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Abstract: The study of the dynamics and the analysis of local convergence of an iterative method,
when approximating a locally unique solution of a nonlinear equation, is presented in this article.
We obtain convergence using a center-Lipschitz condition where the ball radii are greater than
previous studies. We investigate the dynamics of the method. To validate the theoretical results
obtained, a real-world application related to chemistry is provided.
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1. Introduction

A well known problem is that of approximating a locally unique solution x∗ of equation

F(x) = 0, (1)

where F is a differentiable function defined on a nonempty convex subset D of S with values in Ω,
where Ω can be R or C. In this article, we are going to deal with it.

Mathematics is always changing and the way we teach it also changes as it is presented in [1,2].
In the literature [3–8], we can find many problems in engineering and applied sciences that can be
solved by finding solutions of equations in a way such as (1). Finding exact solutions for this type
of equation is not easy. Only in a few special cases can we find the solutions of these equations in
closed form. We must look for other ways to find solutions to these equations. Normally we resort
to iterative methods to be able to find solutions. Once we propose to find the solution iteratively,
it is mandatory to study the convergence of the method. This convergence is usually seen in two
different ways, which gives rise to two different categories, the semilocal convergence analysis and
the local convergence analysis. The first of these, the semilocal convergence analysis, is based on
information around an initial point, which will provide us with criteria that will ensure the convergence
of an iteration procedure. On the other hand, the local convergence analysis is generally based on
information about a solution to find values of the calculated radii of the convergence balls. The local
results obtained are fundamental since they provide the degree of difficulty to choose the initial points.

We must also deal with the domain of convergence in the study of iterative methods. Normally,
the convergence domain is very small and it is necessary to be able to extend this convergence domain
without adding any additional hypothesis. Another important problem is finding more accurate
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estimates of error in distances. ‖xn+1 − xn‖, ‖xn − x∗‖. Therefore, to extend the domain without the
need for additional hypotheses and to find more precise estimates of the error committed, in addition
to the study of dynamic behavior, will be our objectives in this work.

The iterative methods can be applied to polynomials, and the dynamic properties related to this
method will give us important information about its stability and reliability. Recently in some studies,
authors such as Amat et al. [9–11], Chun et al. [12], Gutiérrez et al. [13], Magreñán [14–16], and many
others [8,13,17–30] have studied interesting dynamic planes, including periodic behavior and other
anomalies detected. For all the above, in this article, we are going to study the parameter spaces
associated with a family of iterative methods, which will allow us to distinguish between bad and
good methods, always speaking in terms of their numerical properties.

We present the dynamics and the local convergence of the four step method defined for each
n = 0, 1, 2, . . . by

yn = xn − αF′(xn)−1F(xn)

zn = yn − C1(xn)F′(xn)−1F(yn)

vn = zn − C2(xn)F′(xn)−1F(zn)

xn+1 = zn − C3(xn)F′(xn)−1F(vn),

(2)

where α ∈ R is a parameter, x0 is an initial point and Ci : R → R, i = 1, 2, 3 are continuous
functions given. Numerous methods of more than one step are particular cases of the previous
method (2). For example, for certain values of the parameters this family can be reduced to:

• Artidiello et al. method [31]
• Petković et al. method [32]
• Kung-Traub method [29]
• Fourth order King family
• Fourth order method given by Zhao et al. in [33]
• Eighth order method studied by Dzunic et al. [34].

It should be noted that to demonstrate the convergence of all methods after the method (2),
in all cases Taylor expansions have been used as well as hypotheses involving derivatives of order
greater than one, usually the third derivative or greater. However, in these methods only the first
derivative appears. In this article we will perform the analysis of local convergence of the method (2)
using hypotheses that involve only the first derivative of the function F. In this way we save the
tedious calculation of the successive derivatives (in this case the second and third derivatives) in each
step. The order of convergence (COC) is found using and an approximation of the COC (ACOC) using
that do not require the usage of derivatives of order higher than one (see Remark 1). Our objective will
also be able to provide a computable radius of convergence and error estimates based on the Lipschitz
constants.

We must also realize that there are a lot of iterative methods to approximate solutions of nonlinear
equations defined in R or C [32,35–38]. These studies show that if the initial point x0 is close enough
to the solution x∗, the sequence {xn} converges to x∗. However, from the initial estimate, how close to
the solution x∗ should it be? In these cases, the local results do not provide us with information about
the radius of the convergence ball for the corresponding method. We will approach this question for
the method (2) in Section 2. Similarly, we can use the same technique with other different methods.

2. Method’s Local Convergence

Let us define, respectively, U(v, ρ) and Ū(v, ρ) as open and closed balls in S, of radius ρ > 0 and
with center v ∈ Ω.

