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Abstract: This paper discusses a monotone variational inequality problem with a variational
inequality constraint over the common solution set of a general system of variational inequalities
(GSVI) and a common fixed point (CFP) of a countable family of nonexpansive mappings and an
asymptotically nonexpansive mapping in Hilbert spaces, which is called the triple hierarchical
constrained variational inequality (THCVI), and introduces some Mann-type implicit iteration
methods for solving it. Norm convergence of the proposed methods of the iteration methods
is guaranteed under some suitable assumptions.
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1. Introduction

Let C be a convex closed nonempty subset of a real Hilbert space H with norm ‖ · ‖ and
inner product 〈·, ·〉. Let PC be the metric (or nearest point) projection from H onto C, that is,
for all x ∈ H, PCx ∈ C and ‖x − PCx‖ = infy∈C ‖x − y‖. Let T : C → C be a possible nonlinear
mapping. Denote by Fix(T) the set of fixed points of T, i.e., Fix(T) = {x ∈ C : x = Tx}. We use the
notations R, ⇀ and→ to indicate the set of real numbers, weak convergence and strong convergence,
respectively.

A mapping T : C → C is said to be asymptotically nonexpansive (see [1]), if there exists a sequence
{θn} ⊂ [0,+∞) with limn→∞ θn = 0 such that

‖Tnx− Tny‖ ≤ (1 + θn)‖x− y‖ ∀n ≥ 0, x, y ∈ C.

In particular, T is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C, that is, θ ≡ 0. If C
is also a bounded set, then the fixed-point set of T is nonempty, that is Fix(T) 6= ∅. Via iterative
techniques, fixed points of (asymptotically) nonexpansive mappings have been studied because of
their applications in convex optimization problems; see [2–10] and the references therein.

Let B1, B2 : C → H be two nonlinear single-valued mappings. We consider the following problem
of finding (x∗, y∗) ∈ C× C such that{

〈x− x∗, µ1B1y∗ + x∗ − y∗〉 ≥ 0, ∀x ∈ C,

〈x− y∗, µ2B2x∗ + y∗ − x∗〉 ≥ 0, ∀x ∈ C,
(1)

which is called a general system of variational inequalities (GSVI) with real number constants µ1

and µ2 > 0, which covers as special subcases the problems arising, especially from nonlinear
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complementarity problems, quadratic mathematical programming and other variational problems.
The reader is referred to [11–18] and the references therein. Particularly, if both B1 and B2 are equal to
A and x∗ = y∗, then problem (1) become the classical variational inequality (VI), that set of solutions
is stated by VI(C, A). Note that, problem (1) can be transformed into a fixed-point problem in the
following way.

Lemma 1 ([19]). Let both x∗ and y∗ be points in C. (x∗, y∗) is a solution of GSVI (1) if and only if x∗ ∈
GSVI(C, B1, B2), where GSVI(C, B1, B2) is the fixed point set of the mapping G := PC(I − µ1B1)PC(I −
µ2B2), and y∗ = PC(I − µ2B2)x∗.

A mapping A : C → H is called monotone if

〈Ax− Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

It is called η-strongly monotone if there exists a constant η > 0 such that

〈Ax− Ay, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ C.

Moreover, it is called α-inverse-strongly monotone (or α-cocoercive), if there exists a constant
α > 0 such that

〈Ax− Ay, x− y〉 ≥ α‖Ax− Ay‖2, ∀x, y ∈ C.

Obviously, each inverse-strongly monotone mapping is monotone and Lipschitzian, and each
strongly monotone and Lipschitzian mapping is inverse-strongly monotone but the converse is not true.

Recently, Cai et al. [20] proposed a new implicit-rule for obtaining a common element of the
solution set of GSVI (1) and the fixed point set of an asymptotically nonexpansive mapping T,
and presented norm convergence of the sequence generated by the proposed rule to an element
of GSVI(C, B1, B2) ∩ Fix(T), which also solves certain VI.

On the other hand, Iiduka [21] considered a monotone variational inequality linked to a
inequality constraint over the set of fixed points of a nonexpansive mapping. Iiduka’s problem
is a triple mathematical programming in contrast with bilevel mathematical programming problems or
hierarchical constrained optimization problems or nonlinear hierarchical problem, it is referred as triple
hierarchical constrained optimization problem (THCOP). Since the THCOP is a general variational
inequality, we also call it a triple hierarchical variational inequality (THVI). This kind of problems play
an important role in nonlinear minimizer problems and nonlinear operator equations; see [22–26] and
the references therein.

To begin with, let us recall the variational inequality for a monotone mapping, A1 : H → H,
over the fixed point set of a nonexpansive mapping, T : H → H:

Find x̄ ∈ VI(Fix(T), A1)

:= {x̄ ∈ Fix(T) : 〈A1 x̄, y− x̄〉 ≥ 0 ∀y ∈ Fix(T)},

where Fix(T) := {x ∈ H : Tx = x} 6= ∅. Iiduka’s THCOP and its algorithm (Algorithm 1) are
stated below.

Problem 1. (see [21], Problem 3.1) Assume that

(C1) T : H → H is a nonexpansive mapping such that Fix(T) 6= ∅;
(C2) A2 : H → H is κ-Lipschitz continuous η-strongly monotone;
(C3) A1 : H → H is ζ-inverse-strongly monotone;
(C4) VI(Fix(T), A1) 6= ∅.
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Then the objective is to

Find x∗ ∈ VI(VI(Fix(T), A1), A2)

:= {x∗ ∈ VI(Fix(T), A1) : 〈v− x∗, A2x∗〉 ≥ 0 ∀v ∈ VI(Fix(T), A1)}.

Algorithm 1. (see [21], Algorithm 4.1)
Step 0. Take {αn}∞

n=0, {δn}∞
n=0 ⊂ (0, ∞), and µ > 0, choose x0 ∈ H arbitrarily, and let n := 0.

Step 1. Given xn ∈ H, compute xn+1 ∈ H as{
yn = T(xn − δn A1xn),
xn+1 = yn − αnµA2yn.

Update n := n + 1 and go to Step 1.

The purpose of this paper is to introduce and analyze some Mann-type implicit iteration methods
for treating a monotone variational inequality with a inequality constraint over the common solution
set of the GSVI (1) for two inverse-strongly monotone mappings and a common fixed point problem
(CFPP) of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping
in Hilbert spaces, which is called the triple hierarchical constrained variational inequality (THCVI).
Here the Mann-type implicit iteration methods are based on the Mann iteration method, viscosity
approximation method, Korpelevich’s extragradient method and hybrid steepest-descent method.
Under some suitable assumptions, we prove strong convergence of the proposed methods to the
unique solution of the THCVI.

2. Preliminaries

Now we recall some necessary concepts and facts. A mapping F : C → H is named to be
κ-Lipschitzian if there is a real number κ > 0 with

κ‖x− y‖ ≥ ‖F(x)− F(y)‖, ∀x, y ∈ C.

Particularly, if κ ∈ (0, 1), then F is said to be contractive. If κ = 1, then F is said to be a
nonexpansivity. A mapping A : H → H is named to be a strongly positive bounded linear operator if
there is a real number γ > 0 with

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H.

For a fixed x ∈ H, we know that there is a unique point in C, presented by PCx, with

‖x− y‖ ≥ ‖x− PCx‖, ∀y ∈ C.

PC is called a metric projection of H onto C.

Lemma 2. There hold the following important relations for metric projection PC:

(i) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H;
(ii) 0 ≥ 〈x− PCx, y− PCx〉, ∀x ∈ H, y ∈ C;
(iii) ‖x− y‖2 + 2〈x− y, y〉 = ‖x‖2 − ‖y‖2, ∀x, y ∈ H;
(iv) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y− PCx‖2, ∀x ∈ H, y ∈ C.

