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Abstract: The assessment of a system’s performance is a very important task, enabling its designer/
user to correct its weaknesses and make it more effective. Frequently, in practice, a system’s
assessment is performed under fuzzy conditions, e.g., using qualitative instead of numerical
grades, incomplete information about its function, etc. The present review summarizes the
author’s research on building assessment models for use in a fuzzy environment. Those models
include the measurement of a fuzzy system’s uncertainty, the application of the center of gravity
defuzzification technique, the use of triangular fuzzy or grey numbers as assessment tools, and the
application of the fuzzy relation equations. Examples are provided of assessing human (students
and athletes) and machine (case-based reasoning systems in computers) capacities, illustrating
our results. The outcomes of those examples are compared to the outcomes of the traditional
methods of calculating the mean value of scores assigned to the system’s components (system’s mean
performance) and of the grade point average index (quality performance) and useful conclusions are
obtained concerning their advantages and disadvantages. The present review forms a new basis for
further research on systems’ assessment in a fuzzy environment.

Keywords: fuzzy sets (FSs); uncertainty; center of gravity (COG) defuzzification technique; triangular
fuzzy numbers (TFNs); grey numbers (GNs); fuzzy relation equations (FRE); grade point average
(GPA) index

1. Introduction

In the language of management, a system is understood to be a set of interacting components
forming an integrated whole and working together for achieving a common target (e.g., maximum
profit, low cost of production, healthcare, student learning, etc.). One can distinguish among physical,
biological, social, economic, engineering, abstract knowledge, etc. systems. The evaluation of a
system’s performance constitutes an important topic of the system general theory [1], because it
enables the correction of its weaknesses, resulting in the improvement of its effectiveness in the
environment of a given situation.

A system assessment is frequently performed under fuzzy conditions, caused by incomplete
information about its function and characteristics, using qualitative (linguistic) assessment grades,
or various other reasons appearing in real life situations. Several efforts have been reported in the
literature for the assessment under fuzzy conditions (e.g., see [2–6]). The purpose of the present work
is to review its author’s research on building assessment models for use in a fuzzy environment.

The rest of the article is formulated as follows. Section 2 provides a brief account of the evolution
of fuzzy set theory and its generalizations and its connection to fuzzy logic. In Section 3, the use of
fuzzy system uncertainty is utilized as an assessment method of its effectiveness, whereas, in Section 4,
the same is done with the center of gravity defuzzification technique, the outcomes of which are
compared to those of the traditional method of calculating the grade point average index. In Sections 5
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and 6, assessment models using as tools triangular fuzzy numbers and grey numbers, respectively, are
developed and compared to each other. The use of fuzzy relation equations for assessing mathematical
modeling skills is the objective of Section 7 and the article closes with Section 8 containing the general
conclusions of the review and some hints for future research.

The present review provides a new framework for research on a system’s evaluation under
fuzzy conditions.

2. Fuzzy Sets and Generalizations

The “Laws of Thought” [7], of Aristotle (384–322 BC, Figure 1) that dominated for centuries the
human reasoning are the following:

• The principle of identity
• The law of the excluded middle
• The law of contradiction

The law of the excluded middle (i.e., yes or no) was the basis for the traditional bi-valued logic and
the precision of the classical mathematics owes undoubtedly a large part of its success to it. However,
there were also strong objections to this law. The Buddha Siddhartha Gautama, who lived in India a
century earlier, had already argued that almost every notion contains elements from its opposite one,
while Plato (427–377 BC, Figure 1) discussed the existence of a third area beyond “true” and “false”,
where these two opposite notions can exist together. Modern philosophers including Hegel, Marx,
and Engels adopted and further cultivated the above belief.
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membership function. The real number mΑ(x) is called the membership degree of x in Α. The greater is 
mΑ(x), the more x satisfies the characteristic property of Α. Many authors, for reasons of simplicity, 
identify it with the function mA.  

Figure 1. Plato (left) and Aristotle in a Raphael’s fresco (1509).

The Polish philosopher Jan Lukasiewicz (1878–1956) first proposed a systematic alternative of
the bi-valued logic introducing in the early 1900s a three-valued logic by adding the term “possible”
between “true” and “false” [8]. Eventually, he developed an entire notation and axiomatic system from
which he hoped to derive modern mathematics. Later, he also proposed four- and five-valued logics
and then finally arrived at the conclusion that, axiomatically, nothing could prevent the derivation of
an infinite valued Logic. Similar ideas were also expressed by the famous Polish-American logician
and mathematician Alfred Tarski (1901–1983) [9].

However, it was not until relatively recently that an infinite-valued logic was introduced, called
Fuzzy Logic (FL) [10], because it is based on the notion of Fuzzy Set (FS) initiated in 1965 by Lotfi
Aliasker Zadeh (1921–2017, Figure 2) [11], an electrical engineer of Iranian origin, born in Azerbaijan,
USSR and Professor at the University of Berkeley, California. A fuzzy subset A of the set of the discourse
U (or, for brevity, a FS in U) is defined by A = {(x, mA(x)): x ∈ U}, where mA: U→ [0, 1] is its membership
function. The real number mA(x) is called the membership degree of x in A. The greater is mA(x), the more
x satisfies the characteristic property of A. Many authors, for reasons of simplicity, identify it with the
function mA.
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A crisp subset B of U can be considered as a special case of a FS in U with membership function

mB(x) =

{
1, x ∈ B
0, x /∈ B

. Based on this, most notions and operations concerning the crisp sets, e.g.,

subset, complement, union, intersection, Cartesian product, binary and other relations, etc., can be
extended to FS. For information on FS, we refer to the book [12].

Through FL, the fuzzy terminology is translated by algorithmic procedures into numerical values,
operations are performed upon those values and the outcomes are returned into natural language
statements in a reliable manner. As expected, this far-reaching theory aroused some objections in
the scientific community. Haack [13] argued that it can be shown that FL is unnecessary in all cases.
Fox [14] responded to her objections claiming that FL is useful for handling real-world situations
that are inherently fuzzy, calculating the existence in such situations fuzzy data and describing the
operation of the corresponding fuzzy systems. He indicated that traditional and FL theories need not
be seen as competitive, but as complementary and that FL, despite the objections of classical logicians,
has proved very successful in practical applications in almost all sectors of human activity (e.g., see [12]
(Chapter 6), [15–19]).

It must be mentioned here that fuzzy mathematics has also been significantly developed on the
theoretical level, providing important contributions even in branches of classical mathematics, such as
algebra, analysis, geometry, etc. FL constitutes one of the three portals of computational intelligence,
which is a topic of the wide field of artificial intelligence. The other two portals of computational
intelligence are neural networks and the evolutionary computing.

