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Abstract: In 2014, Cui and Wang constructed an algorithm for demicontractive operators and
proved some weak convergence theorems of their proposed algorithm to show the existence of
solutions for the split common fixed point problem without using the operator norm. By Cui
and Wang’s motivation, in 2015, Boikanyo constructed also a new algorithm for demicontractive
operators and obtained some strong convergence theorems for this problem without using the
operator norm. In this paper, we consider a viscosity iterative algorithm in Boikanyo’s algorithm
to approximate to a solution of this problem and prove some strong convergence theorems of our
proposed algorithm to a solution of this problem. Finally, we apply our main results to some
applications, signal processing and others and compare our algorithm with five algorithms such as
Cui and Wang’s algorithm, Boikanyo’s algorithm, forward-backward splitting algorithm and the fast
iterative shrinkage-thresholding algorithm (FISTA).

Keywords: split common fixed point problem; demicontractive operator; Cui and Wang’s algorithm;
Boikanyo’s algorithm; strong convergence

MSC: 47J25; 47J20; 49N45; 65J15

1. Introduction

Assume that C and Q are nonempty closed convex subsets of Hilbert spaces H1 and H2,
respectively. Assume that A : H1 → H2 is a bounded linear operator with the adjoint A∗.
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In 1994, the split feasibility problem was proposed by Censor and Elfving [1] as follows:

Find a point x∗ ∈ H1 such that x∗ ∈ C and Ax∗ ∈ Q. (1)

It is interesting to note that, when taking C = H1 and Q = {b}, the split feasibility problem
reduces to the linear inverse problem:

Find a point x∗ ∈ H1 such that Ax∗ = b. (2)

The most popular ways for solving the linear inverse problem is to reformulate it as a least squares
problem. Similarly, the split feasibility problem was solved by equivalently reformulating it as the
convex optimization problem:

min
x∈C

1
2
‖Ax− PQ(Ax)‖2, (3)

where PQ(·) is the projection operator on set Q defined by

PQ(v) = arg min
z∈Q

‖z− v‖.

In 2002, based on the reformulation (3), the so-called CQ algorithm was presented by Byrne.
He solved this problem by using the algorithm: For an arbitrary x1 ∈ H,

xn+1 = A−1PQ(PA(C)(Axn)), ∀n ∈ N, (4)

which converges to a solution of the convex optimization problem. Since the algorithm (4) requires
the inverse matrix of A, it is disadvantage to calculate this algorithm. We note that x∗ ∈ H solves
the problem (2) is equivalent to the fixed point problem, that is, x∗ is a fixed point of T, where T :=
PC(I − ρA∗(I − PQ)A) for any ρ > 0.

In 2002, Byrne [2] constructed the following algorithm (5), which does not compute the inverse
matrix of A: For any x0, {xn} is generated by

xn+1 = PC(I − ρA∗(I − PQ)A)xn, ∀n ∈ N, (5)

where ρ ∈ (0, 2
L ) and L is the largest eigenvalue of A∗A.

Recently, the split feasibility problem has been apllied to approximation theory, signal processing,
image recovery, control theory, biomedical engineering, geophysics and communications by many
authors. Refer to the papers [3–9].

Especially, the split common fixed point problem is as follows:

Find a point x∗ ∈ H such that x∗ ∈ Fix(U) and Ax∗ ∈ Fix(T), (6)

where U : H → H and T : K → K are operators, Fix(U) and Fix(T) denote the fixed point sets of U
and T, respectively. In 2009, this problem was proposed by Censor and Segal [10] and they constructed
the following algorithm for solving the problem: For any x0 ∈ H, {xn} is generated by

xn+1 = U(I − ρA∗(I − T)A)xn, ∀n ∈ N. (7)

This algorithm can be extended to many cases as follows:

1. Quasi-nonexpansive operators by Moudafi [11];
2. Finitely many directed operators by Wang and Xu [12];
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3. Demicontractive operators by Moudafi [13]. In the case when U and T are directed operators,
the step size ρ satisfies 0 < ρ < 2

‖A‖2 and {xn} generated by the algorithm (7) converges weakly
to a solution of the problem (6) when a solution exists.

The algorithm (7) needs to compute ‖A‖, which is not easily computed. In 2014, Cui and Wang [14]
proposed the following Algorithm 1 without using the operator norm: For an initial x0 ∈ H,

xn+1 = Uλ(xn − ρn A∗(I − T)Axn), ∀n ≥ 0, (8)

where

ρn =


(1−τ)‖(I−T)Axn‖2

2‖A∗(I−T)Axn‖2 , Axn 6= T(xn),

0 otherwise,

where U and T are demicontractive operators with constants 0 ≤ κ < 1 and 0 ≤ τ < 1 such that I −U
and I − T are demiclosed at zero, respectively, denote Uλ := (1− λ)I + λU for any λ ∈ (0, 1− κ) and
A is a bounded linear operator, and they proved that the algorithm (8) converges weakly to a solution
of the problem (6) when a solution exists.

Algorithm 1: Cui and Wang’s algorithm

Input: Set λ ∈ (0, 1− κ), where 0 ≤ κ < 1. Choose x0 ∈ H.
1 for n = 1, 2, · · · do
2 Update xn+1 via (8),
3 end for

In 2015, Boikanyo [15] extended Cui and Wang’s results and proposed the following Algorithm 2
for demicontrative operators U and T with Uλ := (1−λ)I +λU for any λ ∈ (0, 1− κ), which converges
strongly to a solution of the problem (6) when a solution exists: For any u ∈ H,

xn+1 = αnu + (1− αn)Uλ(xn − ρn A∗(I − T)Axn), ∀n ≥ 0, (9)

where

ρn =


(1−τ)‖(I−T)Axn‖2

2‖A∗(I−T)Axn‖2 , Axn 6= T(xn),

0 otherwise,

and {αn} is a sequence in [0, 1) such that

lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

Algorithm 2: Boikanyo’s algorithm

Input: Set λ ∈ (0, 1− κ) where 0 ≤ κ < 1, and αn ∈ [0, 1) such that lim
n→∞

αn = 0 and
∞
∑

n=0
αn = ∞. Choose u, x0 ∈ H.

