08E + 02 9.62E− 03 EMOPaT
5.5 K 6.51E + 01 5.32E + 01 3.62E− 11 FBM
10 K 4.24E + 01 4.15E + 01 6.52E− 01
55 K 2.45E + 01 2.53E + 01 1.28E− 01
100 K 0.0 0.0 2.49E− 01

Particle Swarm Optimization

Budget EMOPaT FBM p-Value Best Method

R
as

tr
ig

in

1 K 8.77E + 02 1.04E + 03 9.51E− 01
5.5 K 5.10E− 04 5.19E− 05 3.23E− 05 FBM
10 K 6.13E− 13 5.69E− 13 4.98E− 01
55 K 2.64E− 93 4.27E− 93 5.58E− 03 EMOPaT
100 K 1.79E + 01 2.03E + 01 7.05E− 02

Sp
he

re

1 K 7.16E + 02 1.40E + 03 1.33E− 13 EMOPaT
5.5 K 1.03E− 02 8.18E + 00 3.90E− 18 EMOPaT
10 K 1.96E− 07 1.11E− 01 3.90E− 18 EMOPaT
55 K 1.46E− 56 2.23E− 22 3.86E− 18 EMOPaT
100 K 0.0 5.15E− 44 3.88E− 18 EMOPaT
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5.2. Multi-Function Optimization

In this section, we show how EMOPaT behaves when the goal is to obtain configurations that
perform well on functions that are not included in the “training set”. Following the terminology
introduced by [31], we expect to find “generalist” and “specialist” versions of the EAs taken into
consideration. Table 7 gives more details about this experiment.

Table 7. Optimization of seven different functions. Experimental settings.

EMOPaT settings
Population Size = 200, 80 Generations, Mutation Rate = 0.125, Crossover Rate = 0.9

Function settings
10-dimensional Sphere, Rotated Cigar, Rosenbrock, Rotated Ackley,
Rastrigin, Composition Function 1 (CF1), Composition Function 3 (CF3)
evaluation criterion = best fitness in 20000 evaluations averaged over N = 15 repetitions.

We used EMOPaT to optimize all the seven functions together (repeating the test 10 times) and
then we merged all results into a single collection of configurations. From this collection, we selected
the best-performing configuration for each of the seven objective functions.

The next step was to select the “generalist” solutions. We consider a “generalist” solution to be a
parameter set that does not perform badly on any of the objectives taken into consideration, i.e., it is
never in the worst θ percent of the population, when ordered by any objective. Obviously, the higher
θ, the lower the number of generalists. We decided to set the value of θ such that seven generalists
would be selected, to match the specialists’ number.

Table 8 shows the generalists’ and specialists’ parameters obtained by merging the results of
ten independent runs of EMOPaT. An interesting outcome worth highlighting is that, similar to the
previous experiment, some of the generalists are not obtained by simply “interpolating” other results
but they contain some traits that are not featured by any specialist. For instance, DE G0 has a smaller
population than any specialist, PSO G3’s inertia value is higher than that of all specialists.

A more standard way to infer a “generalist” configuration is to take the one with the best overall
results. To do so, we consider the results of all the solutions found by EMOPaT and normalize them
so that each fitness has average = 0 and standard deviation = 1; then, we select the configuration
that minimizes the sum of the normalized fitnesses. In Table 8, these configurations are reported
as “average”.

We also performed 10 meta-optimizations using SEPaT and irace, with the same budget allowed
for EMOPaT. The parameters of SEPaT are the ones presented in Table A1, while for irace we used the
parameters suggested by the authors. For each optimization method, the ten solutions obtained were
compared using the tournament method described in Section 4 to find the best configuration, which is
also reported in Table 8.