Several efforts have been made to improve and generalize the FS theory. Atanassov introduced
in 1986, as a complement of Zadeh’s membership degree (M), the degree of non-membership (N) and
defined the intuitionistic FS [20]. Smarandache introduced in 1995 the degree of indeterminacy/neutrality
(I) and defined the neutrosophic set in three components (M, N, I), where M, N and I are subsets of the
interval [0, 1] [21]. Alternatives to the FS theory were proposed by Deng in 1982 (Grey Systems [22]),
Pawlak in 1991 (Rough Sets [23]), Molodtsov in 1999 (Soft Sets [24]) and others. Principles of the Grey
System (GS) theory are used in Section 6.

3. Types of Uncertainty in Fuzzy Systems

Uncertainty can be defined as the shortage of precise knowledge and complete information on data
that describe the state of the corresponding system. According to a fundamental principle of classical
information theory, a system’s uncertainty is connected to its ability to obtain new information. Therefore,
the measurement of the uncertainty could be used as a method for evaluating a system’s mean performance.

Shannon introduced in 1948 a formula for measuring the uncertainty and the information
connected to it, which is based on the laws of classical probability and it is widely known as Shannon’s
entropy [25]. This term comes from the mathematical definition of information when we have equally
probable cases for the evolution of the corresponding phenomenon: −∆(log P)

log 2 , where P is the probability
of appearance of each case. This expression appears to be analogous to a well-known formula from
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physics: ∆S = ∆Q
T , where ∆S is the increase of a physical system’s entropy caused by an increase of the

heat ∆Q, when the absolute temperature T remains constant.
Let U denote the universal set of the discourse. For use in a fuzzy environment, Shannon’s

formula (probabilistic uncertainty) has been adapted [26] (p.20) to the form:

H = − 1
ln n

n

∑
s=1

ms ln ms. (1)

In Equation (1), ms = m(s) denotes the membership degree of the element s of U in the
corresponding fuzzy set and n denotes the total number of the elements of U. Dividing the sum
by ln n, one makes H take values in the interval [0, 1].

The fuzzy probability of an element s of U is defined by

Ps =
ms

∑
s∈U

ms
(2)

However, according to the British economist Shackle [27] and many other researchers after him,
human reasoning can be formulated more adequately by the possibility rather than by the probability
theory. The possibility, e.g., rs, of an element s of U is defined by

rs =
ms

max{ms}
(3)

In Equation (3), max{ms} denotes the maximal value of ms, for all s in U. In other words, the
possibility of s expresses the relative membership degree of s with respect to max {ms}.

In terms of possibility, the uncertainty is measured by the sum of strife (or discord) and non-specificity
(or imprecision). The former is connected to the conflict created among the membership degrees, whereas
the latter is connected to the conflict created among the cardinalities (sizes) of the various fuzzy subsets
of U [26] (p.28). Note that the cardinality of a fuzzy subset of U is defined sa the sum ∑

x∈U
m(x) of all

membership degrees of the elements of U with respect to it.
The following example illustrates this situation.

Example 1. Let U be the set of all mountains of a country and let H and L be its fuzzy subsets of the
high and low mountains with membership functions mH and mL, respectively. Assume further that a
mountain x in U has a height of 1000 m.

Then, strife is created by the existing conflict between the membership degrees mH(x) and mL(x).
In fact, if the country has high mountains in general, then mH(x) should take values near 0 and ml(x)
near 1. However, the opposite could happen, if the country has low mountains in general.

On the other hand, non-specificity is connected to the question of how many elements of U should
have zero membership degrees with respect to H and L.

Strife is measured [26] (p.28) by the function ST(r) on the ordered possibility distribution r: r1 = 1
≥ r2 ≥ . . . . . . ≥ rn ≥ rn+1 of a group of the elements of U defined by

ST(r) =
1

log 2
[

m

∑
i=2

(ri − ri+1) log
i

i
∑

j=1
rj

]. (4)

Under the same conditions non-specificity is measured [26] (p.28) by the function

N(r) =
1

log 2
[

m

∑
i=2

(ri − ri+1) log i]. (5)

The sum T(r) = ST(r) + N(r) measures the fuzzy system’s total possibilistic uncertainty.
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Example 2. Table 1 depicts the performance of two equivalent student groups in a common test
with respect to the linguistic grades, where A = excellent, B = very good, C = good, D = fair and F
= unsatisfactory:

Table 1. Student results.

Grade G1 G2

A 1 10
B 13 6
C 4 3
D 3 0
F 0 1

Total 21 20

It is asked to evaluate the performance of the two student groups by calculating the total
possibilistic and probabilistic uncertainty existing in them.

(i) Total possibilistic uncertainty: Defining the membership function in terms of the frequencies of
the student grades, one can represent the two student groups as fuzzy sets on the set U = {A, B, C, D.
F} in the form {(x, nx

n ): x ∈ U }, where nx is the number of students who received the grade x and n is
the total number of the students in each group. In other words, we can write

G1 = {(A, 1
21 ), (B, 13

21 ), (C, 4
21 ), (D, 3

21 ), (F, 0) }; and
G2 = {(A, 10

20 ), (B, 6
20 ), (C, 3

20 ), (D, 0), (F, 1
20 ) }.

The maximal membership degree in G1 is equal to 13
21 , hence the possibilities of the elements of U

in G1 are: r(A) = 1
13 , r(B) = 1, r(C) = 4

13 , r(D) = 3
13 , r(F) = 0. Therefore, the ordered possibility distribution

defined on G1 is

r : r1 = 1 > r2 =
4
13

> r3 =
3

13
> r4 =

1
13

> r5 = 0. (6)

Similarly, one finds that the ordered possibility distribution on G2 is:

r : r1 = 1 > r2 =
6
10

> r3 =
3

10
> r4 =

1
10

> r5 = 0. (7)

Equation (4) gives in our case that

ST(r) =
1

log 2
[(r2 − r3) log

2
r1 + r2

+ (r3 − r4) log
3

r1 + r2 + r3
+(r4 − r5) log

4
r1 + r2 + r3 + r4

]

Replacing the values of the possibility distribution r from Equation (6), one finds for G1 that

ST(r) =
1

log 2
[

1
13

log(
26
17

) +
2

13
log(

39
20

) +
1

13
log(

42
21

)] ≈ 0.27.

In addition, Equation (5) gives for G1 that

N(r) =
1

log 2
[

1
13

log 2 +
2
13

log 3 +
1
13

log 4] ≈ 0.48

Therefore, the total possibilistic uncertainty for G1 is T (r) ≈ 0.27 + 0.48 = 0.75.
In the same way, replacing the values of r from Equation (7), one finds that the total possibilistic

uncertainty for G2 is T (r) ≈ 0.33 + 0.82 = 1.15.
Since the two student groups have been chosen to be equivalent, they have the same existing

uncertainty before the test. Thus, the reduction of uncertainty is greater for Group G1, which therefore
demonstrates a better mean performance than Group G2.
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(ii) Probabilistic uncertainty: Substituting the membership degrees of G1 into Equation (1), one
finds that the probabilistic uncertainty for the experimental group is equal to:

H = − 1
ln 5

(
1

21
ln

1
21

+
13
21

ln
13
21

+
4

21
ln

4
21

+
3

21
ln

3
21

) ≈ 0.64.