Lemma 3 ([27]). Let {an} be a sequence of real numbers with the conditions:

an+1 ≤ (1− λn)an + λnγn, ∀n ≥ 0,
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where {λn} and {γn} are sequences of real numbers such that (i) {λn} ⊂ [0, 1] and ∑∞
n=0 λn = ∞, and (ii)

∑∞
n=0 |γnλn| < ∞ or lim supn→∞ γn ≤ 0 . Then limn→∞ an = 0.

Lemma 4 ([27]). Let λ be real number in (0, 1]. Let T : C → H be a nonexpansive nonself mapping.
Let Tλ : C → H be a nonself mapping defined by

Tλx := Tx− λµF(Tx), ∀x ∈ C.

Here F : H → H is κ-Lipschitzian and η-strongly monotone. So, Tλ is a contraction if 0 < µ < 2η

κ2 , i.e.,

‖Tλx− Tλy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ C,

where τ = 1−
√

1− µ(2η − µκ2) ∈ (0, 1].

Lemma 5 ([17]). Let the mapping A : C → H be α-inverse-strongly nonself monotone. Then, for a given
λ ≥ 0, ‖(I − λA)x − (I − λA)y‖2 ≤ ‖x − y‖2 + λ(λ− 2α)‖Ax − Ay‖2. In particular, if 0 ≤ λ ≤ 2α,
then I − λA is nonexpansive.

Lemma 6 ([17]). Let the mappings B1, B2 : C → H be α-inverse-strongly monotone and β-inverse-strongly
monotone, respectively. Let the mapping G : C → C be defined as G := PC(I − µ1B1)PC(I − µ2B2).
If 0 ≤ µ1 ≤ 2α and 0 ≤ µ2 ≤ 2β, then G : C → C is nonexpansive.

Lemma 7 ([28]). Let H be a Hilbert space. We suppose that C is a convex closed nonempty set in H, and T :
C → C is an asymptotically nonexpansive nonself mapping with a nonempty fixed point set, that is, Fix(T) 6= ∅.
Then I − T is demiclosed at zero, i.e., if {xn} ⊂ C converges weakly to some x ∈ C, and {(I − T)xn} converges
strongly to zero, then (I − T)x = 0, where I is the identity mapping on H.

Lemma 8 ([29]). Let H be a Hilbert space. We suppose that {xn} and {wn} are bounded vector sequences in H
and {βn} is a real number sequence in (0, 1) such that lim supn→∞ βn ≤ 1 and lim infn→∞ βn > 0. We also
suppose that xn+1 = βnxn + (1− βn)wn, ∀n ≥ 0 and

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖wn − xn‖ = 0.

Let C be a convex closed nonempty set. Let {Sn}∞
n=0 be a countable family of nonexpansive self

mappings defined on C, and {λn}∞
n=0 be a sequence of real numbers in [0, 1]. On C, we define a self

mapping Wn: 

Un,n+1 = I,
Un,n = (1− λn)I + λnSnUn,n+1,
Un,n−1 = (1− λn−1)I + λn−1Sn−1Un,n,
· · · ,
Un,k = (1− λk)I + λkSkUn,k+1,
Un,k−1 = (1− λk−1)I + λk−1Sk−1Un,k,
· · · ,
Un,1 = (1− λ1)I + λ1S1Un,2,
Wn = Un,0 = (1− λ0)I + λ0S0Un,1.

Such a Wn is named the W-mapping generated by Sn, Sn−1, ..., S0 and λn, λn−1, ..., λ0; see [30].
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Lemma 9 ([30]). Let C be a convex closed nonempty set in a Hilbert space H. Let {Sn}∞
n=0 be a mapping

sequence of nonexpansivity on C with
⋂∞

n=0 Fix(Sn) 6= ∅. Let {λn}∞
n=0 be a number sequence in (0, b] for

some b ∈ (0, 1). Then limn→∞ Un,kx exists for every x ∈ C and k ≥ 0.

Using Lemma 9, W : C → C is defined by Wx = limn→∞ Wnx = limn→∞ Un,0x, ∀x ∈ C. We call
W is the W-mapping defined by {Sn}∞

n=0 and {λn}∞
n=0. Next, we assume that {λn}∞

n=0 is a sequence
of positive numbers in (0, b] for some b ∈ (0, 1).

Lemma 10 ([30]). Let C be a convex closed nonempty set of a Hilbert space H. Let {Sn}∞
n=0 be a mapping

sequence of nonexpansivity on C with
⋂∞

n=0 Fix(Sn) 6= ∅. Let {λn}∞
n=0 be a number sequence in (0, b] for

some b ∈ (0, 1). Then
⋂∞

n=0 Fix(Sn) = Fix(W).

Lemma 11 ([30]). Let C be a convex closed nonempty set of a Hilbert space H. Let {Sn}∞
n=0 be a sequence of

nonexpansive self-mappings on C with
⋂∞

n=0 Fix(Sn) 6= ∅, and {λn}∞
n=0 be a real sequence in (0, b] for some

b ∈ (0, 1). If D is any bounded subset of C, then limn→∞ supx∈D ‖Wnx−Wx‖ = 0.

Lemma 12 ([21]). Let C be a convex closed nonempty set of a Hilbert space H. Let A : C → H be a
hemicontinuous nonself monotone mapping. Then the following hold: (i) VI(C, A) = {x∗ ∈ C : 〈x∗− y, Ay〉 ≤
0 ∀y ∈ C}; (ii) VI(C, A) = Fix(PC(I− λA)) for all λ > 0; (iii) VI(C, A) consists of one point, if A is strongly
monotone and Lipschitz continuous.

3. Main Results

Let C be a convex closed nonempty set of a real Hilbert space H. Let the mappings A1, Bi : C → H
be monotone for i = 1, 2. Let T : C → C be an asymptotically nonexpansive self mapping and {Sn}∞

n=0
be a countable family of nonexpansive self mappings on C. We now consider the variational inequality
for mapping A1 over the common solution set Ω of the GSVI (1) and the CFPP of {Sn}∞

n=0 and T:

Find x̄ ∈ VI(Ω, A1)

:= {x̄ ∈ Ω : 〈A1 x̄, y− x̄〉 ≥ 0 ∀y ∈ Ω},

where Ω :=
⋂∞

n=0 Fix(Sn) ∩ GSVI(C, B1, B2) ∩ Fix(T) 6= ∅. This section introduces the following
general monotone variational inequality with the variational inequality constraint on the common
solution set of the GSVI (1) and the CFPP of {Sn}∞

n=0 and T, which is named as the triple hierarchical
constrained variational inequality (THCVI):

Problem 2. Assume that

(C1) T : C → C is an asymptotically nonexpansive self mapping with a sequence {θn} ⊂ [0,+∞);
(C2) {Sn}∞

n=0 is a countable family of nonexpansive self mappings on C;
(C3) B1, B2 : C → H are α-inverse-strongly monotone and β-inverse-strongly monotone, respectively;
(C4) GSVI(C, B1, B2) := Fix(G) where G := PC(PC(I − µ2B2)− µ1B1PC(I − µ2B2)) for real numbers

µ1, µ2 > 0;
(C5) Ω :=

⋂∞
n=0 Fix(Sn) ∩GSVI(C, B1, B2) ∩ Fix(T) 6= ∅;

(C6) Wn is the W-mapping defined by Sn, Sn−1, ..., S0 and λn, λn−1, ..., λ0, where {λn}∞
n=0 ⊂ (0, 1);

(C7) A1 : C → H is ζ-inverse-strongly monotone;
(C8) A2 : C → H is η-strongly monotone and κ-Lipschitzian;
(C9) f : C → C is a δ-contraction mapping with real coefficient δ ∈ [0, 1);
(C10) VI(Ω, A1) 6= ∅.

Then the objective is to

find x∗ ∈ VI(VI(Ω, A1), µA2 − f )
:= {x∗ ∈ VI(Ω, A1) : 〈x∗ − v, (µA2 − f )x∗〉 ≤ 0 ∀v ∈ VI(Ω, A1)},
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for some µ > 0.