To test the parameter sets obtained, we selected seven functions from the CEC 2013 benchmark
that were not used during training (namely Elliptic, Rotated Discus, Rotated Weierstrass, Griewank,
Rotated Katsuura, CF5 and CF7). Table 9 shows, for each function, which configuration(s) obtained
the best results. To determine the best function, we performed the Wilcoxon signed-rank test (p < 0.01)
on all configurations pairwise. A configuration is considered to be the best if no other configuration
performs significantly better on that function. The table shows that, in some cases, generalists were
actually able to obtain better results on previously unseen functions than specialists.

Since the definition of “generalist EA” implies the ability not to perform badly on any function,
we also analyzed the same data from another viewpoint. Each cell (i, j) in Table 10 shows the number
of test functions for which the optimizer which row i refers to performs statistically worse than the
one referred to by column j (Wilcoxon signed-rank test, p < 0.01). The last column reports the sum of
each line and can be considered an indicator of the generalization ability of the optimizer with respect
to the others over the test functions.
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It can be observed that some of the generalists performed very well. The best optimizers for
DE were the configurations obtained by SEPaT along with two generalists, G4 and G5. The first two
configurations are very similar to each other (same mutation and crossover, CR ' 0.15 and F ' 0.5),
as shown by the presence of statistically significant differences between them only on one function out
of seven. No specialist features a similar parameter set. Regarding PSO, two of the specialists (Scigar
and Srosenbrock) obtained very good results, as well as three of the generalists (G0, G1, and G3). It is
important to notice that most generalists evolved by EMOPaT outperform the solutions found by the
other single-objective tuners used as reference, as well as the one obtained by computing a normalized
average of all solutions evolved by EMOPaT (“average” in Table 8). This last configuration (which is
the same as Sackley for PSO) was the best optimizer for three functions and the worst one (not reported)
for two (Elliptic, Katsuura). This suggests that this is not the correct way of finding a configuration
able to perform well on different functions.

In conclusion, we can say that EMOPaT, in a single optimization process, is able to find, at the
same time, algorithm configurations that work well on a single function of interest and others that
are able to generalize over different unseen functions, while single-objective tuners need separate
processes with a consequent increase of the time spent to perform this operation.

Table 8. The seven DE and PSO best-performing configurations generated by EMOPaT for each
“training” function (denoted by S, for specialist, followed by the name of the function); the seven
configurations that never achieved bad results in any of them (denoted by G, for generalist);
the parameter sets found by irace and by SEPaT; and the single generalist configuration obtained
by normalizing fitness values (see text).

Differential Evolution

Configuration Name PopSize CR F Mutation Crossover

Ssphere 12 0.181 0.718 target-to-best exponential
Scigar 57 0.906 0.703 target-to-best exponential
Srosenbrock 47 0.989 0.761 random exponential
Sackley 271 0.170 0.216 target-to-best exponential
Srastrigin 24 0.024 1.158 random exponential
SCF1 24 0.057 1.789 best exponential
SCF3 98 0.868 0.087 random binomial
G0 10 0.607 0.886 target-to-best exponential
G1 70 0.612 0.480 best exponential
G2 13 0.235 0.444 target-to-best exponential
G3 23 0.413 0.860 target-to-best exponential
G4 32 0.147 0.491 target-to-best exponential
G5 24 0.776 0.716 target-to-best exponential
G6 19 0.058 0.837 best binomial
irace 53 0.796 0.508 best exponential
SEPaT 17 0.160 0.499 target-to-best exponential
average 40 0.563 0.988 target-to-best binomial

Particle Swarm Optimization

Configuration Name PopSize w c1 c2 Topology

Ssphere 34 0.768 1.756 0.474 global
Scigar 41 0.585 1.338 1.646 ring
Srosenbrock 55 −0.465 −0.060 1.930 ring
Sackley 251 0.714 1.082 0.271 global
Srastrigin 20 −0.131 −0.050 3.787 global
SCF1 161 −0.158 −0.112 2.467 ring
SCF3 269 −0.172 1.235 1.945 global
G0 43 0.648 1.241 1.633 ring
G1 44 0.639 2.114 1.478 ring
G2 68 0.402 1.109 2.184 ring
G3 37 0.883 0.548 0.649 ring
G4 26 −0.073 0.295 3.032 ring
G5 33 0.583 2.040 1.677 ring
G6 46 0.593 1.944 1.637 ring
irace 19 0.805 0.962 0.914 ring
SEPaT 22 0.732 1.358 1.153 ring
average 251 0.714 1.082 0.271 global
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Table 9. Best-performing DE and PSO configurations on the seven test functions.