To study the analysis of local convergence of the method (2), we are going to define a series of
conditions that we will name (C):
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(C1) F : D ⊂ Ω→ Ω is a differentiable function.

We know that exist a constant x∗ ∈ D, L0 > 0, such that for each x ∈ D is fulfilled
(C2) F(x∗) = 0, F′(x∗) 6= 0.
(C3) ‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ L0‖x− x∗‖

Let D0 := D ∩U(x∗,
1
L0

). There exist constants L > 0, M ≥ 1 such that for each , y ∈ D0

(C4) ‖F′(x∗)−1(F′(x)− F′(y))‖ ≤ L‖x− y‖
(C5) ‖F′(x∗)−1F′(x)‖ ≤ M.

There exist parameters γi and continuous nondecreasing functions ψi : [0, γi) → R such that
i = 0, 1, 2, 3:

(C6) γi+1 ≤ γi ≤
1
L0

and
(C7) ψi(t)→ a +∞ or a number greater than 0 as t→ γ−1

i . For α ∈ R, consider the functions

qj : [0, γj)→ R j = 0, 1, 2, 3 by

qj(t) =


M|1− α|, j = 0

Mi+j|1− α|
j

∏
i=0

ψ1(t) · · ·ψj(t), j = 1, 2, 3

(C8) pj := qj(0) < 1, j = 0, 1, 2, 3,
(C9) Ci : Ω→ Ω are continuous functions such that for each x ∈ D0, ‖Ci(x)‖ ≤ ψi(‖x− x∗‖) and
(C10) Ū(x∗, r) ⊂ D for some r > 0 to be appointed subsequently.

We are going to introduce some parameters and some functions for the local convergence analysis
of the method (2). We define the function g0 on the interval [0, 1

L0
) by

g0(t) =
1

2(1− L0t)
(Lt + 2M|1− α|)

and parameters r0, $A by

r0 =
2(1−M|1− α|)

2L0 + L
, $A =

2
2L0 + L

.

Then, since p0 = M|1− α| < 1 by (C8), we have that 0 < r0 < $A, g0(r1) = 1 and for each
t ∈ [0, r1) 0 ≤ g0(t) < 1. Define functions gi, hi on the interval [0, γi) by

gi(t) = (1 +
Mψi(t)
1− L0t

)gi−1(t)

and
hi(t) = gi(t)− 1

for i = 1, 2, 3. We have by (C8) that hi(0) = pj− 1 < 0 and by (C6) and (C7) hi(t)→ a positive number
or +∞. Applying the intermediate value theorem, we know that functions hi have zeros in the interval
[0, γi). Denote by ri the smallest such zero. Set

r = min{rj}, j = 0, 1, 2, 3. (3)

Therefore, we can write that
0 ≤ r < rA (4)
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moreover for each j = 0, 1, 2, 3, t ∈ [0, r)

0 ≤ gj(t) < 1. (5)

Now, making use of the conditions (C) and the previous notation, we will show the results of
local convergence for the method (2).

Theorem 1. Let us assume that (C) conditions hold, if we take the radius r in (C10) that has been
defined previously. Then, the sequence {xn} generated by our method (2) and considering x0 ∈ U(x∗, r) \ {x∗}
is well defined, remains in the ball U(x∗, r) for each n ≥ 0 and converges to the solutionx∗. On the other hand,
we see that the estimates are true:

‖yn − x∗‖ ≤ g0(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (6)

‖zn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (7)

‖vn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ (8)

and
‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (9)

where the “g” functions are defined previously. Furthermore, for

T ∈ [r,
2
L0

) (10)

the unique solution of equation F(x) = 0 in Ū(x∗, T) ∩ D is the bound point x∗.

Proof. Using mathematical induction we shall prove estimates (6) and (10). By hypothesis x0 ∈
U(x, r) \ {x∗}, the conditions (C1), (C3) and (3), we have that

‖F′(x∗)−1(F′(x0)− F′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (11)

Taking into account the Banach lemma on invertible functions [5,7,39] we can write that F′(x0)
−1 ∈

L(S, S) and

‖F′(x0)
−1F′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖ . (12)

consequently, y0 is well defined by the first substep of the method (2) for n = 0. We can set using the
conditions (C1) and (C2) that

F(x0) = F(x0)− F(x∗) =
∫ 1

0
F′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (13)

Remark that ‖x∗ + θ(x0 − x∗) − x∗‖ = θ‖x0 − x∗‖ < r, so x∗ + θ(x0 − x∗) ∈ U(x∗, r). Then,
using (13) and condition (C5), we have that