Similarly, one finds that for G2 the probabilistic uncertainty is approximately equal to 0.71.
Therefore, Group G1 demonstrates again a better performance.

Remark 1. From the previous example, it becomes evident that the measurement of uncertainty can
be used for assessing the performance of the two groups only under the assumption that they are
equivalent, which means that they have the same existing uncertainty before the test.

4. The Center of Gravity Defuzzification Technique

The process of solving a problem with principles and methods of FL involves the following phases:

• Choose the suitable universal set.
• Fuzzify the given data by defining suitable membership functions for the FSs involved in

this procedure.
• Elaborate the fuzzy data with FL techniques for expressing the solution of the given problem in

the form of a unique FS.
• Defuzzify the above FS by representing it with a real numerical value to “translate” the problem’s

solution into the natural language.

There are more than 30 defuzzification methods in use, but two of them are the most popular.
In the Maximum method, the crisp value representing the solution’s output is one of the values at which
the corresponding FS has its maximum truth (e.g., [15] (Chapter 4, pp. 97–99)). On the other hand,
in the Center of Gravity (COG) technique, the representative crisp value is obtained by calculating the
coordinates of the COG of the level’s area S between the graph of the membership function of the
corresponding FS and the OX axis [28].

Voskoglou [29] developed in 1999 a fuzzy model for representing mathematically the process
of learning a subject matter in the classroom and later, considering the class as a fuzzy system, he
calculated its existing uncertainty (see Section 3) for assessing the student mean performance [30].
Subbotin et al. [31], based on the Voskoglou’s model, adapted properly the COG defuzzification
technique for use as an assessment method of student learning skills. Since then, Subbotin and
Voskoglou applied jointly or separately the COG method, termed as Rectangular Assessment Model
(RFAM), in many other types of assessment problems (e.g., see [15] (Chapter 6)). Here, we present the
headlines of RFAM and we compare it to the traditional assessment method of calculating the Grade
Point Average (GPA) index.

4.1. The Rectangular Fuzzy Assessment Model

We choose, exactly as in Example 2, for discourse the set of linguistic grades U = {A, B, C, D, F}
and we represent a student group G as a FS in U in the form G = {(x, nx

n ): x ∈ U }, where n is the total
number of the students of G and nx is the number of students of G whose performance is characterized
by the grade x in U.

To be able to design the graph of the membership function y = m(x), we replace U with a set of
real intervals as: F→ [0, 1), D→ [1, 2), C→ [2, 3), B→ [3, 4), A→ [4, 5]. Consequently, we have that
y1 = m(x) = m(F) for all x in [0, 1), y2 = m(x) = m(D) for all x in [1, 2), y3 = m(x) = m(C) for all x in [2, 3),
y4 = m(x) = m(B) for all x in [3, 4) and y5 = m(x) = m(A) for all x in [4, 5). Since the membership values
of the elements of U in G have been defined in terms of the corresponding frequencies, we obviously

have that:
5
∑

i=1
yi = m(A) + m(B) + m(C) + m(D) + m(F) = 1.
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The graph of the membership function y = m(x) is shown in Figure 3, where the level’s area S
between the graph and the OX axis is equal to the sum of the areas of the five rectangles Si, i = 1, 2,
3, 4, 5, one side of which has length 1 and lies on the OX axis. That is why this method was termed
as RFAM.
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5
∑

i=1

yi∫
0

dy
i∫

i−1
xdx

=
5
∑

i=1
yi

i∫
i−1

xdx = 1
2

5
∑

i=1
(2i− 1)yi and

s

S
ydxdy =

5
∑

i=1

s

Fi

ydxdy =
5
∑

i=1

yi∫
0

ydy
i∫

i−1
dx =

n
∑

i=1

yi∫
0

ydy = 1
2

n
∑

i=1
yi

2.

Substituting the above values of the double integrals into Equation (8), one finds that

xC = 1
2 (y1 + 3y2 + 5y3 + 7y4 + 9y5)

yC = 1
2 (y1

2 + y2
2 + y3

2 + y4
2 + y5

2)
(9)

However, (yi − yj)2 = yi
2 + yj

2 − 2 yij ≥ 0, or yi
2 + yj

2 ≥ 2 yij for i, j = 1, 2, . . . , 5, with the equality

holding if, and only if, y1 = y2 = y3 = y4 = y5. Therefore, 1 = (
5
∑

i=1
yi)

2 =
n
∑

i=1
yi

2 + 2(y1y2 + y1y3 + . . . +

y4y5) ≥ 5
n
∑

i=1
yi

2, or y1
2 + y2

2 + y3
2 + y4

2 + y5
2 ≤ 1

5 , with the equality holding if and only if y1 = y2 = y3

= y4 = y5 = 1
5 . Thus, Equation (9) shows that the unique minimum yc = 1

10 corresponds to the COG Fm

( 5
2 , 1

10 ).
The ideal case is when y1 = y2 = y3 = y4 = 0 and y5 = 1. Then, from Equation (9), one finds that

xc = 9
2 and yc = 1

2 . Therefore, the COG in this case is the point Fi ( 9
2 , 1

2 ).
On the other hand, the worst case is when y1 = 1 and y2 = y3 = y4 = y5 = 0. Therefore, from

Equation (9), one finds that the COG is the point FX ( 1
2 , 1

2 ).
Consequently, the area where COG Fc lies is the triangle FxFm Fi of Figure 4.
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By making elementary observation on Figure 4, one obtains the following criterion for comparing
the performance of two student groups:

• The group with the greater value of xc demonstrates the better performance.
• In the case of the same value of xc, if xc ≥ 2.5, then the group with the greater value of yc performs

better. On the contrary, if xc < 2.5, then the group with the lower value of yc demonstrates the
better performance.

Observe that a group’s performance depends mainly on the value of xc, while the first part of
Equation (9) shows that for the calculation of xc greater coefficients are assigned to the higher scores.
Therefore, the COG method focuses on the group’s quality performance.

In addition, since the ideal group’s performance corresponds to the value xc = 9
2 , values greater

than 9
2 : 2 = 2.25 could be considered as demonstrating a satisfactory performance.

4.2. Comparison of the RFAM with the GPA Index

Keeping the same notation as in Section 4.1, the GPA index [15] (Chapter 6, p.125) is calculated by
the formula

GPA =
0nF + 1nD + 2nC + 3nB + 4nA

n
(10)

In other words, since greater coefficients (weights) are assigned to the higher scores, GPA is a
weighted average connected to the group’s quality performance. In the case of the worst performance
(nF = n), Equation (10) gives that GPA = 0, while, in the case of the ideal performance (nA = n), it gives
that GPA = 4. Therefore, we have in general that 0 ≤ GPA ≤ 4. Consequently, values of GPA greater
than 2 could be considered as indicating a satisfactory performance.