Function DE PSO

Elliptic Ssphere irace, SEPaT
Discus Scigar average, Sackley
Weierstrass Scigar, irace Ssphere, Srosenbrock
Griewank Srastrigin, SEPaT, G4 G0, G1, G2, G5, G6, Scigar
Katsuura G2, SEPaT, G4 SCF1, Srosenbrock
CF5 Scigar, SEPaT Sackley, average
CF7 G2, SEPaT, G4 Sackley, Srosenbrock, average

Table 10. Number of test functions for which the optimizer associated with the row is statistically
worse than the one associated with the column. The last column reports the sum of the values in that
row, measuring the optimizer performance (the lower, the better). The three best configurations are
highlighted in bold.
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Differential Evolution

Ssphere 0 4 4 4 3 0 4 4 4 5 3 6 4 2 4 6 2 59
Scigar 2 0 0 1 1 1 1 3 1 4 2 3 2 2 2 4 1 30
Srosenbrock 3 6 0 2 4 2 2 3 4 4 3 4 5 3 4 4 2 55
Sackley 3 4 4 0 3 2 2 4 4 5 3 5 4 3 4 5 4 59
Srastrigin 1 3 2 2 0 0 2 3 3 5 3 6 3 3 3 5 1 45
SCF1 4 5 3 4 7 0 4 4 7 7 5 7 7 5 6 7 3 85
SCF3 2 5 3 3 3 2 0 4 3 4 3 4 3 3 4 4 2 52
G0 2 4 4 1 2 0 3 0 4 3 1 4 6 2 5 4 2 47
G1 2 4 2 0 1 0 2 1 0 4 2 4 4 2 3 4 2 37
G2 2 3 2 1 1 0 3 2 3 0 0 3 4 1 3 2 1 31
G3 2 4 3 2 2 0 4 3 4 3 0 6 5 1 4 6 3 52
G4 1 3 3 1 0 0 2 3 1 1 1 0 3 1 3 1 1 25
G5 1 3 1 0 1 0 1 0 0 3 1 3 0 1 2 3 0 20
G6 1 4 4 2 2 0 4 2 4 2 0 5 4 0 4 4 2 44
irace 1 3 1 1 2 1 0 1 2 3 1 3 3 1 0 3 1 27
SEPaT 1 2 2 1 0 0 2 2 1 0 0 1 3 1 3 0 1 20
average 2 5 3 3 3 1 4 3 4 4 3 6 5 2 5 5 0 58

Particle Swarm Optimization

Ssphere 0 3 4 3 2 2 1 3 3 3 3 2 3 3 2 3 3 43
Scigar 4 0 4 4 0 4 3 0 2 0 1 0 1 2 1 1 4 31
Srosenbrock 1 2 0 2 0 0 2 2 2 2 3 1 2 2 2 2 2 27
Sackley 3 3 3 0 3 2 2 3 3 3 3 3 3 3 3 3 0 43
Srastrigin 5 6 7 4 0 4 5 6 6 6 6 5 6 6 6 6 4 88
SCF1 2 2 3 5 1 0 3 2 2 2 2 2 2 2 2 2 5 39
SCF3 4 3 4 4 2 2 0 3 2 2 3 3 3 3 3 3 4 48
G0 4 1 4 4 0 3 2 0 2 0 1 0 1 2 1 1 4 30
G1 1 2 3 4 1 3 1 2 0 1 3 2 1 1 2 1 3 31
G2 4 1 4 4 0 4 3 1 1 0 2 1 2 2 1 1 4 35
G3 2 2 3 4 0 3 2 2 1 1 0 1 2 2 1 1 4 31
G4 4 4 4 4 0 5 4 4 3 3 4 0 4 3 4 4 4 58
G5 3 4 3 4 1 4 2 1 1 2 3 1 0 1 3 3 4 40
G6 2 2 3 4 1 3 1 2 0 1 2 2 1 0 2 2 4 32
irace 4 2 4 4 1 4 3 2 3 3 3 2 3 3 0 1 4 46
SEPaT 4 2 4 4 1 4 3 2 2 2 2 1 2 3 0 0 4 40
average 3 3 3 0 3 2 2 3 3 3 3 3 3 3 3 3 0 43
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6. Summary and Future Work