‖F′(x∗)−1F(x0)‖ ≤ ‖
∫ 1

0
F′(x∗)−1F′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ‖ ≤ M‖x0 − x∗‖. (14)

In view of conditions (C2), (C4), (3) and (5) (for j = 0) and (12) and (14), we obtain that
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‖y0 − x∗‖ = ‖x0 − x∗ − F′(x0)
−1F(x0) + (1− α)F′(x0)

−1F(x0)

≤ ‖x0 − x∗ − F′(x0)
−1F(x0)‖+ |1− α|‖F(x0)

−1F′(x∗)‖‖F′(x∗)−1F(x0)‖

≤ ‖F(x0)
−1F′(x∗)‖‖

∫ 1
0 F′(x∗)−1(F′(x∗ + θ(x0 − x∗))− F′(x0))(x0 − x∗)dθ

+
|1− α|M‖x0 − x∗‖

1− L0‖x0 − x∗‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖) +
|1− α|M‖x0 − x∗‖

1− L0‖x0 − x∗‖

= g0(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(15)

which evidences (6) for n = 0 and y0 ∈ U(x∗, r). Then, applying (C9) condition, (3) and (5) (for j = 1),
(12) and (14) (for y0 = x0) and (15), we achieve that

‖z0 − x∗‖ ≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (16)

which displays (7) for n = 0 and z0 ∈ U(x∗, r). In the same way, we show estimates (8) and (9) for n = 0
and v0, x1 ∈ U(x∗, r). Just substituting x0, y0, z0, v0, x1 by xk, yk, zk, vk, xk+1 in the preceding estimates,
we deduct that (6)–(9). Using the estimates ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, c = g3(‖x0 − x∗‖) ∈ [0, 1),
we arrive at lim

k→∞
xk = x∗ and xk+1 ∈ U(x∗, r). We have yet to see the uniqueness, let y∗ ∈ Ū(x∗, T)

be such that F(y∗) = 0. Define B =
∫ 1

0 F′(y∗ + θ(x∗ − y∗))dθ. Taking into account the condition (C2),
we obtain that

‖F′(x∗)−1(B− F′(x∗))‖ ≤ L0

2
‖y∗ − x∗‖ ≤ L0

2
T < 1. (17)

Hence, B 6= 0. Using the identity 0 = F(y∗)− F(x∗) = B(y∗ − x∗), we can deduct that x∗ =

y∗.

Remark 1.

1. Considering (10) and the next value

‖F′(x∗)−1F′(x)‖ = ‖F′(x∗)−1(I + F′(x)− F′(x∗))‖

≤ ‖F′(x∗)−1(F′(x)− F′(x∗))‖+ 1

≤ L0‖x0 − x∗‖+ 1

we can clearly eliminate the condition (10) and M can be turned into

M(t) = 1 + L0t or what is the same M(t) = M = 2, because t ∈ [0,
1
L0

).

2. The results that we have seen, can also be applied for F operators that satisfy the autonomous differential
equation [5,7] of the form

F′(x) = P(F(x)),

where P is a known continuous operator. As F′(x∗) = P(F(x∗)) = P(0), we are able to use the previous
results without needing to know the solution x∗. Take for example F(x) = ex − 1. Now, we can take
P(x) = x + 1. However, we do not know the solution.
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3. In the articles [5,7] was shown that the radius $A has to be the convergence radius for Newton’s method
using (10) and (11) conditions. If we apply the definition of r1 and the estimates (8), the convergence
radius r of the method (2) it can no be bigger than the convergence radius $A of the second order Newton’s
method. The convergence ball given by Rheinboldt [8] is

$R = 2
3L1

. (18)

In particular, for L0 < L1 or L < L1 we have that

$R < $A

and
$R
$A
→ 1

3
as

L0

L1
→ 0.

That is our convergence ball r1 which is maximum three times bigger than Rheinboldt’s. The precise
amount given by Traub in [28] for $R.

4. We should note that family (3) stays the same if we use the conditions of Theorem 1 instead of the stronger
conditions given in [15,36]. Concerning, for the error bounds in practice we can use the approximate
computational order of convergence (ACOC) [36]

ξ =
ln ‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . .

or the computational order of convergence (COC) [40]

ξ∗ =
ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . .

And these order of convergence do not require higher estimates than the first Fréchet derivative used
in [19,23,32,33,41].