Equation (10) can be also written with respect to the frequencies in the form

GPA = y2 + 2y3 + 3y4 + 4y5. (11)

Therefore, xc = 1
2 (y1 + 3y2 + 5y3 + 7y4 + 9y5) = 1

2 (2GPA + 1), or

xc = GPA + 0.5. (12)

As an immediate consequence of Equation (12) and the first case of the assessment criterion
in Section 4.1, if the values of the GPA index are different for two groups, then the GPA index and
the RFAM provide the same assessment outcomes for those groups. The following example, due to
Subbotin [32], shows that, in the case of the same GPA values, the application of the GPA index cannot
lead to logically-based conclusions. Therefore, in such situations, the criterion in Section 4.1 becomes
useful due to its logical nature.
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Example 3. The student grades of two classes with 60 students in each class are depicted in Table 2.

Table 2. Student Grades.

Grades Class I Class II

C 10 0
B 0 20
A 50 40

The GPA index for the two classes is equal to 2×10+4×50
60 = 3×20+4×40

60 ≈ 3.67, which means that
the two classes demonstrate the same performance. However, Equation (12) gives that xc = 4.17 for

both classes. However,
5
∑

i=1
yi

2 = ( 1
6 )

2
+ ( 5

6 )
2
= 26

36 for the first and
5
∑

i=1
yi

2 = ( 2
6 )

2
+ ( 4

6 )
2

= 20
36 for the

second class. Therefore, according to the second case of the assessment criterion in Section 4.1, the first
class demonstrates a better performance in terms of the RFAM.

Observe now that the ratio of the students receiving B or better to the total number of students
is equal to 5

6 for the first class and 1 for the second class, which means that Class II demonstrates a
better quality performance. However, many educators might prefer the situation in Class I having a
greater number of excellent students. Conclusively, in no case is it logical to accept that the two classes
demonstrate the same performance, as the equal values of the GPA index indicate.

5. Triangular Fuzzy Numbers

5.1. Preliminaries

Fuzzy Numbers (FNs), introduced by Zadeh [33], play an important role in fuzzy mathematics,
analogous to the role of ordinary numbers in classical mathematics. A FN, e.g., A, is defined to be a FS
on the set R of real numbers, such that:

• A is normal, i.e., there exists x in R such that mA(x) = 1.
• A is convex, i.e., all its a-cuts Aa = {x ∈ R: mA (x) ≥ a}, with a in [0, 1], are closed real intervals.
• Its membership function y = m(x) is a piecewise continuous function.

One can define the basic arithmetic operations on FNs in two, equivalent to each other, ways:
(i) With the help of their a-cuts and the representation–decomposition theorem of

Ralesscou-Negoita [34] (Theorem 2.1, p.16) stating that FS A can be completely and uniquely expressed
by the family of its a-cuts in the form A = ∑

a∈[0,1]
aAa.

(ii) By applying the Zadeh’s extension principle [12] (Section 1.4, p.20), which provides the means
for any function f mapping the crisp set X to the crisp set Y to be generalized to map fuzzy subsets of X
to fuzzy subsets of Y.

However, the above two general methods of the fuzzy arithmetic, requiring laborious calculations,
are rarely used in practical applications, where the utilization of simpler forms of FNs is preferred.

A Triangular Fuzzy Number (TFN) (a, b, c), with a, b, and c real numbers such that a < b < c is the
simplest form of a FN representing mathematically the fuzzy statement that “the value of b lies in the
interval [a, c]”. The membership function y = m(x) of (a, b, c) is zero outside the interval [a, c], whereas
its graph in [a, c] forms a triangle with the OX axis (Figure 5). Therefore, we have:

y = m(x) =


x−a
b−a , x ∈ [a, b]
c−x
c−b , x ∈ [b, c]

0, x < a or x > c
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Figure 5. Graph and COG of the TFN (a, b, c).

The coordinates (X, Y) of the Center of Gravity (COG) of the graph of the TFN A = (a, b, c), being
the intersection point G of the medians AN and BM of the triangle ABC (Figure 5), are calculated by
the formulas

X (A) =
a + b + c

3
, Y(A) =

1
3

. (13)

In fact, since M(, 0) and N( b+c
2 , 1

2 ), the proof is easily obtained by calculating the equations of the
medians AN and BM and by solving their linear system.

According to the COG technique the first part of Equation (6) can be used to defuzzify the TFN A.
The two general methods for defining arithmetic operations on FNs lead to the following simple

rules for the addition and subtraction of TFNs:
Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. Then:

• The sum A + B = (a+a1, b+b1, c+c1).
• The difference A – B = A + (–B) = (a – c1, b – b1, c – a1), where –B = (–c1, –b1, –a1) is defined to be

the opposite of B.

On the contrary, the product and the quotient of A and B are FNs, which are not TFNs in general,
apart from some special cases.

The following two scalar operations can also be defined:

• k + A = (k + a, k + b, k + c), k ∈ R.
• kA = (ka, kb, kc), if k > 0 and kA = (kc, kb, ka), if k < 0, k ∈ R.

Remark 2. Another simple form of FNs that we have used as assessment tools [17] (Chapter 7) are the
Trapezoidal Fuzzy Numbers (TpFNs). The membership function of a TpFN (a, b, c, d), with a, b, c, and
d in R such that a < b ≤ c < d, is zero outside the interval [a, d], whereas its graph in [a, d] forms a
trapezoid with the OX axis. The TFN (a, b, d) is a special case of the TpFN (a, b, c, d) with b = c, i.e.,
the TpFNs are actually generalizations of the TFNs.

For general information on FNs, we refer to the book [35].

5.2. The Assessment Method Using TFNs

In [36], we developed with the help of TFNs a method for assessing a system’s mean performance,
whose steps are the following:

• Define the mean value of a finite number of given TFNs A1, A2, . . . , n ≥ 2, to be the TFN A = 1
n (A1

+ A2 + . . . + An).
• Assign a scale of numerical scores from 1 to 100 to the linguistic grades A = excellent, B = very

good, C = good, D = fair and F = unsatisfactory as follows: A (85–100), B (75–84), C (60–74),
D (50–59) and F (0–49).
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• Use for simplicity the same letters to represent the above grades by the TFNs A = (85, 92.5, 100),
B = (75, 79.5, 84), C (60, 67, 74), D (50, 54.5, 59) and F (0, 24.5, 49), respectively, where the middle
entry of each of them is equal to the mean value of its other two entries.