In this paper we presented some examples of the kind of information and insights into stochastic
optimization algorithms that can be offered by a multi-objective meta-optimization environment. To do
so, we used EMOPaT, a simple and generic multi-objective evolutionary optimization framework for
tuning the parameters of an EA. EMOPaT was tested on the optimization of DE and PSO in different
scenarios, showing that it is able to highlight how the parameters affect the performance of an EA in
different situations, allowing one to draw generalizable results when considering different constraints
applied to the optimization of the same function. Successively, we tested it on different functions and
proved it not only allows one to find good configurations for the training function(s), but also to derive
from those results new parameter sets that perform well on unseen problems.

We think that EMOPaT can be helpful in many applications and provide useful hints about the
behavior of any metaheuristic. In [40] we showed that EMOPaT can be effective in real-world situations,
by using it to tune a DE-based object recognition algorithm. In general, a basic application of EMOPaT
can be summarized in the following steps, as described also in the code we made available online:

1. Select a proper set of problem-related fitness cases.
2. Select the optimization method(s) whose parameters one wants to tune.
3. Select the objectives to optimize (convergence speed, solution quality, robustness, etc.).
4. Run EMOPaT and save the resulting parameter set.

Below we report some interesting directions towards which this approach can be further expanded:

• At present, the analysis of the results is essentially a “manual” process. Which is the best way to
automatically extract, generalize and infer parameters?

• EMOPaT belongs to the class of offline parameter tuning algorithms, in which the values of the
parameters are set before starting the optimization process and do not change during its execution.
Could it also be used to tune the parameters of a population of EA’s online, adapting parameter
values as optimization proceeds?

• In our work, we proved that EMOPaT can also be used to generalize results on a single function
(see Section 5.1). Can this idea be extended to different functions? If we obtain a Pareto Front by
optimizing two functions, can we extract parameters for a function that lies “between” these two,
according to some metric that takes into consideration some of their properties?

• Is it possible to group or cluster functions based on the best-performing parameters found
by EMOPaT?

Author Contributions: Conceptualization, R.U. and S.C.; Investigation, R.U., L.S. and S.C.; Software, R.U.;
Supervision, S.C.

Funding: This research received no external funding.

Ethical Approval: This article does not contain any studies with human participants performed by any of
the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, we first show that EMOPaT can be considered a generalization of its
single-objective version SEPaT. This implies that for single-objective optimization problems, we can
extend the same conclusions drawn for SEPaT in [5,41] to EMOPaT. Then, to assess its general
soundness, we demonstrate EMOPaT’s ability to give insights about the algorithm parameters and on
their influence on the optimization process by showing that EMOPaT can correctly deal with some
peculiar situations, such as the presence of useless or bad parameters.
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Appendix A.1. Comparison with SEPaT

The equivalence between SEPaT and EMOPaT in the single-objective case has been tested on
seven functions (see Table A1) from the CEC 2013 benchmark [38], with the only difference that the
function minima were set to 0.

Table A1. Comparison between EMOPaT and SEPaT. Experimental settings.