Problem 3. If we put f = 0 in Problem 2, then the objective is to

find x∗ ∈ VI(VI(Ω, A1), A2)

:= {x∗ ∈ VI(Ω, A1) : 〈A2x∗, v− x∗〉 ≥ 0 ∀v ∈ VI(Ω, A1)}.

Here we propose the following implicit Mann-type iteration algorithms (Algorithms 2 and 3) for
solving Problems 2 and 3, respectively.

Algorithm 2.
Step 0. Take {αn}∞

n=0, {βn}∞
n=0, {γn}∞

n=0, {δn}∞
n=0 ⊂ (0, ∞), and µ > 0, choose x0 ∈ C arbitrarily, and

let n := 0.
Step 1. Given xn ∈ C, compute xn+1 ∈ C as

un = (1− γn)Wnun + γnxn,
yn = PC(I − δn A1)Gun,
xn+1 = βnxn + (1− βn)PC[αn f (xn) + (I − αnµA2)Tnyn].

(2)

Update n := n + 1 and go to Step 1.

Algorithm 3.
Step 0. Take {αn}∞

n=0, {βn}∞
n=0, {γn}∞

n=0, {δn}∞
n=0 ⊂ (0, ∞), and µ > 0, choose x0 ∈ C arbitrarily,

and let n := 0.
Step 1. Given xn ∈ C, compute xn+1 ∈ C as

un = (1− γn)Wnzn + γnxn,
vn = PC(un − µ2B2un),
zn = PC(vn − µ1B1vn),
yn = PC(zn − δn A1zn),
xn+1 = βnxn + (1− βn)PC(I − αnµA2)Tnyn.

Update n := n + 1 and go to Step 1.

We are now able to state and prove the main results of this paper: the following convergence
analysis is presented for our Algorithms 2 and 3.

Theorem 1. Assume that µ1 is a real number in (0, 2α), and µ2 is a real number in (0, 2β). Let δ < τ :=
1−

√
1− µ(2η − µκ2) ∈ (0, 1] for µ ∈ (0, 2η

κ2 ). We suppose {λn}∞
n=0 is a real sequence in (0, b] for some real

number b in (0, 1). We also suppose that {αn}, {βn}, {γn} ⊂ (0, 1] and {δn} ⊂ (0, 2ζ] such that

(i) ∑∞
n=0 αn = ∞ and limn→∞ αn = 0;

(ii) δn ≤ αn ∀n ≥ 0 and limn→∞
θn
αn

= 0;
(iii) lim infn→∞ βn > 0 and lim supn→∞ βn < 1;
(iv) lim infn→∞ γn > 0, lim supn→∞ γn < 1 and limn→∞ |γn+1 − γn| = 0;
(v) limn→∞ ‖Tn+1yn − Tnyn‖ = 0.

Then the sequence {xn}∞
n=0 generated by Algorithm 2 satisfies the following properties:

(a) {xn}∞
n=0 is bounded;

(b) limn→∞ ‖xn − yn‖ = 0, limn→∞ ‖xn − Gxn‖ = 0, limn→∞ ‖xn − Txn‖ = 0 and limn→∞ ‖xn −
Wxn‖ = 0;

(c) if limn→
‖xn−yn‖

δn
= 0, then xn → x∗ ∈ VI(Ω, A1).
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Proof. First of all, for any x, y ∈ C, by Lemma 4, we have

‖PVI(Ω,A1)( f + I − µA2)x− PVI(Ω,A1)( f + I − µA2)y‖ ≤ δ‖x− y‖+ (1− τ)‖x− y‖ = [1− (τ − δ)]‖x− y‖,

which implies that PVI(Ω,A1)
( f + I − µA2) is a contraction. Banach’s Contraction Principle tells us

that PVI(Ω,A1)
( f + I − µA2) has a fixed point. Indeed, it is also unique, say x∗ ∈ C, that is, x∗ =

PVI(Ω,A1)
( f + I − µA2)x∗. Utilizing Lemma 12, we get

{x∗} = Fix(PVI(Ω,A1)
( f + I − µA2)) = VI(VI(Ω, A1), µA2 − f ).

That is, the Problem 2 has the unique solution. Since lim infn→∞ γn > 0 and lim supn→∞ γn < 1,
we can suppose that {γn} ⊂ [a0, b0] is subset of (0, 1) for some a0, b0 ∈ (0, 1). Since G : is defined
from C to C as G := PC(PC(I − µ2B2)− µ1B1PC(I − µ2B2)). Here µ1 ∈ (0, 2α) and µ2 ∈ (0, 2β), G is
nonexpansive by Lemma 6. It is easy to see that for each n ≥ 0 there exists a unique element un ∈ C
such that

un = γnxn + (1− γn)Wnun. (3)

As a matter of fact, we utilize Fnx := γnxn + (1− γn)Wnx ∀x ∈ C. Since each Wn : C → C is a
nonexpansive mapping, we get

‖Fnx− Fny‖ = (1− γn)‖Wnx−Wny‖ ≤ (1− γn)‖x− y‖, ∀x, y ∈ C.

Also, from {γn} ⊂ [a0, b0] and [a0, b0] ⊂ (0, 1) we have 0 < 1− γn < 1, ∀n ≥ 0. Thus, Fn : C → C
is a contraction. Banach’s Contraction Principle infers there exists a unique element un in set C
satisfying (3).

Here, we are able to divide the rest of the proof into several steps.
Step 1. We claim that all the vector sequences {xn}, {yn}, {zn}, {un}, {vn}, {Tnyn} and

{A2(Tnyn)} are bounded, where vn = PC(un − µ2B2un) and zn = PC(vn − µ1B1vn) for all n ≥ 0.
Indeed, it is clear that (2) can be rewritten as

un = (1− γn)Wnun + γnxn,
zn = Gun,
yn = PC(I − δn A1)zn,
xn+1 = (1− βn)PC[(I − αnµA2)Tnyn + αn f (xn)] + βnxn.

(4)

Take an arbitrary

p ∈ Ω =
∞⋂

n=0
Fix(Sn) ∩GSVI(C, B1, B2) ∩ Fix(T).

Then p = Wn p, p = Tp and p = Gp. Since each Wn : C → C is nonexpansive, (4) infers to

‖un − p‖ ≤ (1− γn)‖un − p‖+ γn‖xn − p‖,

which hence yields
‖un − p‖ ≤ ‖xn − p‖, ∀n ≥ 0. (5)

It is easy to infer from (4) that

‖zn − p‖ = ‖Gun − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖, ∀n ≥ 0. (6)
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Since lim infn→∞ βn > 0 and lim supn→∞ βn < 1, we suppose that {βn} ⊂ [c, d].
Since limn→∞

θn
αn

= 0, we can also suppose that

θn ≤
αn(τ − δ)(1− d)

2
≤ αn(τ − δ).