1 for n = 1, 2, · · · do
2 Update xn+1 via (9).
3 end for
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In 2016, Huimin et al. [16] proposed the following Algorithm 3 for demicontrative operators U, T
with Uλ := (1− λ)I + λU for any λ ∈ (0, 1− κ), where λ ∈ (0, 1− κ), and f is a contraction operator
on Fix(U) which converges strongly to a solution of the problem (6) when a solution exists:

xn+1 = αn f (xn) + (1− αn)Uλ(xn − ρn A∗(I − T)Axn), ∀n ≥ 0, (10)

where

ρn =


(1−τ)‖(I−T)Axn‖2

2‖A∗(I−T)Axn‖2 , Axn 6= T(xn),

0 otherwise,

and {αn} is a sequence in [0, 1) such that

lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

Algorithm 3: Algorithm of Huimin et al. [16]

Input: Set λ ∈ (0, 1− κ), where λ ∈ (0, 1− κ), and αn ∈ [0, 1) such that lim
n→∞

αn = 0 and
∞
∑

n=0
αn = ∞. Choose u, x0 ∈ H.

1 for n = 1, 2, · · · do
2 Update xn+1 via (10).
3 end for

In this paper, motivated by Boikanyo’s algorithm [15] and the algorithm of Huimin et al. [16],
we will propose the following Algorithm 4 for demicontrative operators U and T with Uλn :=
(1− λn)I + λnU for any λn ∈ (0, 1− κ):{

yn = αn f (xn) + (1− αn)Uλn(xn − ρn A∗(I − T)Axn),

xn+1 = (1− βn)yn + βn f (yn), ∀n ≥ 0,
(11)

where

ρn =


(1−τ)‖(I−T)Axn‖2

2‖A∗(I−T)Axn‖2 , Axn 6= T(xn),

0 otherwise,

U and T are demicontrative operators such that I − U and I − T are demiclosed at zero, f is a
contraction operator on Fix (U) and the sequences {αn}, {βn} in [0, 1) are such that

lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞,
∞

∑
n=0

βn < ∞

and we prove that our algorithm {xn} generated by (11) converges strongly to a solution of the
problem (6) when a solution exists. However, {xn} and {yn} converge to the same point because from

the condition 0 ≤ βn < 1 and
∞
∑

n=1
βn < ∞.
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Algorithm 4: Our algorithm

Input: Set λn ∈ (0, 1− κ), where λ ∈ (0, 1− κ), αn, βn ∈ [0, 1) such that lim
n→∞

αn = 0,
∞
∑

n=0
αn = ∞ and

∞
∑

n=0
βn < ∞. Choose x0 ∈ H;

1 for each n = 1, 2, · · · do;
2 Update yn and xn+1 via (11), respectively.
3 end for

Remark 1. In fact, our algorithm was changed from the algorithm of Huimin et al. including the point u in
Boikano’s algorithm to the viscosity term and linear convex combination. The algorithm of Huimin et al. is a
special case of our algorithm when βn = 0 and {λn} is a constant sequence. The algorithm of Huimin et al. and
our algorithm are different because they were generated the distinct terms xn. However, they converge strongly
to a same solution of the split common fixed point problem.

For example, let

y =
[
1.5 7

]†
, ε =

[
0.5 1

]†
, A =

[
1 0 0
1 2 3

]
,

αn = 0.1
n , βn = 1

n2 , λn = 1
2 ,

f (x) =
x−

[
2 1 0

]†

4 +
[
2 1 0

]†
, t = 10,

where † is transpose. If xOur,100 =
[
1.5024 1.4672 0.8540

]†
is generated by our algorithm and xH,100 =[

1.5034 1.0701 1.1177
]†

is generated by the algorithm of Huimin et al., then two algorithms, the algorithm
of Huimin et al. (10) and our algorithm (11) converge strongly to a same solution of the problem (15).

2. Preliminaries

Let H be a real Hilbert space. Let xn ⇀ x denote that {xn} converges weakly to x and xn → x
denote that {xn} converges strongly to x.

The following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Definition 1. Let T : H → H be an operator such that Fix(T) 6= ∅. Then T is said to be:

1. Nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H;

2. Contractive if there exists k ∈ [0, 1) such that

‖Tx− Ty‖ ≤ k‖x− y‖, ∀x, y ∈ H;

3. Quasi-nonexpansive if

‖Tx− x∗‖ ≤ ‖x− x∗‖, ∀x, y ∈ H, x∗ ∈ Fix(T);

4. Directed if
‖x∗ − Tx‖2 + ‖x− Tx‖2 − ‖x− x∗‖2 ≤ 0, ∀x, y ∈ H, x∗ ∈ Fix(T);
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5. τ-demicontractive with τ ∈ [0, 1) if

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 + τ‖x− Tx‖2, ∀x, y ∈ H, x∗ ∈ Fix(T).

Remark 2. Easily, we obtain the following conclusions:

1. Every contraction operator is nonexpansive;
2. Every nonexpansive operator is quasi-nonexpansive;
3. Every quasi-nonexpansive operator is 0-demicontractive operator;
4. Every direct operator is −1-demicontractive operator.