EMOPaT settings*
Tuner EA = NSGA-II, Population Size = 200, 80 Generations,
Mutation Rate = 0.125, Crossover Rate = 0.9

SEPaT settings
Tuner EA = DE, Population Size = 200, 80 Generations
CR = 0.91, F = 0.52, Mutation = target-to-best, Crossover = Exponential

Function settings
10-dimensional Sphere, Rotated Cigar, Rotated Rosenbrock, Rotated Ackley,
Rastrigin, Composition Function 1 (CF1), Composition Function 3 (CF3)
evaluation criterion = best fitness in 20,000 evaluations averaged over N = 15 repetitions.

First, we performed tuning as a single run of EMOPaT considering these functions as seven
different objectives (optimizing all the functions together), and then by running seven times SEPaT,
once for each function. More details about these experiments are summarized in Table A1.

We checked whether the best solutions for each objective that EMOPaT evolved in a single run
(also called “top solutions” or “top configurations” in the following), were actually indistinguishable
from those obtained by SEPaT when applied to the same objective. To do so, we ran ten independent
experiments with both SEPaT (once for each function) and EMOPaT. The best EA configuration for
each function found in each run was then tested 100 times on the optimization of the corresponding
function. We computed the median for each set of 100 tests and, based on it, selected the overall best
configuration for each function.

Table A2 compares the best PSO and DE configurations obtained by SEPaT in ten independent
runs to the best configurations obtained, for each corresponding function, in ten independent runs
of EMOPaT; the parameters obtained by the two methods are significantly similar. For instance,
the nominal parameters chosen for both DE and PSO are almost always the same except for the PSO
topology for Composition Function 3. This is the only case in which the parameters chosen by the
two methods are clearly different (one population is three times as large as the other, c1 is four times
larger and the topology is different): nevertheless, the results obtained by the two configurations are
virtually equivalent (see Table A3), so the two settings correspond to two equivalent minima of the
meta-fitness landscape.

Table A3 shows the median fitness obtained on each function by the best-performing EA
configurations found by the tuners and by a standard configuration, and the p-values of Wilcoxon’s
signed-rank test under the Null Hypothesis “There are no differences between two configurations’
performance” comparing EMOPaT’s best configuration to SEPaT’s best and to a standard configuration.
While, in general, EMOPaT’s configurations perform better than standard parameters (last column),
there is no statistical evidence that the best performance of the configurations found by the two
methods differ, except for two cases (Rotated Cigar and Rotated Ackley using DE) for which
EMOPaT performs slightly better than SEPaT. These results show that EMOPaT can be thought
as being generally equivalent to SEPaT in finding the minima of single-objective problems. However,
as shown in the paper, one can extract even more information from EMOPaT’s results, thanks to its
multi-objective nature.
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Table A2. Best-performing parameters obtained over 10 runs of EMOPaT and SEPaT, and standard
settings for PSO ([42]) and DE ([11]).

Differential Evolution

Function Method PopSize CR F Mutation Crossover

Sphere SEPaT 20 0.506 0.520 target-to-best exponential
EMOPaT 12 0.181 0.718 target-to-best exponential

R. Cigar SEPaT 60 0.955 0.660 target-to-best binomial
EMOPaT 38 0.916 0.699 target-to-best binomial

R. Rosenbrock SEPaT 39 0.993 0.745 random exponential
EMOPaT 47 0.989 0.761 random exponential

R. Ackley SEPaT 85 0.327 0.0 random exponential
EMOPaT 248 0.960 0.0 random exponential

Rastrigin SEPaT 36 0.014 0.359 random exponential
EMOPaT 25 0.049 1.065 random exponential