Note that δn ≤ αn, ∀n ≥ 0. ζ-inverse-strong monotonicity of A1 and Lemma 5 yield

‖yn − p‖ ≤ ‖(I − δn A1)zn − (I − δn A1)p− δn A1 p‖ ≤ δn‖A1 p‖+ ‖zn − p‖ ≤ ‖xn − p‖+ δn‖A1 p‖. (7)

Utilizing Lemma 4 and (7), we obtain from (4) that

‖xn+1 − p‖
≤ (1− βn)‖αn( f (xn)− µA2 p) + (I − αnµA2)Tnyn − (I − αnµA2)p‖+ βn‖xn − p‖
≤ (1− βn)[αnδ‖xn − p‖+ αn‖ f (p)− µA2 p‖+ (1− αnτ)(1 + θn)‖yn − p‖] + βn‖xn − p‖
≤ βn‖xn − p‖+ (1− βn){αnδ‖xn − p‖+ αn‖µA2 p− f (p)‖
+ (1− αnτ)[‖xn − p‖+ δn‖A1 p‖] + θn[δn‖A1 p‖+ ‖xn − p‖]}
≤ βn‖xn − p‖+ (1− βn){αnδ‖xn − p‖+ αn‖µA2 p− f (p)‖
+ (1− αnτ)[‖xn − p‖+ δn‖A1 p‖] + θn‖xn − p‖+ (τ − δ)αnδn‖A1 p‖}
≤ [1− αn(1− βn)(τ − δ)]‖xn − p‖+ θn‖xn − p‖+ αn‖µA2 p− f (p)‖+ αn‖A1 p‖

≤ [1− αn(1−d)(τ−δ)
2 ]‖xn − p‖+ αn(1−d)(τ−δ)

2 · 2(‖A1 p‖+‖µA2 p− f (p)‖)
(1−d)(τ−δ)

≤ max{ 2(‖A1 p‖+‖µA2 p− f (p)‖)
(1−d)(τ−δ)

, ‖xn − p‖}.

By simple induction, we have

‖xn+1 − p‖ ≤ max{2(‖ f (p)− µA2 p‖) + ‖A1 p‖
(1− d)(τ − δ)

, ‖x0 − p‖}, ∀n ≥ 0.

Therefore, {xn} is a bounded vector sequence, and so are all the other sequences
{yn}, {zn}, {un}, {Tnyn} and {A2(Tnyn)} (due to the Lipschitz continuity of T and A2). Since each
Wn enjoys the nonexpansivity on C, we get

‖Wnun‖ ≤ ‖Wnun − p‖+ ‖p‖ ≤ ‖un − p‖+ ‖p‖,

which yields that {Wnun} is bounded too. In addition, from Lemma 2 and p is a element in Ω ⊂
GSVI(C, B1, B2), it also follows that (p, q) is a solution of GSVI (1) where q = PC(I − µ2B2)p. Note that
vn = PC(I − µ2B2)un for all n ≥ 0. Then by Lemma 5, we get

‖vn‖ ≤ ‖PC(I − µ2B2)un − PC(I − µ2B2)p‖+ ‖q‖ ≤ ‖un − p‖+ ‖q‖.

This yields vector sequence {vn} is bounded.
Step 2. We claim that ‖xn − xn+1‖ → 0 and ‖yn − yn+1‖ → 0 as n → ∞. Indeed, we set

xn+1 = βnxn + (1− βn)wn, ∀n ≥ 0. Then wn = PC[(I − αnµA2)Tnyn + αn f (xn)]. It follows from
(4) that

‖wn+1 − wn‖ ≤ ‖αn+1 f (xn+1) + (I − αn+1µA2)Tn+1yn+1 − αn f (xn)− (I − αnµA2)Tnyn‖
≤ ‖Tn+1yn+1 − Tn+1yn‖+ ‖Tn+1yn − Tnyn‖+ αn+1‖µA2(Tn+1yn+1)‖
+ αn‖µA2(Tnyn)‖+ αn+1‖ f (xn+1)‖+ αn‖ f (xn)‖
≤ (1 + θn+1)‖yn+1 − yn‖+ ‖Tn+1yn − Tnyn‖+ αn+1(‖ f (xn+1)‖
+ ‖µA2(Tn+1yn+1)‖) + αn(‖ f (xn)‖+ ‖µA2(Tnyn)‖).

(8)
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Since vector sequence {δn} falls into (0, 2ζ] and A1 is ζ-inverse-strongly monotone, by Lemma 5
we obtain

‖yn+1 − yn‖ ≤ ‖(zn+1 − δn+1 A1zn+1)− (zn − δn A1zn)‖
≤ ‖(zn+1 − δn+1 A1zn+1)− (zn − δn+1 A1zn)‖+ |δn − δn+1|‖A1zn‖
≤ ‖un+1 − un‖+ |δn − δn+1|‖A1zn‖.

(9)

Since simple calculations show that

‖unun+1‖ ≤ γn+1‖xn − xn+1‖+ (1− γn+1)‖Wnun −Wn+1un+1‖
+ |γn − γn+1|‖Wnun − xn‖
≤ γn+1‖xn − xn+1‖+ (1− γn+1)[‖Wnun+1 −Wn+1un+1‖
+ ‖Wnun −Wnun+1‖] + |γn − γn+1|‖Wnun − xn‖
≤ (1− γn+1)[‖Wnun+1 −Wn+1un+1‖+ γn+1‖xn − xn+1‖
+ ‖un − un+1‖] + |γn − γn+1|‖Wnun − xn‖,

it follows that

a0‖un − un+1‖ ≤ a0‖xn+1 − xn‖+ ‖Wn+1un+1 −Wnun+1‖+ a0‖xn −Wnun‖|γn+1 − γn|. (10)

Since D := {un : n ≥ 0} ⊂ C is bounded subset, by the argument process in Lemma 11 we get
∑∞

n=0 supx∈D ‖Wn+1x−Wnx‖ < ∞. Thus we have

∞

∑
n=0
‖Wn+1un+1 −Wnun+1‖ < ∞. (11)

Therefore, from (8)–(10) we deduce that

‖wn − wn+1‖
≤ |δn − δn+1|‖A1zn‖+ θn+1‖yn − yn+1‖+ ‖Tnyn − Tn+1yn‖+ ‖un − un+1‖
+ αn+1(‖ f (xn+1)‖+ ‖µA2(Tn+1yn+1)‖) + αn(‖ f (xn)‖+ ‖µA2(Tnyn)‖)

≤ 1
a0
‖Wnun+1 −Wn+1un+1‖+ ‖xn+1 − xn‖+ |γn+1 − γn| ‖Wnun−xn‖

a0
+ |δn − δn+1|‖A1zn‖

+ θn+1‖yn − yn+1‖+ ‖Tnyn − Tn+1yn‖+ αn+1(‖ f (xn+1)‖+ ‖µA2(Tn+1yn+1)‖
+ αn‖(‖ f (xn)‖+ µA2(Tnyn)‖),

which immediately attains

‖wn − wn+1‖ − ‖xn − xn+1‖

≤ 1
a0
‖Wnun+1 −Wn+1un+1‖+ |γn − γn+1| ‖Wnun−xn‖

a0
+ |δn − δn+1|‖A1zn‖

+ θn+1‖yn − yn+1‖+ ‖Tnyn − Tn+1yn‖+ αn+1(‖ f (xn+1)‖+ ‖µA2(Tn+1yn+1)‖)
+ αn(‖ f (xn)‖+ ‖µA2(Tnyn)‖).

(12)

Since
lim

n→∞
‖Tnyn − Tn+1yn‖ = lim

n→∞
θn = 0,

from (11) and conditions (i), (ii), (iv) we get lim supn→∞(‖wn − wn+1‖ − ‖xn − xn+1‖) ≤ 0. Hence,
by condition (iii) and Lemma 8, we get limn→∞ ‖wn − xn‖ = 0. Consequently,

lim
n→∞

(1− βn)‖wn − xn‖ = lim
n→∞

‖xn − xn+1‖ = 0. (13)
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Again from (9) and (10) we conclude that

a0‖yn − yn+1‖
≤ a0‖xn − xn+1‖+ ‖Wnun+1 −Wn+1un+1‖+ a0|γn − γn+1|
‖Wnun − xn‖+ |δn − δn+1|a0‖A1zn‖ → 0

and ‖zn+1 − zn‖ = ‖Gun+1 − Gun‖ ≤ ‖un+1 − un‖ → 0. Thus,

lim
n→∞

‖yn − yn+1‖ = lim
n→∞

‖un − un+1‖ = lim
n→∞

‖zn − zn+1‖ = 0. (14)

Step 3. We claim that limn→∞ ‖Gxn − xn‖ = 0 as n → ∞. Indeed, noticing wn = PC[(I −
αnµA2)Tnyn + αn f (xn)] ∀n ≥ 0, we obtain from Lemma 2 that for each p ∈ Ω,