• Assess the individual performance of the system components by the above five qualitative grades
and assign one of the TFNs A, B, C, D, F to each of those components. Then, if n is the total
number of the system’s components and nX denotes the number of the components corresponding
to the TFN X, with X = A, B, C, D, F, the mean value M of all those TFNs is equal to the TFN

M (a, b, c) =
1
n
(nA A + nB B + nCC + nDD + nFF). (14)

Using the TFN M (a, b, c) to evaluate the system’s mean performance, it straightforward
to check that its components a, b and c, respectively, are equal to 85nA+75nB+60nC+50nD+0nF

n
92.5nA+79.5nB+67nC+54.5nD+24.5nF

n and 100nA+84nB+74nC+59nD+49nF
n .

Then, Equation (13) gives that

X (M) =
a + b + c

3
92.5nA + 79.5nB + 67nC + 54.5nD + 24.5nF

n
=

a + c
2

= b. (15)

Therefore, for the defuzzification of M (a, b, c), one needs to calculate only its middle component
b. The value of X (M) provides a crisp representation of the TFN M evaluating the system’s mean
performance.

An analogous assessment method was also developed in [37] using TpFNs instead of TFNs.
Examples illustrating the above assessment method are presented in Section 6.3 to be compared with
the use of grey numbers.

6. Grey System Theory

Because many constantly changing factors are usually involved in large and complex systems,
approximate data are frequently used in many problems of everyday life, science and engineering.
Nowadays, the main tool in the hands of the specialists for handling such approximate data is FL
and its generalizations or alternative theories. Among those theories, the theory of Grey System (GS)
initiated by Deng [22] in 1982 is very important.

A system that lacks information, such as structure message, operation mechanism and behavior
document, is referred to as a GS. The GS theory has recently found important applications in many
fields of human activity [38].

6.1. Grey Numbers

A Grey Number (GN) is a number with known range but unknown position within its boundaries.
If R denotes the set of real numbers, a GN A can be expressed mathematically by

A ∈ [a, b] = {x ∈ R: a ≤ x ≤ b}.

If a = b, then A is called a white number and if A ∈ (−∞. + ∞), then A is called a black number.
A GN may enrich its uncertainty representation with respect to the interval [a, b] by a whitening
function g: [a, b]→ [0, 1] defining a degree of greyness g(x) for each x in [a, b]. The closer is g(x) to 1, the
greater the probability for x to be the representative real value of the corresponding GN.

The well-known arithmetic of the real intervals [39] has been used to define the basic arithmetic
operations among the GNs. More explicitly, if A ∈ [a1, a2] and B ∈ [b1, b2] are given GNs and k is a
real number, one defines:

• Addition by A + B ∈ [a1 + b1, a2 + b2].
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• Subtraction by A − B = A + (−B) ∈ [a1 − b2, a2 – b1], where −B ∈ [−b2, −b1] is defined to be the
opposite of B.

• Multiplication by A × B [min{a1b1, a1b2, a2b1, a2b2}, max{a1b1, a1b2, a2b1, a2b2}].
• Division by A: B = A × B−1 ∈ [min{ a1

b1
, a1

b2

a2
b1

, a2
b2

}, max{ a1
b1

, a1
b2

a2
b1

, a2
b2

}]. with b1, b2 6= 0 and B−1 ∈
[ 1

b2
, 1

b1
] , which is defined to be the inverse of B.

• Scalar multiplication by kA ∈ [ka1, ka2], if k ≥ 0 and by kA ≥ [ka2, ka1], if k < 0.

The white number whose value represents the GN A ∈ [a, b] is denoted by W(A). The process of
determining w(A) is called whitening of A. When the distribution of A is unknown, i.e., no whitening
function has been defined for A, one usually utilizes the equally distant whitening by taking

W(A) =
a + b

2
. (16)

For general information on GNs, we refer to [40].

6.2. The Assessment Method with GNs

When using TFNs for the assessment of a system’s mean performance, we found that X(M) = b,
which means that only the middle component b is needed for the defuzzification of the mean value
M(a, b, c). This observation gives the hint to search for a “formal” assessment method that, analogous
to that with TFNs, possibly reduces the required computational burden. This idea led us to utilize
GNs [41] instead of TFNs for the system’s assessment. The steps of our new method are the following:

• Attach the numerical scores A (100–85), B (84–75), C (74–60), D (59–50), and F (49–0) to the
corresponding linguistic grades.

• Assign to each grade a GN as follows: A ∈ [85, 100], B ∈ [75, 84], C ∈ [60, 74], D ∈ [50, 59], and F
∈ [0, 49].

• Correspond to each of the system’s components one of the above GNs evaluating its performance.
• Using analogous notation with the case of TFNs, calculate the mean value

M∗ = 1
n
[nAA + nBB + nCC + nDD + nFF] (17)

• Since nAA ∈ [85nA, 100nA], nBB ∈ [75nB, 84nB], nCC ∈ [60nC, 74nC], nDD ∈ [50nD, 59nD], and nFF
∈ [0nF, 49nF], one obtains that M* ∈ [m1, m2], where

m1 =
85nA + 75nB + 60nC + 50nD + 0nF

n

m2 =
100nA + 84nB + 69nC + 59nD + 49nF

n

• Since the distribution of M* is unknown, take

W(M∗) = m1+m2

2
. (18)

The value of W(M*) provides a crisp representation of the GN M* evaluating the system’s
mean performance

Remarks 3.

(1) From Equations (15) and (18), one obtains that X(M) = W(M*). Therefore, one concludes that
the assessment methods with the TFNs and the GNs are equivalent to each other, because they
provide the same assessment outcomes.
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(2) It is straightforward to check that, if the maximal possible numerical score corresponds to
each system’s component for each grade, then the mean value of those scores is equal to c or
m2, respectively. In the same way, if the minimal possible score corresponds to each system’s
component for each grade, then the mean value of all scores is equal to a or m1, respectively.
Consequently, assessment methods with TFNs and GNs give a reliable approximation of the
system’s mean performance.

6.3. Applications of the Assessment Methods with TFNs and GNs

The first application in this section concerns the assessment of Case-Based Reasoning (CBR) systems.
CBR is the method of solving new problems based on the solution of analogous problems solved in
the past (past cases). A case collection can be a powerful resource to use when handling a new problem.
A CBR system, usually designed and functioned with the help of proper software, allows the collection
of cases to develop incrementally, while its maintenance is an easy task for domain experts. The CBR
approach has gained much attention and found many applications over the last 30–40 years, because,
as an intelligent systems method, it enables information managers to increase efficiency and reduce
cost by substantially automating processes.

The steps of the CBR process involve:

• R1: Retrieve the most suitable past case to the new problem.
• R2: Reuse the information of the retrieved case to solve the new problem.
• R3: Revise the solution.
• R4: Retain the part of the solution that could be useful for future problems.

Steps R1, R2 and R3 are not linear, characterized by a backward–forward flow. A simple flow
diagram of the CBR process is presented in Figure 6:Mathematics 2019, 7, x FOR PEER REVIEW 14 of 22 
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Figure 6. A simplified flow-chart of the CBR process.