Definition 2. Assume that T : H → H is an operator. Then I − T is demiclosed at zero if, for any {xn} in H,
xn ⇀ x∗ and (I − T)xn → 0 imply Tx∗ = x∗.

Remark 3. Every nonexpansive operator is demiclosed at zero [17].

Definition 3. Assume that C is a nonempty closed convex subset of H. The metric projection PC from H onto
C is defined as follows: For all x ∈ H,

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

Note that the metric projection PC is nonexpansive [17].

Lemma 1 ([18]). Assume that C is a nonempty closed convex subset of H and PC is a nonexpansive operator
from H onto C. For any x ∈ H, it satisfies the inequality:

〈PCx− x, PCx− y〉 ≤ 0, ∀y ∈ C.

Lemma 2 ([19]). Assume that {αn} is a sequence of nonnegative numbers such that

αn+1 ≤ (1− βn)αn + γn, ∀n ≥ 0,

where βn ∈ (0, 1) and γn ∈ R such that

1.
∞
∑

n=1
βn = ∞;

2. lim sup
n→∞

γn
βn
≤ 0 or

∞
∑

n=1
|γn| < ∞.

Then lim
n→∞

αn = 0.

Lemma 3 ([20]). Assume that A : H → H is a τ-demicontractive operator with τ < 1. Define Uλ :=
(1− λ)I + λU for any λ ∈ (0, 1− τ). Then, for any x ∈ H and x∗ ∈ Fix(U),

‖Uλx− x∗‖2 ≤ ‖x− x∗‖2 − λ(1− τ − λ)‖x−Ux‖2.

Lemma 4 ([14]). Assume that A : H → H is a bounded linear operator. Assume that T : H → H is a
τ-demicontractive operator. If A−1(Fix(T)) 6= ∅, then

1. (I − T)Ax = 0 if and only if A∗(I − T)Ax = 0 for all x ∈ H;
2. In particular, for all x∗ ∈ A−1(Fix(T)),

‖x− ρA∗(I − T)Ax− x∗‖2 ≤ ‖x− x∗‖2 − (1− τ)2‖(I − T)Ax‖4

4‖A∗(I − T)Ax‖2 ,



Mathematics 2019, 7, 226 7 of 20

where x ∈ H, Ax 6= T(Ax) and

ρ =
(1− τ)‖(I − T)Ax‖2

2‖A∗(I − T)Ax‖2 .

3. Main Results

Theorem 1. Assume that H1 and H2 are real Hilbert spaces. Assume that U : H1 → H1 and T : H2 → H2

are a κ-demicontractive operator and a τ-demicontractive operator with constants 0 ≤ κ < 1 and 0 ≤ τ < 1,
respectively such that I −U and I − T are demiclosed at zero, respectively. Assume that A : H1 → H2 is a
bounded linear operator with the adjoint A∗ of A. Assume that f is a contraction operator with constant η.

Assume that S is a set of all solution of the problem (6) such that S 6= ∅. If lim
n→∞

αn = 0,
∞
∑

n=0
αn = ∞ and

∞
∑

n=0
βn < ∞, then the sequence {xn} generated by algorithm (11) converges strongly to a point x∗ ∈ S, which

is a solution x∗ = PS f (x∗) of the following variational inequality:

〈x∗ − f (x∗), x∗ − z〉 ≤ 0, ∀z ∈ S. (12)

Proof. Let an = xn − ρn A∗(I − T)Axn for each n ≥ 0 and let z ∈ S. Since βn ∈ [0, 1) and
∞
∑

n=0
βn < ∞,

we have lim
n→∞

βn = 0. For the proof, we have the following four steps:

Step 1. Show that {xn} is bounded.
Case ρn = 0: Thus an = xn. By Lemma 3, we get

‖Uλn an − z‖2 = ‖Uλn xn − z‖2

≤ ‖xn − z‖2 − λn(1− κ − λn)‖xn −Uxn‖2

≤ ‖xn − z‖2.

Case ρn 6= 0: By Lemmas 3 and 4, we get

‖Uλn an − z‖2 ≤ ‖an − z‖2 − λn(1− κ − λn)‖an −Uan‖2

= ‖xn − ρn A∗(I − T)Axn‖2 − λn(1− κ − λn)‖an −Uan‖2

≤ ‖xn − z‖2 − (1−τ)2‖(I−T)Axn‖4

4‖A∗(I−T)Axn‖2 − λn(1− κ − λn)‖an −Uan‖2

≤ ‖xn − z‖2.

Thus ‖Uλan − z‖ ≤ ‖xn − z‖. Observe that

‖xn+1 − z‖ = ‖(1− βn)yn + βn f (yn)− z‖
≤ (1− βn)‖yn − z‖+ βn‖ f (yn)− z‖
≤ (1− βn)‖yn − z‖+ βn‖ f (yn)− f (z)‖+ βn‖ f (z)− z‖
≤ ‖yn − z‖+ βn‖ f (z)− z‖
= ‖αn f (xn) + (1− αn)Uλn an − z‖+ βn‖ f (z)− z‖
≤ αn‖ f (xn)− z‖+ (1− αn)‖Uλn an − z‖+ βn‖ f (z)− z‖
≤ αn‖ f (xn)− f (z)‖+ αn‖ f (z)− z‖

+(1− αn)‖Uλn an − z‖+ βn‖ f (z)− z‖
≤ ηαn‖xn − z‖+ αn‖ f (z)− z‖+ (1− αn)‖Uλn an − z‖+ βn‖ f (z)− z‖
≤ ηαn‖xn − z‖+ αn‖ f (z)− z‖+ (1− αn)‖xn − z‖+ βn‖ f (z)− z‖
= (1− (1− η)αn)‖xn − z‖+ αn‖ f (z)− z‖+ βn‖ f (z)− z‖
≤ max{‖xn − z‖, 1

1−η ‖ f (z)− z‖}+ βn‖ f (z)− z‖

≤ max{‖x0 − z‖, 1
1−η ‖ f (z)− z‖}+ ‖ f (z)− z‖

∞
∑

n=0
βn.
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Thus {xn} is bounded. Moreover, { f (xn)}, {yn} and { f (yn)} are also bounded.