〈p− wn, (I − αnµA2)Tnyn + αn f (xn)− PC[αn f (xn) + (I − αnµA2)Tnyn]〉 ≤ 0. (15)

From (15), we have

‖wn − p‖2 = 〈PC[(I − αnµA2)Tnyn + αn f (xn)]− αn f (xn)− (I − αnµA2)Tnyn, wn − p〉
+ 〈(I − αnµA2)Tnyn + αn f (xn)− p, wn − p〉
≤ 〈(I − αnµA2)Tnyn + αn f (xn)− p, wn − p〉
= 〈wn − p, (I − αnµA2)Tnyn − (I − αnµA2)p〉+ αn〈 f (xn)− µA2 p, wn − p〉
≤ [(1− αnτ)‖Tnyn − p‖+ δαn‖xn − p‖]‖wn − p‖+ αn〈wn − p, f (p)− µA2 p〉

≤ [(1−αnτ)‖Tnyn−p‖+αnδ‖xn−p‖]2
2 + 1

2‖wn − p‖2 + αn〈wn − p, f (p)− µA2 p〉,

which leads to

‖wn − p‖2

≤ (1− αnτ)‖Tnyn − p‖2 + δαn‖xn − p‖2 − 2αn〈wn − p, µA2 p− f (p)〉
≤ (1− αnτ)(1 + θn)2‖yn − p‖2 + αnδ‖xn − p‖2 − 2αn〈wn − p, µA2 p− f (p)〉
≤ (1− αnτ)‖yn − p‖2 + αnδ‖xn − p‖2 + θn(2 + θn)‖yn − p‖2 − 2αn〈wn − p, µA2 p− f (p)〉.

(16)
From (7) and (16), we get

‖xn+1 − p‖2

≤ βn‖xn − p‖2 + (1− βn)[αnδ‖xn − p‖2 + (1− αnτ)‖yn − p‖2 + θn(2 + θn)‖yn − p‖2

+ 2αn〈 f (p)− µA2 p, wn − p〉]

≤ βn‖xn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αnτ)(‖zn − p‖+ δn‖A1 p‖)2

+ θn(2 + θn)‖yn − p‖2 + 2αn〈 f (p)− µA2 p, wn − p〉}

≤ βn‖xn − p‖2 + (1− βn)[αnδ‖xn − p‖2 + (1− αnτ)‖zn − p‖2]

+ δn‖A1 p‖(2‖zn − p‖+ δn‖A1 p‖) + θn(2 + θn)‖yn − p‖2 + 2αn‖ f (p)− µA2 p‖‖p− wn‖.

(17)

We now note that q = PC(p− µ2B2 p), vn = PC(un − µ2B2un) and zn = PC(vn − µ1B1vn). Then
zn = Gun. By Lemma 5 we have

‖vn − q‖2 ≤ ‖un − p− µ2(B2un − B2 p)‖2 ≤ ‖un − p‖2 − µ2(2β− µ2)‖B2un − B2 p‖2 (18)

and
‖zn − p‖2 ≤ ‖vn − q− µ1(B1vn − B1q)‖2 ≤ ‖vn − q‖2 − µ1(2α− µ1)‖B1vn − B1q‖2. (19)
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Substituting (18) for (19), we obtain from (5) that

‖zn − p‖2 ≤ µ2(µ2 − 2β)‖B2un − B2 p‖2 + µ1(µ1 + 2α)‖B1vn − B1q‖2 + ‖xn − p‖2. (20)

Combining (17) and (20), we get

‖xn+1 − p‖2

≤ βn‖xn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− ταn)[‖xn − p‖2

− (2β− µ2)µ2‖B2 p− B2un‖2 − (2α− µ1)µ1‖B1q− B1vn‖2]}
+ δn‖A1 p‖(2‖zn − p‖+ δn‖A1 p‖) + (2 + θn)θn‖yn − p‖2 + 2αn‖µA2 p− f (p)‖‖p− wn‖

= [1− (τ − δ)αn(1− βn)]‖xn − p‖2 − (1− αnτ)(1− βn)[µ2(2β− µ2)‖B2 p− B2un‖2

+ (2α− µ1)µ1‖B1q− B1vn‖2] + δn‖A1 p‖(2‖zn − p‖+ δn‖A1 p‖)
+ (2 + θn)θn‖yn − p‖2 + 2αn‖µA2 p− f (p)‖‖p− wn‖,

which immediately yields

(1− αnτ)(1− βn)[µ2(2β− µ2)‖B2 p− B2un‖2 + (2α− µ1)µ1‖B1q− B1vn‖2]

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖)
+ (2 + θn)θn‖yn − p‖2 + 2αn‖µA2 p− f (p)‖‖p− wn‖
≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖)
+ (2 + θn)θn‖yn − p‖2 + 2αn‖p− wn‖‖ f (p)− µA2 p‖.

Due to condition (iii), lim infn→∞(1 − βn) > 0, µ1 ∈ (0, 2α), µ2 ∈ (0, 2β), limn→∞ θn = 0,
limn→∞ αn = 0 and limn→∞ δn = 0, we obtain from (13) that

lim
n→∞

‖B2un − B2 p‖ = 0 and lim
n→∞

‖B1vn − B1q‖ = 0. (21)

On the other hand, from Lemma 2 we have

‖vn − q‖2 ≤ 〈vn − q, un − (p− µ2B2 p)− µ2B2un〉
≤ 1

2 [‖un − p‖2 + ‖vn − q‖2 − ‖un − vn − (p− q)‖2] + µ2‖vn − q‖‖B2un − B2 p‖,

which implies that

‖vn − q‖2 ≤ ‖un − p‖2 − ‖(p− q)− un + vn‖2 + 2µ2‖vn − q‖‖B2un − B2 p‖. (22)

In the same way, we derive

‖zn − p‖2 ≤ ‖vn − q‖2 − ‖(p− q)− vn + zn‖2 + 2µ1‖zn − p‖‖B1vn − B1q‖. (23)

Substituting (22) for (23), we deduce from (5) that

‖zn − p‖2 ≤ ‖xn − p‖2 − ‖un − vn − (p− q)‖2 − ‖vn − zn + (p− q)‖2

+ 2µ2‖B2 p− B2un‖‖vn − q‖+ 2µ1‖B1q− B1vn‖‖zn − p‖.
(24)
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Combining (17) and (24), we have

‖xn+1 − p‖2

≤ βn‖xn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αnτ)[‖xn − p‖2 − ‖p− q− un + vn‖2

− ‖p− q + vn − zn‖2 + 2µ1‖zn − p‖‖B1vn − B1q‖+ 2µ2‖vn − q‖‖B2un − B2 p‖]}
+ δn‖A1 p‖(2‖zn − p‖+ δn‖A1 p‖) + (2 + θn)θn‖yn − p‖2 + 2αn‖µA2 p− f (p)‖‖wn − p‖
≤ [1− (τ − δ)αn(1− βn)]‖xn − p‖2 − (1− αnτ)(1− βn)[‖p− q− un + vn‖2

+ ‖p− q + vn − zn‖2] + 2µ1‖B1vn − B1q‖‖zn − p‖+ 2µ2‖vn − q‖‖B2 p− B2un‖
+ δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖) + (2 + θn)θn‖yn − p‖2 + 2αn‖wn − p‖‖ f (p)− µA2 p‖,

which hence yields

(1− αnτ)(1− βn)[‖p− q− un + vn‖2 + ‖p− q + vn − zn‖2]

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2µ2‖vn − q‖‖B2 p− B2un‖
+ 2µ1‖zn − p‖‖B1q− B1vn‖+ δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖)
+ (2 + θn)θn‖yn − p‖2 + 2αn‖p− wn‖‖ f (p)− µA2 p‖
≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + 2µ2‖zn − q‖‖B2 p− B2un‖
+ 2µ1‖yn − p‖‖B1q− B1zn‖+ δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖)
+ (2 + θn)θn‖yn − p‖2 + 2αn‖p− wn‖‖ f (p)− µA2 p‖.