CF 1 SEPaT 18 0.0 1.777 best exponential
EMOPaT 33 0.045 1.070 best exponential

CF 3 SEPaT 89 0.794 0.070 random binomial
EMOPaT 98 0.868 0.088 random binomial

- Standard 30 0.9 0.5 random exponential

Particle Swarm Optimization

Function Method PopSize w c1 c2 Topology

Sphere SEPaT 88 0.529 1.574 1.057 global
EMOPaT 25 0.774 1.989 0.591 global

R. Cigar SEPaT 67 0.713 0.531 1.130 ring
EMOPaT 41 0.757 1.159 1.097 ring

R. Rosenbrock SEPaT 104 0.597 1.032 1.064 ring
EMOPaT 87 −0.451 −0.092 1.987 ring

R. Ackley SEPaT 113 0.381 0.210 1.722 ring
EMOPaT 115 0.303 −0.006 2.467 ring

Rastrigin SEPaT 13 −0.236 0.090 3.291 global
EMOPaT 7 −0.260 0.021 3.314 global

CF 1 SEPaT 92 −0.147 −0.462 2.892 ring
EMOPaT 61 −0.163 −0.376 3.104 ring

CF 3 SEPaT 61 0.852 0.347 0.989 ring
EMOPaT 217 0.728 1.217 0.565 global

- Standard 30 0.721 1.193 1.193 ring

Table A3. Median fitness over 100 independent runs of the best solutions found by EMOPaT, by SEPaT,
and by a standard configuration of the optimization algorithm.

EA Function EMOPaT SEPaT Standard vs. SEPaT vs. Standard

Fitness p-Value

DE Sphere 0.00 0.00 7.43E− 26 1.00 <1E− 20
R. Cigar 7.61E− 02 7.64E− 04 1.76E + 01 4.89E− 03 5.49E− 08
R. Rosenbrock 3.42E− 02 2.76E− 03 9.81E + 00 0.41 <1E− 20
R. Ackley 2.04E + 01 2.05E + 01 2.05E + 01 1.21E− 03 9.34E− 07
Rastrigin 0.00 0.00 2.17E− 08 1.00 <1E− 20
CF 1 2.04E + 02 2.05E + 02 4.00E + 02 0.06 <1E− 20
CF 3 6.09E + 02 6.14E + 02 1.46E + 03 0.67 <1E− 20

PSO Sphere 0.00 0.00 7.57E− 24 1.00 <1E− 20
R. Cigar 1.33E + 06 2.43E + 06 1.84E + 06 0.05 0.03
R. Rosenbrock 9.44E− 01 1.01E + 00 9.81E + 00 0.87 1.04E− 17
R. Ackley 2.04E + 01 2.04E + 01 2.04E + 01 0.16 0.67
Rastrigin 4.75E− 06 1.02E− 04 1.09E + 01 0.57 5.88E− 08
CF 1 2.01E + 02 2.03E + 02 4.00E + 02 0.99 <1E− 20
CF 3 9.62E + 02 9.85E + 02 1.16E + 03 0.27 2.7E− 04
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Appendix A.2. Empirical Validation

We have artificially created four test cases characterized by:

1. A useless numerical parameter, i.e., with no effects at all on the algorithm;
2. A harmful numerical parameter, i.e., the higher its value, the worse the fitness;
3. A harmful nominal parameter choice that constantly produces bad fitness values when made;
4. Two totally equivalent choices of a nominal parameter.

A similar approach has been proposed by [43], showing the ability of irace, ParamILS and REVAC
to recognize an operator which was detrimental for the fitness. The results of these tests increase the
confidence in the actual ability of EMOPaT to recognize the usefulness or, more in general, the role of a
parameter of an EA. We limited our tests to optimizing PSO on the Sphere and Rastrigin functions
(see Table A4). In these tests, we modified the original encoding of PSO configurations (Figure 3) as
shown in Figure A1.

Figure A1. Encoding of PSO configurations in the four cases presented in Appendix A.2. From top left
clockwise: useless parameter, harmful numerical parameter, equivalent and harmful topology.

Table A4. Empirical validation of EMOPaT. Experimental settings.