Step 2. Show that, if the subsequence {xnk+1} of {xn} weakly converges to q ∈ Fix( f ), then the
subsequence {ynk} of {yn} weakly converges to q. Now, we consider

〈xnk+1 − ynk , q〉 = βnk 〈ynk − f (ynk ), q〉
= βnk

‖ynk− f (ynk )+q‖2+‖ynk− f (ynk )−q‖2

4 .

Since {yn} and { f (yn)} are bounded, {ynk} weakly converges to q.

Step 3. Show that the inequality holds:

‖xn+1 − x∗‖2 ≤ (1− αn)‖xn − x∗‖2 + 2αn〈 f (xn)− x∗, yn − x∗〉
+2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2

n‖ f (x∗)− x∗‖2.

Case ρn = 0: By Lemma 3, we get

‖xn+1 − x∗‖2 = ‖(1− βn)yn + βn f (yn)− x∗‖2

≤ ((1− βn)‖yn − x∗‖+ βn‖ f (yn)− x∗‖)2

≤ ((1− βn)‖yn − x∗‖+ βn‖ f (yn)− f (x∗)‖+ βn‖ f (x∗)− x∗‖)2

≤ (‖yn − x∗‖+ βn‖ f (x∗)− x∗‖)2

= ‖yn − x∗‖2 + 2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2
n‖ f (x∗)− x∗‖2

= ‖αn f (xn) + (1− αn)Uλn xn − x∗‖2

+2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2
n‖ f (x∗)− x∗‖2

= ‖αn( f (xn)− x∗) + (1− αn)(Uλn xn − x∗)‖2

+2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2
n‖ f (x∗)− x∗‖2

≤ (1− αn)2‖Uλn xn − x∗‖2 + 2αn〈 f (xn)− x∗, yn − x∗〉
+2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2

n‖ f (x∗)− x∗‖2

≤ (1− αn)2(‖xn − x∗‖2 − λn(1− κ − λn)‖xn −Uxn‖2)

+2αn〈 f (xn)− x∗, yn − x∗〉+ β2
n‖ f (x∗)− x∗‖2

+2βn‖yn − x∗‖‖ f (x∗)− x∗‖.

Case ρn 6= 0: By Lemmas 3 and 4, we get

‖xn+1 − x∗‖2 = ‖(1− βn)yn + βn f (yn)− x∗‖2

≤ ((1− βn)‖yn − x∗‖+ βn‖ f (yn)− x∗‖)2

≤ ((1− βn)‖yn − x∗‖+ βn‖ f (yn)− f (x∗)‖+ βn‖ f (x∗)− x∗‖)2

≤ ‖yn − x∗‖2 + 2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2
n‖ f (x∗)− x∗‖2

= ‖αn f (xn) + (1− αn)Uλn an − x∗‖2

+2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2
n‖ f (x∗)− x∗‖2

= ‖αn( f (xn)− x∗) + (1− αn)(Uλn an − x∗)‖2

+2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2
n‖ f (x∗)− x∗‖2

≤ (1− αn)2‖Uλn an − x∗‖2 + 2αn〈 f (xn)− x∗, yn − x∗〉
+2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2

n‖ f (x∗)− x∗‖2

≤ (1− α)2(‖an − x∗‖2 − λn(1− κ − λn)‖an −Uan‖2)

+2αn〈 f (xn)− x∗, yn − x∗〉+ β2
n‖ f (x∗)− x∗‖2

+2βn‖yn − x∗‖‖ f (x∗)− x∗‖
≤ (1− α)2(‖xn − x∗‖2 − (1−τ)2‖(I−T)Axn‖4

4‖A∗(I−T)Axn‖2

−λn(1− κ − λn)‖an −Uan‖2)

+2αn〈 f (xn)− x∗, yn − x∗〉+ β2
n‖ f (x∗)− x∗‖2

+2βn‖yn − x∗‖‖ f (x∗)− x∗‖.
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Therefore, we have

‖xn+1 − x∗‖2 ≤ (1− αn)‖xn − x∗‖2 + 2αn〈 f (xn)− x∗, yn − x∗〉
+ 2βn‖yn − x∗‖‖ f (x∗)− x∗‖+ β2

n‖ f (x∗)− x∗‖2.

Step 4. Show that xn → x∗ for each n ≥ 0. Let sn = ‖xn − x∗‖. In this step, we consider two cases.

Case 1. Assume that there is n0 ∈ N such that {sn} is decreasing for all n ≥ n0. Since {sn} is
monotonic and bounded, {sn} is convergent. First, we show that

lim sup
n→∞

〈 f (x∗)− x∗, yn − x∗〉 ≤ 0.

There are two parts to show this.

Part 1. Let ρn = 0. Since { f (xn)} and {yn} are bounded and Step 3, we get

λn(1− κ − λn)‖xn −Uxn‖2 ≤ sn − sn+1 + αn M + βnN,

where
M = sup

n∈N
{2〈 f (xn)− x∗, yn − x∗〉}

and
N = sup

n∈N
{2‖yn − x∗‖‖ f (x∗)− x∗‖+ βn‖ f (x∗)− x∗‖2}.