Remark 2. Let’s see how we can choose the functions in the case of the method (2). In this case we have that

C1(
F(yn)

F(xn)
) = C1(xn), C2(

F(yn)

F(xn)
,

F(zn)

F(yn)
) = C2(xn), C3(

F(yn)

F(xn)
,

F(zn)

F(yn)
,

F(vn)

F(zn)
) = C3(xn)

To begin, the condition (C3) can be eliminated because in this case we have α = 1. Then, if xn 6= x∗, the
following inequality holds

‖(F′(x∗)(xn − x∗))−1 [F(xn)− F(x∗)− F′(x∗)(xn − x∗)] ‖

≤ ‖xn − x∗‖−1 L0

2
‖xn − x∗‖ = L0

2
‖xn − x∗‖ < L0

2
r < 1.

Hence, we have that

‖F′(xn)
−1F(x∗)‖ ≤ 1

‖xn − x∗‖(1− L0

2
‖xn − x∗‖)

.
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Consequently, we get that

‖ F(yn)

F(xn)
‖ = ‖F′(xn)−1F′(x∗)‖‖F′(x∗)−1F(yn)‖

≤ M‖yn − x∗‖

‖xn − x∗‖(1− L0

2
‖x0 − x∗‖)

≤ Mg0(‖xn − x∗‖)
1− L0‖xn − x∗‖ .

(19)

Similarly, we obtain

‖F(yn)
−1F′(x∗)‖ ≤ 1

‖yn − x∗‖(1− L0

2
‖yn − x∗‖)

,

‖ F(zn)

F(yn)
‖ ≤

M(1 +
Mψ1(‖xn − x∗‖)
1− L0‖xn − x∗‖ )

1− L0

2
g0(‖xn − x∗‖)‖xn − x∗‖

, (20)

‖F(zn)
−1F′(x∗)‖ ≤ 1

‖zn − x∗‖(1− L0

2
‖yn − x∗‖)

,

and

‖ F(zn)

F(yn)
‖ ≤

M(1 +
Mψ2(‖xn − x∗‖)
1− L0‖xn − x∗‖ )

1− L0

2
g0(‖xn − x∗‖)‖xn − x∗‖

, (21)

Let us choose Ci, i = 1, 2, 3, 4 as in [31]:

C1(a) = 1 + 2a + 4a3 − 3a4 (22)

C2(a, b) = 1 + 2a + b + a2 + 4ab + 3a2b + 4ab2 + 4a3b− 4a2b2 (23)

and
C3(a, b, c) = 1 + 2a + b + c + a2 + 4ab + 2ac + 4a2b + a2c + 6ab2 + 8abc− b3 + 2bc. (24)

As these functions, they fulfill the terms imposed in Theorem 1 in [31], So, we have that the order of
convergence of the method (2) has to reach at least order 16.

Set

a = a(t) =
Mg0(t)
1− L0t

, (25)

b = b(t) =
M(1 +

Mψ1(t)
1− L0t

)

1− L0

2
t

, (26)

c = c(t) =
M(1 +

Mψ2(t)
1− L0t

)

1− L0

2
t

, (27)

and
γi =

1
L0

, i = 0, 1, 2, 3.
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Then it follows from (19)–(24) that functions ψi can be defined by

ψ1(t) = 1 + 2a + 4a3 + 3a4 (28)

ψ2(t) = 1 + 2a + b + a2 + 4ab + 3a2b + 4ab2 + 4a3b + 4a2b2 (29)

and
ψ3(t) = 1 + 2a + b + c + a2 + 4ab + 2ac + 4a2b + a2c + 6ab2 + 8abc + b3 + 2bc. (30)

3. Dynamical Study of a Special Case of the Family (2)

In this article, the concepts of critical point, fixed point, strange fixed point, attraction basins,
parameter planes and convergence planes are going to be assumed. We refer the reader to see [5,7,16,38]
to recall the basic dynamical concepts.

In this third section we will study the complex dynamics of a particular case of the method (2),
which consists in select:

C1(xn) = F′(yn)
−1F′(xn),

C2(xn) = F′(zn)
−1F′(xn)

and
C3(xn) = F′(yn)

−1F′(xn).

Let be a polynomial of degree two with two roots, that they are not the same. If we apply this
operator on the previous polynomial and using the Möebius map h(z) = z−A

z−B , we obtain

G(z, α) =
z8(1− α + z)8

(−1− z + αz)8 . (31)

The fixed points of this operator are:

• 0
• ∞
• And 15 more, which are:

– 1 (related to original ∞).
– The roots of a 14 degree polynomial.

In Figure 1 the bifurcation diagram of all fixed points, extraneous or not, is presented.

Figure 1. Fixed points’s bifurcation diagram.
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Now, we are going to compute the critical points, i.e., the roots of

G′(z, α) = − 8(−1+α−z)7z7(−1+α−2z−z2+αz2)
(−1−z+αz)9

The free critical points are: cp1(α) = −1 + α, cp2(α) =
1−
√
−(−2+α)α
−1+α and cp3(α) =

1+
√
−(−2+α)α
−1+α .