Since lim infn→∞(1− βn) > 0, limn→∞ θn = 0, limn→∞ αn = 0 and limn→∞ δn = 0, we conclude
from (13) and (21) that

lim
n→∞

‖un − vn − (p− q)‖ = 0 and lim
n→∞

‖vn − zn + (p− q)‖ = 0. (25)

It follows that

‖un − Gun‖ = ‖un − zn‖ ≤ ‖un − vn − (p− q)‖+ ‖vn − zn + (p− q)‖ → 0 (n→ ∞). (26)

Also, from (4) we have ‖un − p‖2 ≤ (1− γn)‖un − p‖2 + γn〈un − p, xn − p〉, which together with
Lemma 2, yields ‖un− p‖2 ≤ 〈un− p, xn− p〉 = 1

2 [‖xn− p‖2 + ‖un− p‖2−‖xn− un‖2]. Thus, we get

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2,

which together with (17), yields

‖xn+1 − p‖2

≤ βn‖xn − p‖2 + (1− βn)[(1− αnτ)‖un − p‖2 + δαn‖xn − p‖2]

+ δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖) + (2 + θn)θn‖yn − p‖2 + 2αn‖p− wn‖‖ f (p)− µA2 p‖
≤ βn‖xn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αnτ)[‖xn − p‖2 − ‖xn − un‖2]}
+ δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖) + (2 + θn)θn‖yn − p‖2 + 2αn‖p− wn‖‖ f (p)− µA2 p‖

= [1− αn(τ − δ)(1− βn)]‖xn − p‖2 − (1− αnτ)(1− βn)‖xn − un‖2

+ δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖) + (2 + θn)θn‖yn − p‖2 + 2αn‖p− wn‖‖ f (p)− µA2 p‖.
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Hence we have

(1− αnτ)(1− βn)‖xn − un‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖)
+ (2 + θn)θn‖yn − p‖2 + 2αn‖µA2 p− f (p)‖‖p− wn‖
≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + δn‖A1 p‖(δn‖A1 p‖+ 2‖zn − p‖)
+ (2 + θn)θn‖yn − p‖2 + 2αn‖ f (p)− µA2 p‖‖p− wn‖.

Since lim infn→∞(1− βn) > 0, limn→∞ θn = 0, limn→∞ αn = 0 and limn→∞ δn = 0, we obtain
from (13) that

lim
n→∞

‖xn − un‖ = 0. (27)

Also, observe that ‖xn− zn‖ ≤ ‖xn− un‖+ ‖Gun− un‖, ‖xn−Gxn‖ ≤ ‖xn− zn‖+ ‖un− xn‖, and

‖xn − yn‖ ≤ ‖xn − (zn − δn A1zn)‖ ≤ ‖xn − zn‖+ δn‖A1zn‖.

Then from (26) and (27) it follows that

lim
n→∞

‖xn − zn‖ = 0, lim
n→∞

‖xn − Gxn‖ = 0 and lim
n→∞

‖xn − yn‖ = 0. (28)

Step 4. We claim that limn→∞ ‖Txn − xn‖ = 0 and limn→∞ ‖Wnxn − xn‖ = 0. Indeed, combining
(4) and (27), we obtain

‖Wnun − un‖ =
γn

1− γn
‖xn − un‖ ≤

b0

1− b0
‖xn − un‖ → 0 (n→ ∞). (29)

Since each Wn is nonexpansive on C, from (27) and (29) we get

‖Wnxn − xn‖ ≤ ‖Wnun − un‖+ ‖un − xn‖+ ‖Wnxn −Wnun‖
≤ ‖Wnun − un‖+ 2‖un − xn‖ → 0 (n→ ∞).

(30)

We note that {βn} ⊂ [c, d] and [c, d] ⊂ (0, 1) for some c, d ∈ (0, 1), and observe that

‖xn − Tnyn‖ ≤ ‖xn − xn+1‖+ ‖Tnyn − xn+1‖
≤ ‖xn − xn+1‖+ βn‖xn − Tnyn‖+ (1− βn)‖Tnyn − PC[(I − αnµA2)Tnyn + αn f (xn)]‖
≤ ‖xn − xn+1‖+ βn‖xn − Tnyn‖+ (1− βn)αn(‖µA2(Tnyn)‖+ ‖ f (xn)‖).

Then we have

(1− d)‖xn − Tnyn‖ ≤ ‖xn − xn+1‖+ (1− d)αn(‖ f (xn)‖+ ‖µA2(Tnyn)‖).

Hence we get

(1− d)‖yn − Tnyn‖ ≤ (1− d)‖yn − xn‖+ (1− d)‖xn − Tnyn‖
≤ (1− d)‖yn − xn‖+ ‖xn − xn+1‖+ αn(1− d)(‖ f (xn)‖+ ‖µA2(Tnyn)‖).

Consequently, from (13), (28) and limn→∞ αn = 0, it follows that

lim
n→∞

‖xn − Tnyn‖ = 0 and lim
n→∞

‖yn − Tnyn‖ = 0. (31)
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We also note that

‖yn − Tyn‖ ≤ ‖yn − Tnyn‖+ ‖Tnyn − Tn+1yn‖+ ‖Tn+1yn − Tyn‖
≤ (2 + θ1)‖Tnyn − yn‖+ ‖Tn+1yn − Tnyn‖.

From limn→∞ ‖Tnyn − Tn+1yn‖ = 0 and (31), we get

lim
n→∞

‖yn − Tyn‖ = 0. (32)

In addition, noticing that

‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖yn − Tyn‖+ ‖Tyn − Txn‖ ≤ ‖yn − Tyn‖+ (2 + θ1)‖xn − yn‖,

we deduce from (28) and (32) that
lim

n→∞
‖xn − Txn‖ = 0. (33)

Step 5. We claim that W : C → C is nonexpansive, Fix(W) =
⋂∞

n=0 Fix(Sn) and limn→∞ ‖Wxn −
xn‖ = 0 where Wx := limn→∞ Wnx for all x ∈ C. Indeed, we observe that for all x, y ∈ C,
limn→∞ ‖Wnx −Wx‖ = 0 and limn→∞ ‖Wny−Wy‖ = 0. Since each Wn enjoys the nonexpansivity,
we get

‖Wx−Wy‖ = lim
n→∞

‖Wnx−Wny‖ ≤ ‖x− y‖.

This means that W is nonexpansive. Also, noticing the boundedness of {xn} and putting D :=
{xn : n ≥ 0}, we obtain from Lemma 11 that limn→∞ supx∈D ‖Wnx−Wx‖ = 0, which immediately
sends to

lim
n→∞

‖Wnxn −Wxn‖ = 0. (34)

Thus, combining (30) with (34) we have

‖xn −Wxn‖ ≤ ‖xn −Wnxn‖+ ‖Wnxn −Wxn‖ → 0 (n→ ∞). (35)

In addition, utilizing Lemma 10 we get

Fix(W) =
∞⋂

n=0
Fix(Sn). (36)

Step 6. We prove that

lim sup
n→∞

〈A2x∗, x∗ − wn〉 ≤ 0 and lim sup
n→∞

〈A1x∗, x∗ − zn〉 ≤ 0, (37)

where {x∗} = VI(VI(Ω, A1), µA2 − f ). Indeed, we choose a subsequence {wni} of {wn} such that

lim sup
n→∞

〈x∗ − wn, A2x∗〉 = lim
i→∞
〈x∗ − wni , A2x∗〉.