Since {sn} is convergent and lim
n→∞

αn = 0, we have lim
n→∞

‖xn−Uxn‖ = 0. By since ρn = 0, we have

lim
n→∞

‖(I − T)Axn‖ = 0.

By the boundedness of {xn}, there is a subsequence {xnk} of {xn} such that xnk ⇀ q and

lim sup
n→∞

〈 f (x∗)− x∗, xn − x∗〉 = lim
k→∞
〈 f (x∗)− x∗, xnk − x∗〉

= 〈 f (x∗)− x∗, q− x∗〉.

Since lim
n→∞

‖xn −Uxn‖ = 0 and the demiclosedness of I −U at zero, we have q ∈ Fix(U). Since

A is a bounded linear operator, A is continuous. Therefore, xnk ⇀ q imply Axnk ⇀ Aq. Form
lim

n→∞
‖(I − T)Axn‖ = 0 and the demiclosedness of I − T at zero, it follows that Aq ∈ Fix(T) and so

q ∈ S. By Step 2, it follows that

0 ≥ 〈 f (x∗)− x∗, q− x∗〉 = lim
k→∞
〈 f (x∗)− x∗, xnk − x∗〉

= lim sup
n→∞

〈 f (x∗)− x∗, xn − x∗〉

= lim sup
n→∞

〈 f (x∗)− x∗, yn−1 − x∗〉.

Part 2. Let ρn 6= 0. Since { f (xn)} and {yn} are bounded, by Step 3, we get

λn(1− κ − λn)‖an −Uan‖2 +
(1− τ)2‖(I − T)Axn‖4

4‖A∗(I − T)Axn‖2 ≤ sn − sn+1 + αn M + βnN,

where
M = sup

n∈N
{2〈 f (xn)− x∗, yn − x∗〉}
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and
N = sup

n∈N
{2‖yn − x∗‖‖ f (x∗)− x∗‖+ βn‖ f (x∗)− x∗‖2}.

Thus we obtain

0 ≤ λn(1− κ − λn)‖an −Uan‖2 ≤ sn − sn+1 + αn M + βnN

and
0 ≤ (1−τ)2‖(I−T)Axn‖4

4‖A∗(I−T)Axn‖2 ≤ sn − sn+1 + αn M + βnN.

Since {sn} is convergent and lim
n→∞

αn = 0, we obtain

lim
n→∞

‖an −Uan‖ = lim
n→∞

‖(I − T)Axn‖4

‖A∗(I − T)Axn‖2 = 0.

Moreover, we get lim
n→∞

‖(I − T)Axn‖ = 0. However, it follows that

‖(I − T)Axn‖ = ‖A‖‖(I − T)Axn‖2 1
‖A‖‖(I−T)Axn‖ ≤ ‖A‖ ‖(I−T)Axn‖2

‖A∗(I−T)Axn‖ .

Thus we have

lim
n→∞

‖xn − an‖ = lim
n→∞

(1− τ)‖(I − T)Axn‖2

2‖A∗(I − T)Axn‖
= 0.

By the boundedness of {xn}, there is a subsequence {xnk} of {xn} such that xnk ⇀ q. Since
lim

n→∞
‖xn − an‖ = 0 and xnk ⇀ q, there is a subsequence {ank} of {an} such that ank ⇀ q and

lim sup
n→∞

〈 f (x∗)− x∗, xn − x∗〉 = lim
k→∞
〈 f (x∗)− x∗, xnk − x∗〉 = 〈 f (x∗)− x∗, q− x∗〉.

Since lim
n→∞

‖an −Uan‖ = 0, by the demiclosedness of I −U at zero, we have q ∈ Fix(U). Since

A is a bounded linear operator, A is continuous. Therefore, xnk ⇀ q imply Axnk ⇀ Aq. Form
lim

n→∞
‖(I − T)Axn‖ = 0 and the demiclosedness of I − T at zero, we have Aq ∈ Fix(T) and q ∈ S.

By Step 2, it follow that

0 ≥ 〈 f (x∗)− x∗, q− x∗〉 = lim
k→∞
〈 f (x∗)− x∗, xnk − x∗〉

= lim sup
n→∞

〈 f (x∗)− x∗, xn − x∗〉

= lim sup
n→∞

〈 f (x∗)− x∗, yn−1 − x∗〉.

Second, we show that lim
n→∞

‖xn+1 − xn‖ = 0. There are two parts.

Part 1. If ρn = 0, then we get

‖xn+1 − xn‖ = ‖(1− βn)yn + βn f (yn)− xn‖
≤ (1− βn)‖yn − xn‖+ βn‖ f (yn)− xn‖
= (1− βn)‖αn f (xn) + (1− αn)Uλn xn − xn‖+ βn‖ f (yn)− xn‖
≤ αn‖ f (xn)− xn‖+ (1− αn)‖xn −Uλn xn‖+ βn‖ f (yn)− xn‖
= αn‖ f (xn)− xn‖+ λn‖xn −Uxn‖+ βn‖ f (yn)− xn‖.
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Part 2. If ρn 6= 0, then we get

‖xn+1 − xn‖ ≤ ‖(1− βn)yn + βn f (yn)− xn‖
≤ (1− βn)‖yn − xn‖+ βn‖ f (yn)− xn‖
= (1− βn)‖αn f (xn) + (1− αn)Uλn an − xn‖+ βn‖ f (yn)− xn‖
≤ αn‖ f (xn)− xn‖+ (1− αn)‖xn −Uλn an‖+ βn‖ f (yn)− xn‖
≤ αn‖ f (xn)− xn‖+ ‖xn − an‖+ ‖an −Uλn an‖+ βn‖ f (yn)− xn‖
= αn‖ f (xn)− xn‖+ ‖xn − an‖+ λn‖an −Uan‖+ βn‖ f (yn)− xn‖.