EMOPaT settings
Population Size = 64, 100 Generations, Mutation Rate = 0.125, Crossover Rate = 0.9

Function settings
30-dimensional Sphere and Rastrigin
evaluation criterion = best fitness in 20000 evaluations averaged over N = 15 repetitions

Appendix A.2.1. Useless Parameter

In this experiment, we extended the PSO configuration encoding by adding a parameter γ that
does not appear in the algorithm and therefore has no effects on it. Our goal was to analyze how
EMOPaT dealt with such a parameter with respect to the actually effective ones. Table A5 shows
mean and standard deviation of the (normalized) numerical parameters in all NSGA-II individuals
at the end of ten independent runs. As can be observed, the useless parameter γ has a mean value
close to 0.5 and its variance is 0.078, which is very close to 1

12 , expected for a uniform distribution
in [0, 1]: this does not happen with the other parameters. Figure A2 plots the values of the Sphere
function against the values of PSO parameters (after recovering their actual value). While the values
of the real parameters show a clear trend, the values of γ are scattered uniformly all over the graph.
As well, the correlation of γ with the other numerical parameters is very low (last row of Table A5).
This suggests that a useless parameter can be easily identified by a (quasi-)uniform distribution of
its values.

Table A5. Mean and variance values for PSO’s numerical parameters and correlation with a useless
one (γ). Parameter values are normalized between 0 and 1.

Parameter Population Size w C1 C2 γ

Mean 0.159 0.555 0.586 0.332 0.441
Variance 0.0313 0.0109 0.0120 0.0103 0.0780
Correlation with γ −0.0777 −0.179 −0.159 0.149 -
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Figure A2. Values of fitness (Sphere function) versus PSO parameters at the end of the tuning procedure.
The last graph refers to the useless parameter γ which, unlike the others, spans across all possible
values with no correlation with fitness.

Appendix A.2.2. Harmful Numerical Parameter

In this experiment, we added to the representation of each PSO configuration a parameter
β ∈ [0, 1] whose only effect is to worsen the actual fitness f proportionally to its value as follows:

f̂ = ( f + β) · (1 + β) (A1)

Parameter β was constantly assigned values close to 0 (mean 7 × 10−4, variance 7 × 10−6) by
EMOPaT. Figure A3 plots values of β versus number of generations, averaged over ten EMOPaT runs.
β starts from an average of 0.5 (due to random initialization) but, after a few iterations, its value quickly
reaches 0.

Figure A3. Evolution of the “bad parameter” β, averaged over all individuals in ten independent runs
of EMOPaT, versus generation number.

Appendix A.2.3. Harmful Nominal Parameter Setting

In this experiment, we added a “fake” fourth topology to PSO configurations. When it is selected,
PSO just returns a bad fitness value. We wanted to verify whether that choice would be always
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discarded and which values the corresponding gene would take. Figure A4 shows that the fake
topology is actually discarded and, after only two generations, is never selected anymore. Moreover,
the values of the corresponding gene are always lower than all others; in particular, they are lower
than the ones representing the star topology, which is also never selected despite being a valid choice.

Figure A4. Average values and selection percentages of the genes representing the four topologies
versus number of EMOPaT generations. Results averaged over 64 individuals in 10 runs.

Appendix A.2.4. Equivalent Settings

In the last experiment of this section, we added to the basic representation of the PSO configuration
a fourth topology that when selected, acts exactly as the global topology. Our goal was to see whether
EMOPaT would allow one to understand that the two topologies were in fact the same one. Figure A5
shows the results in the same format as Figure A4. There is no clear correlation between the two
“global” versions, but it can be observed that at the end of the evolution, the sum of their selection
percentages has converged to the value reached by global in the previous experiment. This means
that splitting this choice into two distinct values did not affect EMOPaT’s performance. Nevertheless,
these results were reached more slowly, showing that it takes time for EMOPaT to reach the correct
values of a nominal parameter when many choices are available.

Figure A5. Average values of the genes representing the four topologies (including the replicated one)
and selection percentages. The x axis reports the number of EMOPaT generations.
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