More information and a detailed functional diagram illustrating the four steps of the CBR process
are presented in [42].

Example 4. Consider a couple of CBR systems with a collection of 105 and 90 past cases, respectively.
The designers have supplied both systems with a mechanism evaluating the degree of success of the
past cases for solving new analogous problems. Table 3 depicts the performance of the past cases in
the three first steps of the CBR process.

Table 3. Assessment of the past cases of the CBR systems.

First system

Steps F D C B A

R1 0 0 51 24 30
R2 18 18 48 21 0
R3 36 30 39 0 0

Second system

Steps F D C B A

R1 0 18 45 27 0
R2 18 24 48 0 0
R3 36 27 27 0 0
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Here, we compare the mean performance of the two systems by applying both methods with
TFNs and GNs.

(i) Use of TFNs: The data in Table 3 show that in Step R1 we have for the first system 51 TFNs equal
to C(60, 67, 74), 24 TFNs equal to B(75, 79.5, 85) and 30 TFNs equal to A(85, 92.5, 100). The calculation
of the mean value of those TFNs gives that R1 = 1

105 (51C + 24B + 30A) = 1
105 [(3060, 3417, 3774) + (1800,

1908, 2016) + (2550, 2775, 3000) = 1
105 (7410, 8100, 8790) ≈ (70.57, 77.14, 83.71).

Therefore, from Equation (15), one gets that X(R1) = 77.14, which shows that the first system
demonstrates a very good (B) performance at Step R1.

In the same way, one calculates for the first system the mean values R2 = 1
105 (18F + 18D+ 48C +

21B) ≈ (51, 60.07, 69.14) with X(R2) = 60.07 and R3 = 1
105 (36F + 30D + 39C) ≈ (36.57, 48.86, 61.14) with

X(R2) = 48.86, thus obtaining the analogous conclusions for the system’s performance at Steps R2 and
R3 of the CBR process.

The overall system’s performance can be assessed by the mean value R = 1
3 (R1 + R2 + R3) ≈

(52.71, 62.02, 71.33). Since X(R) = 62.02, the system demonstrates a good (C) mean performance.
A similar argument gives for the second system the values R1 = (62.5, 68.25, 74), R2 ≈ (45.33, 55.17,

65), R3 = (33, 46.25, 59.5) and R≈ (46.94, 56.56, 66.17). Therefore, analogous conclusions can be obtained
for its mean performance at each step of the CBR process and for its overall mean performance, which
is characterized as fair (D).

(ii) Use of GNs: Here, in Step R1, we have 51 GNs equal to C ∈ [60, 74], 24 GNs equal to B ∈ [75,
84] and 30 GNs equal to A ∈ [85, 100]. The mean value of those GNs is R1* = 1

105 (51C + 24B + 30A) ∈
[70.57, 83.71]. Therefore, W(R1*) = 70.57+83.71

2 = 77.14, etc.

Remarks 4.

(i) As we show in the previous section, the use of GNs provides in general the same assessment
outcomes with the use of TFNs. However, observe that, to obtain the mean value M* ∈ [m1, m2],
one needs to calculate two components only, in contrast to the mean value M (a, b, c) where the
calculation of three components is needed. Consequently, the method with GNs reduces the
required computational burden.

(ii) Another promising area for applying the above assessment methods is the fuzzy control systems
(e.g., see [43], [44] (Paragraph 5.3), [45]). Traditional controllers, often implemented as PID
(proportional–integral–derivative) controllers, are based on mathematical models in which the
control system is described using one or more differential equations that define the system
response to its inputs. They are the products of decades of development and theoretical analysis
and are highly effective in general. However, in certain cases, the mathematical model of the
control process may not exist, or may be too “expensive” in terms of computer processing power
and memory. In such cases, a system based on empirical rules may be more effective.

Fuzzy controllers consist of input, processing and output stages. The input stage maps sensors,
switches and other inputs to the appropriate membership functions (usually triangular, although
trapezoidal and bell curves are also used) and truth values. The processing stage is based on a collection
of logic rules in the form of IF–THEN statements. A result is generated from each rule and all these
results are properly combined. For example, such a rule for a thermostat is “IF the temperature is low,
THEN the heater is high”. Typical fuzzy controllers have dozens of rules. Finally, the output stage
converts the combined result back into a specific control output value. In many cases, fuzzy control
can be used to improve existing traditional control systems by adding an extra layer of intelligence to
the current control method.

Example 5. Six different trainers ranked with scores from 0 to 100 the performance of five athletes as
follows: A1 (Athlete 1): 43, 48, 49, 49, 50, and 52; A2: 81, 83, 85, 88, 91, and 95; A3: 76, 82, 89, 95, 95,
and 98; A4: 86, 86, 87, 87, 87, and 88; and A5: 35, 40, 44, 52, 59, and 62.
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The mean value of the 6 × 5 = 30 given numerical scores is approximately equal to 72.07,
demonstrating a good (C) mean performance of the athletes. For reasons of comparison of the
two methods, the system’s mean performance is also calculated using GNs.

The given numerical scores provide 14 GNs equal to A, 4 equal to B, 1 equal to C, 4 equal to D and
7 equal to F. Their mean value is M* = 1

30 (14A + 4B + C + 4D + 7F) ∈ [60.33, 79.63]. Therefore, Equation
(18) gives that W(M*) = 69.98, which shows that the five athletes demonstrate a good performance,
but the exact score corresponding to their mean performance is the mean value 72.02 of the given
numerical scores calculated in the traditional way.

In conclusion, the assessment methods using GNs and TFNs, although they give a satisfactory
approximation of the system’s mean performance, are practically useful only when the individual
performance is evaluated by qualitative grades and not by numerical scores, because, in this case,
the calculation of the mean value of those grades in the traditional way is not possible.

7. Application of Fuzzy Relation Equations to Mathematical Modeling

7.1. Mathematical Modeling

Until the mid-1970s, Mathematical Modeling (MM) was mainly a tool in the hands of scientists and
engineers for solving real world problems related to their disciplines (physics, industry, constructions,
economics, etc.). However, the failure to introduce “new mathematics” in school education brought the
attention of researchers and educators to problem-solving processes, and in particular to the process of
MM and its applications. As a result, MM appears today as a dynamic tool for teaching and learning
mathematics, because it connects mathematics with our everyday life, giving the possibility to students
to understand its usefulness in practice and therefore increasing their interest in it [46].

The steps of the MM process involve:

• S1: Analyze the given problem (understanding the statement and recognizing the restrictions and
requirements imposed by the corresponding real system).

• S2: Mathematize (formulation of the problem and construction of the mathematical model).
• S3: Solve the model.
• S4: Validate (control) the model, which is usually achieved by reproducing, through the model,

the behavior of the real system under the conditions existing before the solution of the model and
by comparing it to the existing from the previous “history” of the real system, i.e., data. In cases
of systems having no past history, an extra simulation model could be used for the validation of
the mathematical model.