Therefore, we have lim
n→∞

‖xn+1 − xn‖ = 0.

Third, we show that xn → x∗. We get the inequality:

lim sup
n→∞

〈 f (x∗)− x∗, yn − x∗〉 ≤ 0.

Now, we have

‖xn+1 − x∗‖2 ≤ (1− αn)‖xn − x∗‖2 + 2αn lim sup
k→∞

〈 f (xk)− x∗, yk − x∗〉

+ βn sup
k∈N
{2‖yk − x∗‖‖ f (x∗)− x∗‖+ βk‖ f (x∗)− x∗‖2}.

By Lemma 2, we have lim
n−→∞

sn = lim
n−→∞

‖xn − x∗‖ = 0 and so xn → x∗.

Case 2. Assume that there is not n0 ∈ N such that {sn} is decreasing for all n ≥ n0. Thus there is a
subsequence {sni+1} of {sn} such that sni+1 < sni+1+1 for all i ∈ N.

First, we show that
lim sup

ni→∞
〈 f (x∗)− x∗, yni − x∗〉 ≤ 0.

There are two parts.

Part 1. Let ρni = 0. Since { f (xni )} and {yni} are bounded, by Step 3, we get

λni (1− κ − λni )‖xni −Uxni‖2 ≤ sni − sni+1 + αni M + βni N ≤ αni M + βni N,

where
M ∈ R = sup

ni∈N
{2〈 f (xni )− x∗, yni − x∗〉}

and
N = sup

n∈N
{2‖yni − x∗‖‖ f (x∗)− x∗‖+ βni‖ f (x∗)− x∗‖2}.

Since lim
i→∞

αni = 0, we have

lim
i→∞
‖xni −Uxni‖ = 0.

Since ρni = 0, we have
lim
i→∞
‖(I − TA)xni‖ = 0.

By the boundedness of {xni}, there is a subsequence {xnij
} of {xni} such that xnij

⇀ q and

lim sup
i→∞

〈 f (x∗)− x∗, xni − x∗〉 = lim
j→∞
〈 f (x∗)− x∗, xnij

− x∗〉 = 〈 f (x∗)− x∗, q− x∗〉.

Since lim
j→∞
‖xnij

− Uxnij
‖ = 0 and the demiclosedness of I − U at zero, we have q ∈ Fix(U).

Since A is a bounded linear operator, A is continuous. Therefore, xnij
⇀ q imply Axnij

⇀ Aq. Form
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lim
j→∞
‖(I − T)Axnij

‖ = 0 and the demiclosedness of I − T at zero, we have Aq ∈ Fix(T) and so q ∈ S.

By Step 2, it follows that

0 ≥ 〈 f (x∗)− x∗, q− x∗〉 = lim
j→∞
〈 f (x∗)− x∗, xnij

− x∗〉

= lim sup
i→∞

〈 f (x∗)− x∗, xni − x∗〉

= lim sup
i→∞

〈 f (x∗)− x∗, yni−1 − x∗〉.

Part 2. Let ρni 6= 0. Since { f (xni )} and {yni} are bounded, by Step 3, we get

λni (1− κ − λni )‖ani −Uani‖
2 +

(1− τ)2‖(I − T)Axni‖4

4‖A∗(I − T)Axni‖2

≤ sni − sni+1 + αni M + βni N

≤ αni M + βni N,

where
M = sup

ni∈N
{2〈 f (xni )− x∗, yni − x∗〉}

and
N = sup

n∈N
{2‖yni − x∗‖‖ f (x∗)− x∗‖+ βni‖ f (x∗)− x∗‖2}.

Then we obtain

0 ≤ λni (1− κ − λni )‖ani −Uani‖2 ≤ αni M + βni N

and
0 ≤ (1−τ)2‖(I−T)Axni ‖

4

4‖A∗(I−T)Axni ‖
2 ≤ αni M + βni N.

Since lim
i→∞

αni = 0, we obtain

lim
i→∞
‖ani −Uani‖ = lim

i→∞

‖(I − T)Axni‖4

‖A∗(I − T)Axni‖2 = 0.

Moreover, we get lim
n→∞

‖(I − T)Axni‖ = 0. However, we have

‖(I − T)Axni‖ = ‖A‖‖(I − T)Axni‖2 1
‖A‖‖(I−T)Axni ‖

≤ ‖A‖ ‖(I−T)Axni ‖
2

‖A∗(I−T)Axni ‖
.

Thus we have

lim
i→∞
‖xni+1 − ani‖ = lim

i→∞

(1− τ)‖(I − T)Axni‖2

2‖A∗(I − T)Axni‖
= 0.

By the boundedness of {xni}, there is a subsequence {xnij
} of {xni} and xnij

⇀ q. Since lim
i→∞
‖xni −

ani‖ = 0 and xnij
⇀ q, we have anij

⇀ q such that

lim sup
i→∞

〈 f (x∗)− x∗, xni − x∗〉 = lim
j→∞
〈 f (x∗)− x∗, xnij

− x∗〉 = 〈 f (x∗)− x∗, q− x∗〉.

Since lim
i→∞
‖ani −Uani‖ = 0, by the demiclosedness of I −U at zero, we have q ∈ Fix(U). Since A

is a bounded linear operator, A is continuous. Therefore, xnij
⇀ q imply Axnij

⇀ Aq. Form lim
i→∞
‖(I −



Mathematics 2019, 7, 226 13 of 20

T)Axni‖ = 0 and the demiclosedness of I − T at zero, we have Aq ∈ Fix(T) and so q ∈ S. By Step 2,
it follows that

0 ≥ 〈 f (x∗)− x∗, q− x∗〉 = lim
j→∞
〈 f (x∗)− x∗, xnij

− x∗〉

= lim sup
i→∞

〈 f (x∗)− x∗, xni − x∗〉

= lim sup
i→∞

〈 f (x∗)− x∗, yni−1 − x∗〉.