Utilizing the boundedness of {wn} ⊂ C, we suppose that wni ⇀ x̄ ∈ C. Since limn→∞ ‖xn −
Tnyn‖ = 0 (due to (31)) and limn→∞ αn = 0, it follows that

‖xn − wn‖ ≤ ‖xn − Tnyn‖+ ‖Tnyn − αn f (xn)− (I − αnµA2)Tnyn‖
≤ ‖Tnynxn‖+ αn(‖µA2(Tnyn)‖+ ‖ f (xn)‖)→ 0 (n→ ∞).

(38)

Hence, from wni ⇀ x̄, we get xni ⇀ x̄.
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Note that G and W are nonexpansive and T is asymptotical. Since (I − G)xn → 0, (I − T)xn → 0
and (I −W)xn → 0 (due to (28), (33) and (35)), by Lemma 7 we get x̄ ∈ Fix(G) = GSVI(C, B1, B2),
x̄ ∈ Fix(T) and x̄ ∈ Fix(W) =

⋂∞
n=0 Fix(Sn). So,

x̄ ∈ Ω =
∞⋂

n=0
Fix(Sn) ∩GSVI(C, B1, B2) ∩ Fix(T).

We show x̄ ∈ VI(Ω, A1). Actually, let y ∈ Ω be fixed arbitrarily. From (4), (6) and ζ-inverse strong
monotonicity of A1, we get

‖yn − y‖2 ≤ ‖(zn − y)− δn A1zn‖2 ≤ ‖xn − y‖2 + 2δn〈y− zn, A1y〉+ δ2
n‖A1zn‖2,

which implies that, for all n ≥ 0,

0 ≤ 1
δn
(‖xn − y‖2 − ‖yn − y‖2) + 2〈A1y, y− zn〉+ δn‖A1zn‖2

≤ (‖xn − y‖+ ‖yn − y‖) ‖xn−yn‖
δn

+ 2〈A1y, y− zn〉+ δn‖A1zn‖2.

From (28) it is easy to see xni ⇀ x̄ leads to zni ⇀ x̄. Since limn→∞ δn = 0 and ‖xn − yn‖ = o(δn),
we have

0 ≤ lim inf
n→∞

{(‖xn − y‖+ ‖yn − y‖) ‖xn−yn‖
δn

+ 2〈A1y, y− zn〉+ δn‖A1zn‖2}
= lim inf

n→∞
2〈y− zn, A1y〉 ≤ lim

i→∞
2〈y− zni , A1y〉 = 2〈y− x̄, A1y〉.

It follows that 〈A1y, y− x̄〉 ≥ 0, ∀y ∈ Ω. So, Lemma 12 and the ζ-inverse-strong monotonicity
of A1 ensure that 〈y− x̄, A1 x̄〉 ≥ 0, ∀y ∈ Ω, that is, x̄ ∈ VI(Ω, A1). Consequently, from {x∗} =

VI(VI(Ω, A1), µA2 − f ), we have

lim sup
n→∞

〈x∗ − wn, (µA2 − f )x∗〉 = lim
i→∞
〈x∗ − wni , (µA2 − f )x∗〉 = 〈x∗ − x̄, (µA2 − f )x∗〉 ≤ 0.

Also, we pick a subsequence {znk} ⊂ {zn} such that

lim sup
n→∞

〈x∗ − zn, A1x∗〉 = lim
k→∞
〈x∗ − znk , A1x∗〉.

Since vector sequence {zn} is bounded in C, we suppose that znk ⇀ x̂ ∈ C. From (28) it is clear
that znk ⇀ x̂ yields xnk ⇀ x̂. By the same arguments as in the proof of x̄ ∈ Ω, we have x̂ ∈ Ω.
From x∗ ∈ VI(Ω, A1), we get

lim sup
n→∞

〈x∗ − zn, A1x∗〉 = lim
k→∞
〈x∗ − znk , A1x∗〉 = 〈x∗ − x̂, A1x∗〉 ≤ 0.

Therefore, the inequalities in (37) hold.
Step 7. We propose xn → x∗ as n → ∞. Indeed, putting p = x∗ in (6) and (16) we obtain that

‖zn − x∗‖ ≤ ‖xn − x∗‖ and

‖wn − x∗‖2 ≤ αnδ‖xn − x∗‖2 + (1− αnτ)‖yn − x∗‖2 + θn(2+ θn)‖yn − x∗‖2 + 2αn〈(µA2− f )x∗, x∗ −wn〉. (39)

From (4) and the ζ-inverse-strong monotonicity of A1 it follows that

‖yn − x∗‖2 ≤ ‖(zn − x∗)− δn A1zn‖2 ≤ ‖xn − x∗‖2 + 2δn〈A1x∗, x∗ − zn〉+ δ2
n‖A1zn‖2. (40)
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Thus, in terms of (4), (39) and (40), we get

‖xn+1 − x∗‖2 ≤ (1− βn)‖wn − x∗‖2 + βn‖xn − x∗‖2

≤ (1− βn)[αnδ‖xn − x∗‖2 + (1− αnτ)‖yn − x∗‖2 + θn(2 + θn)‖yn − x∗‖2 + βn‖xn − x∗‖2

+ 2αn〈(µA2 − f )x∗, x∗ − wn〉]
≤ βn‖xn − x∗‖2 + (1− βn){αnδ‖xn − x∗‖2 + (1− αnτ)[2δn〈A1x∗, x∗ − zn〉+ ‖xn − x∗‖2

+ δ2
n‖A1zn‖2] + θn(2 + θn)‖yn − x∗‖2 + 2αn〈(µA2 − f )x∗, x∗ − wn〉}

≤ [1− αn(τ − δ)(1− βn)]‖xn − x∗‖2 + αn(τ − δ)(1− βn){ (1−αnτ)2δn
(τ−δ)αn

〈x∗ − zn, A1x∗〉

+ αn
‖A1zn‖2

τ−δ + (2+θn)θn‖yn−x∗‖2

(τ−δ)αn
+ 2

τ−δ 〈(µA2 − f )x∗, x∗ − wn〉}.

(41)

Obviously, (37) yields

lim sup
n→∞

(1− αnτ)2δn

(τ − δ)αn
〈x∗ − zn, A1x∗〉 ≤ 0

and
lim sup

n→∞

2
τ − δ

· 〈x∗ − wn, (µA2 − f )x∗〉 ≤ 0.

Actually, from lim supn→∞〈A1x∗, x∗ − zn〉 ≤ 0 it follows that for any given ε > 0 there exists an
integer n0 ≥ 1 such that 〈A1x∗, x∗ − zn〉 ≤ ε, ∀n ≥ n0. Then from δn ≤ αn we get

2δn(1− αnτ)

(τ − δ)αn
〈A1x∗, x∗ − zn〉 ≤

2δn(1− αnτ)

(τ − δ)αn
ε ≤ 2

τ − δ
ε, ∀n ≥ n0,

which hence yields

lim sup
n→∞

2δn(1− αnτ)〈A1x∗, x∗ − zn〉
(τ − δ)αn

≤ 2
τ − δ

ε.

Letting ε→ 0, we get

lim sup
n→∞

2δn(1− αnτ)〈x∗ − zn, A1x∗〉
(τ − δ)αn

≤ 0.

Since ∑∞
n=0 αn = ∞, lim infn→∞(1− βn) > 0 and limn→∞

θn
αn

= 0, we deduce that

∞

∑
n=0

αn(τ − δ)(1− βn) = ∞

and
lim sup

n→∞
{ (1−αnτ)2δn

(τ−δ)αn
〈A1x∗, x∗ − zn〉+ αn

‖A1zn‖2

τ−δ

+ θn(2+θn)‖yn−x∗‖2

(τ−δ)αn
+ 2

τ−δ 〈x
∗ − wn, (µA2 − f )x∗〉} ≤ 0.

We can infer Lemma 3 to the relation (41) and conclude that xn → x∗ as n→ ∞. This completes
the proof.

From Theorem 1, we have the following sub-result.