• S5: Interpret the final mathematical results and implement them in the real system to give the
“answer” to the real-world problem.

7.2. Fuzzy Relation Equations

Fuzzy Relation Equations (FREs) are associated with the composition of Fuzzy Binary Relations
(FBRs). A FBR is defined as follows:

Definition 1. Let X and Y be two crisp sets. Then, a FBR R(X, Y) is a FS on the Cartesian product X × Y
of the form: R(X, Y) = {(r, mR(r): r = (x, y) ∈ X × Y}, where mR: X × Y→ [0, 1] is the corresponding
membership function. When X = {x1, . . . . . . . . . , xn} and Y = {y1, . . . . . . , ym}, a FBR R(X, Y) can be
represented by a n X m matrix R = [rij], where rij = mR (xi, yj), with i = 1, . . . , n and j = 1, . . . , m.
The matrix R is called the membership matrix of the FBR R(X, Y).

The basic ideas of fuzzy relations, which were introduced by Zadeh [47] and further investigated
by other researchers, are extensively covered in the book [48].
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Definition 2. Consider two FBR P(X, Y) and Q(Y, Z) with a common set Y. Then, the standard
composition of these relations, denoted by P(X, Y) # Q(Y, Z) produces a FBR R(X, Z) with membership
function mR defined by:

mR(xi, zj) = max
y∈Y

min [mP(xi, y), mQ(y, zj)], i = 1, . . . , n, j = 1, . . . , m. (19)

This composition is usually referred to as max-min composition. Compositions of FBR are
conveniently performed in terms of their membership matrices. In fact, if P = [pik] and Q = [qkj]
are the membership matrices of the FBRs P(X, Y) and Q(Y, Z)m respectively, then by Equation (19)m
we get that the membership matrix of R(X, Y) = P(X, Y) # Q(Y, Z) is the matrix R = [rij], with

rij = max
k

min(pik, qkj). (20)

Note that the same elements of P and Q are used in the calculation of mR as would be used in the
regular multiplication of matrices, but the product and sum operations are here replaced with the min
and max operations, respectively.

Definition 3. Consider the FBRs P(X, Y), Q(Y, Z) and R(X, Z), defined on the sets X = {xi: i ∈ Nn}, Y =
{yj: j ∈ Nm }, Z = {zk: k ∈ Ns}, where Nt = {1,2, . . . ,t}, for t = n, m, k, and let P = [pij], Q = [qjk] and
R = [rik] be the membership matrices of P(X, Y), Q(Y, Z) and R(X, Z), respectively. Assume that the
above three relations constrain each other in such a way that P # Q = R, where # denotes the max-min
composition. This means that, for each i in Nn and each k in Ns,

rik = max
j∈J

min (pij, qjk). (21)

Therefore, the matrix equation P # Q = R encompasses nXs simultaneous equations of the form of
Equation (21). When two of the components in Equation (21) are given and one is unknown, these
equations are referred as FRE. The notion of FRE was first proposed by Sanchez [49] and later further
investigated by other researchers (e.g., [50–52]).

7.3. A Study of MM Skills Using FRE

Let us consider the crisp sets X = {M}, Y = {A, B, C, D, F} and Z = {S1, S2, S3, S4}, where M denotes
the imaginary notion of the average student of a class; A, B, C, D, and F are the linguistic grades used
for the assessment of the student performance; and S1, S2, S3, and S4 are the steps of the MM process.
Without loss of generality, the validation (S4) and the implementation (S5) of the model, which are
usually considered as two different steps, have been joined here in one step (S4) to make simpler the
development of our assessment method.

Let n be the total number of students of a class and let ni be the numbers of students of the class
who obtained the grade i assessing their performance, i ∈ Y. Then, one can represent the average
student of the class as a FS on Y in the form M = {(i, ni

n ): i ∈ Y}.
The FS M induces a FBR P(X, Y) with membership matrix P = [ nA

n , nB
n , nB

n , nC
n , nF

n ].
In an analogous way, the average student of a class can be represented as a FS on Z in the form

M′ = {(j, m(j): j ∈ Z}, where m: Z→ [0, 1] is the corresponding membership function. In this case, the
FS M′ induces a FBR R(X, Z) with membership matrix R = [m(S1) m(S2) m(S3) m(S4)].

We consider also the FBR Q(Y, Z) with membership matrix the 5 × 4 matrix Q = [qij], where qij
= mQ(i, j) with i ∈ Y and j ∈ Z and the FRE encompassed by the matrix equation P # Q = R. When
the matrix Q is fixed and the row-matrix P is known, then the above equation always has a unique
solution with respect to R, which enables the representation of the average student of a class as a fuzzy
set on the set of the steps of the MM process. This is useful for the instructor for designing his/her
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future teaching plans. On the contrary, when the matrices Q and R are known, then the equation P #
Q = R may have no solution or it may have more than one solutions with respect to P, which makes the
corresponding situation more complicated.

Example 6. The following experiment took place at the Graduate Technological Educational Institute
of Western Greece, in the city of Patras, when I was teaching a group of 60 students of the School
of Technological Applications (future engineers) the use of the derivative for the maximization and
minimization of a function. A written test was performed after the end of the teaching process
involving two mathematical modeling problems about the construction of a channel to run water and
of a cylindrical tower (see the second section of [46]). The results of the test are depicted in Table 4.

Table 4. Student performance.

Grade No. of Students

A 20
B 15
C 7
D 10
F 8

Total 60

Therefore, the average student M of the class can be represented as a fuzzy set on Y = {A, B, C, D,
F} by M = {(A, 20

60 ), (B, 15
60 ), (C, 7

60 ), (D, 10
60 ), (F, 8

60 )} ≈ {(A, 0.33), (B, 0.25), (C, 0.12), (D, 0.17), (F, 0.13)}.
Thus, M induces a FBR P(X, Y), where X = {M}, with membership matrix P = [0.33 0.25 0.12 0.17 0.13].

In addition, using statistical data of the last five academic years concerning the MM skills of the
students of the School of Technological Applications, we fixed the membership matrix Q of the binary
fuzzy relation Q(Y, Z), where Z = {S1, S2, S3, S4}, in the form:

S1 S2 S3 S4

A
B
C
D
F


0.7 0.5 0.3 0
0.4 0.6 0.3 0.1
0.2 0.7 0.6 0.2
0.1 0.5 0.7 0.5
0 0.7 0.5 0.8


The statistical data were collected by the instructor who was inspecting the student reactions

during the solution of several MM problems in the classroom.
Next, using the max-min composition of FBR, one finds that the membership matrix of R(X, Z) =

P(X, Y) # Q (Y, Z) is equal to R = P # Q = [0.33 0.33 0.3 0.17]. Therefore, the average student of the
class can be expressed as a fuzzy set on Z by M = {(S1, 0.33), (S2, 0.33), (S3, 0.3), (S4, 0.17)}.