Second, we show that
lim
i→∞
‖xni+1 − xni‖ = 0.

There are two parts.

Part 1. If ρni = 0, then we compute

‖xni+1 − xni‖ ≤ ‖(1− βni )yni + βni f (yni )− xni‖
≤ (1− βni )‖yni − xni‖+ βni‖ f (yni )− xni‖
= (1− βni )‖αni f (xni ) + (1− αni )Uλni

xni − xni‖+ βni‖ f (yni )− xni‖
≤ αni‖ f (xni )− xni‖+ (1− αni )‖xni −Uλni

xni‖+ βni‖ f (yni )− xni‖
= αni‖ f (xni )− xni‖+ λni‖xni −Uxni‖+ βni‖ f (yni )− xni‖.

Part 2. If ρni 6= 0, then we compute

‖xni+1 − xni‖ ≤ ‖(1− βni )yni + βni f (yni )− xni‖
≤ (1− βni )‖yni − xni‖+ βni‖ f (yni )− xni‖
= (1− βni )‖αni f (xni ) + (1− αni )Uλni

ani − xni‖+ βni‖ f (yni )− xni‖
≤ αni‖ f (xni )− xni‖+ (1− αni )‖xni −Uλni

ani‖+ βni‖ f (yni )− xni‖
≤ αni‖ f (xni )− xni‖+ ‖xni − ani‖+ ‖ani −Uλn ani‖+ βni‖ f (yni )− xni‖
= αni‖ f (xni )− xni‖+ ‖xni − ani‖+ λni‖ani −Uani‖+ βni‖ f (yni )− xni‖.

Therefore, we have
lim
i→∞
‖xni+1 − xni‖ = 0.

Third, we show that xn → x∗. From the inequality sni+1 ≤ sni+1+1, we get

lim sup
i→∞

〈 f (x∗)− x∗, yni − x∗〉 ≤ 0.

Observe that

αni sni+1 + (1− αni )(sni+1 − sni ) ≤ 2αni lim sup
i→∞

〈 f (x∗)− x∗, yni − x∗〉

+ βni sup
k∈N
{2‖yk − x∗‖‖ f (x∗)− x∗‖+ βk‖ f (x∗)− x∗‖2}.

Then we have

0 ≤ sni+1 ≤ 2 lim sup
i→∞

〈 f (x∗)− x∗, yni − x∗〉

+ βni sup
k∈N
{2‖yk − x∗‖‖ f (x∗)− x∗‖+ βk‖ f (x∗)− x∗‖2}.

Therefore, since {yn} is bounded and lim
n→∞

βn = 0, from lim
n→∞

sn = lim
n→∞

‖xn − x∗‖ = 0, it follows

that xn → x∗. This completes the proof.



Mathematics 2019, 7, 226 14 of 20

4. Special Cases

We consider some special cases of Theorem 1 based on some relations of directed operators,
τ-demicontractive operators and quasi-nonexpansive operators. See Figure 1. For some details,
see Remark 2. Therefore, the following results follows easily from Theorem 1:

demicontractive

quasi-nonexpansive

nonexpansive

contraction

direct

Figure 1. Diagram relations operator.

Case 1. Assume that U : H → H is a quasi-nonexpansive operator such that I−U is demiclosed at
zero and T : K → K is a quasi-nonexpansive operator such that I− T is demiclosed at zero, respectively.

Corollary 1. Assume that S is a set of all solutions of the problem (6) such that S 6= ∅. Suppose that

∞

∑
n=0

βn < ∞, lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗ ∈ S and, also, x∗ =
PS f (x∗) is a solution of the variational inequality (12).

Case 2. Assume that U : H → H is a quasi-nonexpansive operator such that I −U is demiclosed
at zero and T : K → K is a directed operator such that I − T is demiclosed at zero, respectively.

Corollary 2. Assume that S is a set of all solutions of the problem (6) such that S 6= ∅. Suppose that

∞

∑
n=0

βn < ∞, lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞

Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗ ∈ S and, also, x∗ =
PS f (x∗) is a solution of the variational inequality (12).

Case 3. Assume that U : H → H is a directed operator such that I −U is demiclosed at zero and
T : K → K is a quasi-nonexpansive operator such that I − T is demiclosed at zero, respectively.

Corollary 3. Assume that S is a set of all solutions of the problem (6) such that S 6= ∅. Suppose that

∞

∑
n=0

βn < ∞, lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.
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Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗ ∈ S and, also, x∗ =
PS f (x∗) is a solution of the variational inequality (12).

Case 4. Assume that U : H → H is a quasi-nonexpansive operator such that I−U is demiclosed at
zero and T : K → K is a τ-demicontractive operator such that I − T is demiclosed at zero, respectively.

Corollary 4. Assume that S is a set of all solutions of the problem (6) such that S 6= ∅. Suppose that

∞

∑
n=0

βn < ∞, lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗ ∈ S and, also, x∗ =
PS f (x∗) is a solution of the variational inequality (12).

Case 5. Assume that U : H → H is a τ-demicontractive operator such that I −U is demiclosed at
zero and T : K → K is a quasi-nonexpansive operator such that I− T is demiclosed at zero, respectively.

Corollary 5. Assume that S is a set of all solutions of the problem (6) such that S 6= ∅. Suppose that

∞

∑
n=0

βn < ∞, lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗ ∈ S and, also, x∗ =
PS f (x∗) is a solution of the variational inequality (12).