We also have the following results.

Lemma 1.

(a) If α = 0

(i) cp1(α) = cp2(α) = cp3(α) = −1.

(b) If α = 2

(i) cp1(α) = cp2(α) = cp3(α) = 1.

You can easily verify that for every value of α we have to cp2(α) =
1

cp3(α)

It is easy to see that there is only one independent critical point. So, we assume that cp2(α) is the
only free critical point without loss of generality. Taking cp2(α), we perform the study of the parameter
space associated with the free critical point. This will allow us to find the some members of the family,
and we want to stay with the best members.

We are going to show different planes of parameters. In Figure 2 we show the parameter spaces
associated to critical point cp2(α). Now let us paint a point of cyan if the iteration of the method
starting in z0 = cp1(α) converges to the fixed point 0 (related to root A) or if it converges to ∞ (allied
to root B). That is, the points relative to the roots of the quadratic polynomial will be painted cyan and
a point is painted in yellow if the iteration converges to 1 (related to ∞). Therefore, all convergence
will be painted cyan. On the other hand, convergence to strange fixed points or cycles appears in
other colors. As an immediate consequence, all points of the plane that are not cyan are not a good
choice of α in terms of numerical behavior.

-��
-
��

�

�

�

��

�

��

����

����

��

-����

-����

Figure 2. Parameter space of the free critical point cp2(α).
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Once we have detected the anomalies, we can go on to describe the dynamic planes. To understand
the colors we have used in these dynamic planes, we have to indicate that if after a maximum of
1000 iterations and with a tolerance of 10−6 convergence has not been achieved to the roots, we have
painted in black. Conversely, we colored in magenta the convergence to 0 and colored in cyan the
convergence to ∞. Then, the cyan or magenta regions identify the convergence.

If we focus our attention on the region shown in Figure 2, it is clear that there are family members
with complicated behaviors. We will also show dynamic planes in Figures 3 and 4, of a family member
with convergence regions to any of the strange fixed points.

-�� -�� -�� � ��

��

��

�

-��

-��

Figure 3. Attraction basins associated to α = −10.

-� � � � �

�

�

�

-�

-�

Figure 4. Attraction basins associated toα = 4.25.

In the following figures, we will show the dynamic planes of family members with convergence
to different attracting n-cycles. For example, in the Figures 5 and 6, we see the dynamic planes to an
attracting 2-cycle and in the Figure 7 the dynamic plane of family members with convergence to an
attracting 3-cycle that was painted in green in the parameter planes.
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-�� -� -� -� �

�

�

�

-�

-�

Figure 5. Attraction basins associated to α = −2.5.

-�� � �� �� ��

��

��

�

-��

-��

Figure 6. Attraction basins associated to α = 11.

-�� -�� � �� ��

��

�

-��

-��

-��

Figure 7. Attraction basins associated to α = 10− 13i.

Other particular cases are shown in Figures 8 and 9. The basins of attraction for different α values
in which we see the convergence to the roots of the method can be seen.
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Figure 8. Attraction basins associated to α = 0.5.

-��� -���� �� ���� ���

���

����

��

-����

-���

Figure 9. Attraction basins associated to α = −0.5i.

4. Example Applied

Next, we want to show the applicability of the theoretical part previously seen in a real problem.
Chemistry is a discipline in which many equations are handled. In this concrete case, let us consider
the quartic equation that can describe the fraction or amount of the nitrogen-hydrogen feed that is
turned into ammonia, which is known as fractional conversion and is shown in [42,43].

If the pressure is 250 atm. and the temperature reaches a value of 500 ◦C, the previous equation
reduces to: g(x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x− 1.674. We define S as all real line, D as the
interval [0, 1] and ξ = 0. We consider the function F defined on D. If we now take the functions ψi(t)
with i = 1, 2, 3 and choosing the value of as α = 1.025, we obtain: L0 = 2.594 . . ., L = 3.282 . . .. It is
clear that in this case L0 < L, so we improve the results. Now, we compute M = 1.441 . . .. Additionally,
computing the zeros of the functions previously defined, we get: r0 = 0.227 . . ., $A = 0.236 . . .,
r1 = 0.082 . . ., r2 = 0.155 . . ., r3 = 0.245 . . ., and as a result of it we get r = r1 = 0.082 . . .. Then we
can guarantee that the method (2) converges for α = 1.025 due to Theorem 1. The applicability of our
family of methods is thus proven.
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