The conclusions obtained from the above expression of M are the following:

• Only 1
3 of the students of the class were ready to use contents of their memory (background

knowledge, etc.) to facilitate the solution of the given problems.
• All the above students were able to design the model and almost all of them were able to execute

the solutions of the given problems.
• On the contrary, half of the above students could not check the correctness of the solutions found

and therefore implement correctly the mathematical results to the real system.

The first conclusion was not surprising, since the majority of the students have the wrong habit to
start studying the material of their courses the last month before the final exams. On the other hand,
the second conclusion shows that the instructor’s teaching procedure was successful, enabling the
diligent students to plan and execute successfully the solutions of the given problems. Finally, the last
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conclusion is explained by the fact that students, when solving MM problems, frequently omit to check
if their solutions are compatible to the restrictions imposed by the real system. Therefore, the instructor
should emphasize during his/her lectures that the last two steps of the MM process (validation and
implementation) are not a formality, but have their own importance for preventing several mistakes.

Let us now consider the case where the membership matrices Q and R are known and we want
to determine the matrix P representing the average student of the class as a fuzzy set on Y. This is a
complicated case because we may have more than one solution or no solution at all. The following
two examples illustrate this situation.

Example 7. Consider the membership matrices Q and R of the previous example and set P = [p1 p2 p3

p4 p5]. Then, the matrix equation P o Q = R encompasses the following equations:

max {min (p1, 0.7), min (p2, 0.4), min (p3, 0.2), min (p4, 0.1), (p5, 0)}= 0.33
max {min (p1, 0.5), min (p2, 0.6), min (p3, 0.7), min (p4, 0.5), min (p5, 0.1)}= 0.33
max {min (p1, 0.3), min (p2, 0.3), min (p3, 0.6), min (p4, 0.7), (p5, 0.5)}= 0.3
max {min (p1, 0), min (p2, 0.1), min (p3, 0.2), min (p4, 0.5), min (p5, 0.8)}= 0.17

The first of the above equations is true if, and only if, p1 = 0.33 or p2 = 0.33, values that satisfy the
second and third equations as well. In addition, the fourth equation is true if, and only if, p3 = 0.17,
p4 = 0.17 or p5 = 0.17. Therefore, any combination of values of p1, p2, p3, p4, and p5 in [0, 1] such that
p1 = 0.33 or p2 = 0.33 and p3 = 0.17, p4 = 0.17 or p5 = 0.17 is a solution of P o Q = R.

Let S(Q, R) = {P: P # Q = R } be the set of all solutions of P o Q = R. Then, one can define a partial
ordering on S(Q, R) by P ≤ P′ ⇔ pi ≤ p′i, ∀ι = 1, 2, 3, 4, 5.

It is well established that, whenever S(Q, R) is a non-empty set, it always contains a unique
maximum solution and it may contain several minimal solutions [49]. It is further known that S(Q, R)
is fully characterized by the maximum and minimal solutions in the sense that all its other elements are
between the maximal and each of the minimal solutions [49]. A method of determining the maximal
and minimal solutions of P o Q = R with respect to P is developed in [52].

Example 8. Let Q = [qij], i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4 be as in Example 2 and let R = [1 0.33 0.3 0.17].
Then, the first equation encompassed by the matrix equation P o Q = R is max {min (p1 , 0.7), min (p2,
0.4), min (p3, 0.2), min (p4, 0.1), and min (p5, 0)}= 1. In this case, it is easy to observe that the above
equation has no solution with respect to p1, p2, p3, p4, and p5, therefore the matrix equation P o Q = R
has no solution with respect to P. In general, writing R = {r1 r2 r3 r4}, it becomes evident that we have
no solution if max

j
qij < ri.

8. Discussion and Conclusions

The enormous development of technology during the last years makes human life easier and
more comfortable. However, the technological progress creates in parallel more and more complicated
artificial systems, which are difficult to be managed by the traditional scientific methods. As a result,
while 50–60 years ago probability theory used to be a unique tool in the hands of scientists for dealing
with situations characterized by uncertainty and/or vagueness, today this is no loneger the rule. In fact,
the introduction of FL and its generalizations (intuitionistic FS, neutrosophic sets, etc.) and of other
relative theories (rough sets, soft sets, GS theory, etc.) provide new tools for dealing with such situations
in real life, science and technology and enable the solution of problems with fuzzy or approximate
data, which cannot be solved with traditional techniques of probability theory. The applications of
FL and its relevant theories have been rapidly expanded nowadays, covering almost all sectors of
human activities.

The objective of this review article is to present the author’s research on developing methods for
the assessment of human–machine capacities under fuzzy conditions. Those methods include:
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1. The measurement of the corresponding fuzzy system’s probabilistic uncertainty (generalized
Shannon’s entropy) or its total possibilistic uncertainty (the sum of strife and non-specificity)
for evaluating its mean performance. However, this method can be applied for comparing
the performance of two different systems with respect to a common activity only under the
assumption that the uncertainty in those systems is the same before the activity (equivalent
systems). Moreover, the method cannot provide an exact characterization of a system’s
performance and it involves laborious calculations.

2. The utilization of the COG defuzzification technique (rectangular fuzzy assessment model) for
assessing a fuzzy system’s quality performance. This method, initiated by Subbotin et al. [31],
is useful, due to its logical nature, when comparing the performance of two systems with equal
values of the traditional GPA index. In this case, the GPA index could lead to conclusions that are
not close to the reality. On the contrary, for different values of the GPA index, the two methods
provide the same assessment outcomes.

3. The use of TFNs as assessment tools, a method that is easy to apply in practice and gives an
exact characterization of the system’s mean performance. That method is useful when qualitative
grades and not numerical scores are used for the evaluation of the system’s performance, which
makes impossible the calculation of the mean value of those grades in a traditional way. However,
a disadvantage of the method is that its understanding requires knowledge of basic principles of
FS theory, which is not always easy for non-specialists.

4. The use of GNs, instead of TFNs, as assessment tools. These two methods are equivalent to
each other, providing the same assessment outcomes. However, GNs can be easily defined with
the help of closed real intervals, which makes the method more accessible to non-specialists.
Moreover, the use of GNs reduces significantly the required computational burden.

5. The application of FRE for assessing MM skills. This method enables the teacher to obtain useful
conclusions about student progress and was applied by the author, with the proper modifications
each time, to various other assessment situations (problem-solving, learning a subject matter,
human and machine reasoning, etc.) [53–55].

The above models provide an innovative framework for further research on human–machine
assessment. Our future plans involve improving and extending our fuzzy and grey assessment
methods and applying the principles of FL and GS theory to other fields of human activity as well. Note
that such efforts have already been started by the author on solving equations, systems of equations
and linear programming problems with fuzzy or grey data, connected to real life applications [56–59].
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