Case 6. Assume that U : H → H is a directed operator such that I −U is demiclosed at zero and
T : K → K is a directed operator such that I − T is demiclosed at zero, respectively.

Corollary 6. Assume that S is a set of all solutions of the problem (6) such that S 6= ∅. Suppose that

∞

∑
n=0

βn < ∞, lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗ ∈ S and, also, x∗ =
PS f (x∗) is a solution of the variational inequality (12).

Case 7. Assume that U : H → H is a directed operator such that I −U is demiclosed at zero and
T : K → K is a τ-demicontractive operator such that I − T is demiclosed at zero, respectively.

Corollary 7. Assume that S is a set of all solutions of the problem (6) such that S 6= ∅. Suppose that

∞

∑
n=0

βn < ∞, lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗ ∈ S and, also, x∗ =
PS f (x∗) is a solution the variational inequality (12).

Case 8. Assume that U : H → H is a τ-demicontractive operator such that I −U is demiclosed at
zero and T : K → K is a directed operator such that I − T is demiclosed at zero, respectively.
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Corollary 8. Assume that S is a set of all solutions of the problem (6) such that S 6= ∅. Suppose that

∞

∑
n=0

βn < ∞, lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞.

Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗ ∈ S and, also, x∗ =
PS f (x∗) is a solution of the variational inequality (12).

5. Application to Signal Processing

For most of the contents in this section, we follow those of Cui and Ceng [21]. We consider some
applications of our algorithm to inverse problems occurring from signal processing. For example,
we consider the following equation:

y = Ax + ε, (13)

where x ∈ RN is recovered, y ∈ Rk is noisy observations, A : RN → Rk is a bounded linear observation
operator. It determines a process with loss of information. For finding solutions of the linear inverse
problems (13), a successful one of some models is the convex unconstrained minimization problem:

min
x∈RN

1
2
‖y− Ax‖2 + υ‖x‖1, (14)

where υ > 0 and ‖ · ‖1 is the `1 norm. It is well know that the problem (14) is equivalent to the
constrained least squares problem:

min
x∈RN

1
2
‖y− Ax‖2 subject to x ∈ C, (15)

where C = {x ∈ RN : ‖x‖1 ≤ t}. The problem (15) is a particular case of the problem (1), where Q =

{y}. Therefore, we can solve the problem by the proposed algorithm. In this case, U = PC is the
projection onto the closed `1-ball in RN and T = PQ, see [22,23]. Denoted PCλn

:= (1− λn)I + λnPC
for each n ≥ 1, where λn ∈ (0, 1). Then we have the following algorithm:{

yn = αn f (xn) + (1− αn)PCλn
(xn − ρn A∗(I − PQ)Axn),

xn+1 = (1− βn)yn + βn f (yn), ∀n ≥ 0,
(16)

where

ρn =


(1−τ)‖(Axn−y)‖2

2‖A∗(Axn−y)‖2 , Axn 6= y,

0 otherwise,

f is a contraction operator on C and the sequences {αn}, {βn} in [0, 1) are such that

lim
n→∞

αn = 0,
∞

∑
n=0

αn = ∞,
∞

∑
n=0

βn < ∞.

Theorem 2. Then the sequence {xn} generated by the algorithm (16) converges strongly to a solution x∗ of the
problem (15).

Example 1. Let A be the random matrix (k× N) such that each entire is in [0, 1]. Let y = Ax∗ be such that

‖x∗‖1 ≤ t. Set up the problem (15). We choose λ = 1
2 , α = 1

n , β = 1
n2 , u =

[
1 · · · 1

]†
, f (x) = (x− p)/4+ p

and initial x1 randomly be such that ‖p‖1, ‖x1‖1 ≤ t. Thus C = {x ∈ RN : ‖x‖1 ≤ t}. See Figures 2 and 3.
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Remark 4. Figures 2–5 show that the sequence {βn} improves the convergence profile of [14,15]. Our algorithm
(Algorithm 5) converges faster than Cui and Wang’s algorithm and Boikanyo’s algorithm. Moreover, we compared
our algorithm with the forward-backward splitting algorithm [24] and the fast iterative shrinkage-thresholding
algorithm (FISTA) [25]. Sometimes, our algorithm converges faster than other algorithms, Figures 4 and 5, but,
sometimes, our algorithm converges slower than other algorithms, Figures 2 and 3 . It depends on the control
condition. This experiment is an example for the convergence of some algorithms.

Algorithm 5: A General Viscosity Algorithms (Our Algorithm)

Input: Set λn ∈ (0, 1), αn, βn ∈ [0, 1) such that lim
n→∞

αn = 0,
∞
∑

n=0
αn = ∞,

∞
∑

n=0
βn < ∞. Choose

x0 ∈ H.
1 for n = 1, 2, · · · do
2 if Axn 6= y, then

3 ρn = (1−τ)‖(Axn−y)‖2

2‖A∗(Axn−y)‖2

4 else
5 ρn = 0
6 end
7 yn = αn f (xn) + (1− αn)PCλn

(xn − ρn A∗(Axn − y))
8 xn+1 = (1− βn)yn + βn f (yn)

9 end for

Figure 2. Case N = t = 10 and k = 9.
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Figure 3. Case N = t = 10 and k = 10.

Figure 4. Case N = t = 100 and k = 90.
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Figure 5. Case N = t = 100 and k = 100.

6. Conclusions

First, we proposed a new algorithm for demicontractive operators and improved that the
sequence generated by our algorithm strongly converges to a solution of the problem (6). Moreover,
our algorithm does not compute the norm of the bounded linear operator. Next, we obtained some
results for many cases of operators such as a directed operator, a quasi-nonexpansive operator,
a nonexpansive operator and a contraction operator.
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