Corollary 1. Assume that µ1 is a real number in (0, 2α), and µ2 is a real number in (0, 2β). Let δ < τ :=
1−

√
1− µ(2η − µκ2) ∈ (0, 1] for µ ∈ (0, 2η

κ2 ). We suppose {λn}∞
n=0 is a real sequence in (0, b] for some real

number b in (0, 1). We also suppose that {αn}, {βn}, {γn} ⊂ (0, 1] and {δn} ⊂ (0, 2ζ] such that

(i) ∑∞
n=0 αn = ∞ and limn→∞ αn = 0;

(ii) δn ≤ αn ∀n ≥ 0 and limn→∞
θn
αn

= 0;
(iii) lim infn→∞ βn > 0 and lim supn→∞ βn < 1;
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(iv) lim infn→∞ γn > 0, lim supn→∞ γn < 1 and limn→∞ |γn+1 − γn| = 0;
(v) limn→∞ ‖Tn+1yn − Tnyn‖ = 0.

Let {xn}∞
n=0 be a sequence defined by{

yn = (1− γn)Wnyn + γnxn,
xn+1 = βnxn + (1− βn)PC[αn f (xn) + (I − αnµA2)Tnyn].

Then we have

(a) {xn}∞
n=0 is bounded;

(b) limn→∞ ‖xn − yn‖ = 0, limn→∞ ‖xn − Txn‖ = 0 and limn→∞ ‖xn −Wxn‖ = 0;
(c) if limn→

‖xn−yn‖
δn

= 0, then {xn} converges to a common fixed point of the asymptotically nonexpansive
and nonexpansive mappings.

Theorem 2. Assume that µ1 is a real number in (0, 2α), and µ2 is a real number in (0, 2β). Let τ =

1−
√

1− µ(2η − µκ2) ∈ (0, 1] for µ in (0, 2η

κ2 ), and let {λn}∞
n=0 be a real sequence in (0, b] for some b in

(0, 1). Suppose that {αn}, {βn}, {γn} ⊂ (0, 1] and {δn} ⊂ (0, 2ζ] such that

(i) ∑∞
n=0 αn = ∞ and limn→∞ αn = 0;

(ii) δn ≤ αn ∀n ≥ 0 and limn→∞
θn
αn

= 0;
(iii) lim infn→∞ βn > 0 and lim supn→∞ βn < 1;
(iv) lim infn→∞ γn > 0, lim supn→∞ γn < 1 and limn→∞ |γn+1 − γn| = 0;
(v) limn→∞ ‖Tn+1yn − Tnyn‖ = 0.

Then the sequence {xn}∞
n=0 generated by Algorithm 3 satisfies the following properties:

(a) {xn}∞
n=0 is bounded;

(b) limn→∞ ‖xn− yn‖ = 0, limn→∞ ‖xn−Gxn‖ = 0, limn→∞ ‖xn−Txn‖ = 0 and limn→∞ ‖xn−
Wxn‖ = 0;

(c) If ‖xn−yn‖
δn

= 0, xn → x∗ ∈ VI(Ω, A1).

Proof. Since A2 : C → H is κ-Lipschitzian and η-strongly monotone, by Lemma 12 we know that the
Problem 2 has the unique solution. We let {x∗} = VI(VI(Ω, A1), A2). For each n ≥ 0, we consider
the mapping Fnx := G(γnxn + (1− γn)Wnx), ∀x ∈ C. Utilizing the same argument as in the proof of
Theorem 1, we can deduce from Banach’s contraction principle that for each n ≥ 0 there exists a unique
element zn ∈ C such that zn = G(γnxn + (1− γn)Wnzn). Thus, the iterative scheme in Algorithm 3
can be rewritten as 

un = γnxn + (1− γn)Wnzn,
zn = Gun,
yn = PC(zn − δn A1zn),
xn+1 = βnxn + (1− βn)PC(I − µαn A2)Tnyn.

Here, we divide the rest of the proof into several steps.
Step 1. We prove {xn}, {yn}, {zn}, {un}, {vn}, {Tnyn} and {A2(Tnyn)} are bounded vector

sequences, where vn = PC(un − µ2B2un) and zn = PC(vn − µ1B1vn) for all n ≥ 0. Indeed, utilizing the
similar argument to that of Step 1 in the proof of Theorem 1, we obtain the desired assertion.

Step 2. We prove ‖xn+1 − xn‖ → 0 and ‖yn+1 − yn‖ → 0 as n→ ∞. Indeed, utilizing the similar
argument to that of Step 2 in the proof of Theorem 1, we obtain the desired assertion.

Step 3. We prove ‖xn − Gxn‖ → 0 as n → ∞. Indeed, utilizing the similar argument to that of
Step 3 in the proof of Theorem 1, we obtain the desired assertion.

Step 4. We prove ‖Txn − xn‖ → 0 and ‖Wnxn − xn‖ → 0 as n→ ∞. Indeed, utilizing the similar
argument to that of Step 4 in the proof of Theorem 1, we obtain the desired assertion.

Step 5. We prove W : C → C enjoys the nonexpansivity, Fix(W) =
⋂∞

n=0 Fix(Sn) and
limn→∞ ‖Wxn − xn‖ = 0 where Wx := limn→∞ Wnx for all x ∈ C. Indeed, utilizing the similar
argument to that of Step 5 in the proof of Theorem 1, we obtain the desired assertion.
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Step 6. We prove lim supn→∞〈A2x∗, x∗ − wn〉 ≤ 0 and lim supn→∞〈A1x∗, x∗ − zn〉 ≤ 0,
where {x∗} = VI(VI(Ω, A1), A2). Indeed, utilizing the similar argument to that of Step 6 in the
proof of Theorem 1, we obtain the desired assertion.

Step 7. We prove xn → x∗ as n→ ∞. Indeed, utilizing the similar argument to that of Step 7 in
the proof of Theorem 1, we obtain the desired assertion.

This completes the entire proof.

Corollary 2. Assume that µ1 is a real number in (0, 2α), and µ2 is a real number in (0, 2β). Let τ =

1−
√

1− µ(2η − µκ2) ∈ (0, 1] for µ in (0, 2η

κ2 ), and let {λn}∞
n=0 be a real sequence in (0, b] for some b in

(0, 1). Suppose that {αn}, {βn}, {γn} ⊂ (0, 1] and {δn} ⊂ (0, 2ζ] such that

(i) ∑∞
n=0 αn = ∞ and limn→∞ αn = 0;

(ii) δn ≤ αn ∀n ≥ 0 and limn→∞
θn
αn

= 0;
(iii) lim infn→∞ βn > 0 and lim supn→∞ βn < 1;
(iv) lim infn→∞ γn > 0, lim supn→∞ γn < 1 and limn→∞ |γn+1 − γn| = 0;
(v) limn→∞ ‖Tn+1yn − Tnyn‖ = 0.

Let {xn}∞
n=0 be a sequence defined by{

un = (1− γn)Wnun + γnxn,
xn+1 = βnxn + (1− βn)PC(I − αnµA2)Tnun.

Then we have

(a) {xn}∞
n=0 is bounded;

(b) limn→∞ ‖xn − un‖ = 0, limn→∞ ‖xn − Txn‖ = 0 and limn→∞ ‖xn −Wxn‖ = 0;
(c) If ‖xn−un‖

δn
= 0, {xn}

converges to a common fixed point of the asymptotically nonexpansive and nonexpansive mappings.

4. Concluding Remark

This paper discussed a monotone variational inequality problem with a variational inequality
constraint over the common solution set of a general system of variational inequalities and a common
fixed point of a countable family of nonexpansive mappings and an asymptotically nonexpansive
mapping in Hilbert spaces, which is called the triple hierarchical constrained variational inequality,
and introduced some Mann-type implicit iteration methods for solving it. Norm convergence of the
proposed methods of the iteration methods is guaranteed under some suitable assumptions.
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