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Abstract: In this article, we propose some new fixed point theorem involving measure of
noncompactness and control function. Further, we prove the existence of a solution of functional
integral equations in two variables by using this fixed point theorem in Banach Algebra, and also
illustrate the results with the help of an example.
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1. Introduction

Integral equations play a significant role in real-world problems. Fixed point theory and measure
of noncompactness are useful tools in solving different types of integral equations which we come
across in different real life situations. In solving functional integral equations, Schauder and Darbo’s
fixed point theorems play a significant role. We refer (see [1–15]) for application of fixed point theorems
and measure of noncompactness for solving differential and integral equations.

In this article using the concept of control function and measure of noncompactness we have
proved some new fixed point theorems. Further, we have also applied this theorem to study the
existence of solution of functional integral equations in Banach algebra and also with the help of an
example we have verified our results.

Let Ē be a real Banach space with the norm ‖ . ‖ . Let B(a, b) be a closed ball in Ē centered at a
and with radius b. If X is a nonempty subset of Ē then by X̄ and Conv X we denote the closure and
convex closure of X, respectively. Moreover, letMĒ denote the family of all nonempty and bounded
subsets of Ē and NĒ its subfamily consisting of all relatively compact sets. We denote by R the set of
real numbers and R+ = [0, ∞) .

The following definition of a measure of noncompactness given in [3].

Definition 1. A function µ : MĒ → [0, ∞) is called a measure of non-compactness in Ē if it satisfies the
following conditions:

(i) for all Y ∈ MĒ, we have µ(Y) = 0 implies that Y is precompact.
(ii) the family ker µ = {Y ∈ MĒ : µ (Y) = 0} is nonempty and ker µ ⊂ NĒ.
(iii) Y ⊆ Z =⇒ µ (Y) ≤ µ (Z) .
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(iv) µ (Ȳ) = µ (Y) .
(v) µ (ConvY) = µ (Y) .
(vi) µ (λY + (1− λ) Z) ≤ λµ (Y) + (1− λ) µ (Z) for λ ∈ [0, 1] .
(vii) if Yn ∈ MĒ, Yn = Ȳn, Yn+1 ⊂ Yn for n = 1, 2, 3, ... and lim

n→∞
µ (Yn) = 0 then

⋂∞
n=1 Yn 6= φ.

The family ker µ is said to be the kernel of measure µ. Observe that the intersection set Y∞ from (vii)
is a member of the family ker µ. In fact, since µ(Y∞) ≤ µ(Yn) for any n, we infer that µ(Y∞) = 0. This
gives Y∞ ∈ kerµ.

For a bounded subset S of a metric space X, the Kuratowski measure of noncompactness is defined
as [9]

α (S) = inf

{
δ > 0 : S =

n⋃
i=1

Si, diam (Si) ≤ δ for n ∈ N
}

,

where diam (Si) denotes the diameter of the set Si, that is

diam (Si) = sup {d(x, y) : x, y ∈ Si} .

The Hausdorff measure of noncompactness for a bounded set S is defined as

χ (S) = inf {ε > 0 : S has finite ε− net in X} .

Definition 2 ([3]). Let X be a nonempty subset of a Banach space Ē and T : X → Ē is a continuous operator
transforming bounded subset of X to bounded ones. We say that T satisfies the Darbo condition with a constant
k with respect to measure µ provided µ(TY) ≤ kµ(Y) for each Y ∈ MĒ such that Y ⊂ X.

We recall following important theorems:

Theorem 1 (Shauder [16]). Let D be a nonempty, closed and convex subset of a Banach space Ē. Then every
compact, continuous map T : D → D has at least one fixed point.

Theorem 2 (Darbo [10]). Let Z be a nonempty, bounded, closed and convex subset of a Banach space Ē. Let
S : Z → Z be a continuous mapping. Assume that there is a constant k ∈ [0, 1) such that

µ(SM) ≤ kµ(M), M ⊆ Z.

Then S has a fixed point.

In order to establish our fixed point theorem, we need some of the following related concepts.
Khan et al. [17] used a control function which they called an altering distance function.

Definition 3 ([17]). An altering distance function is a continuous, nondecreasing mapping δ : R+ → R+

such that δ−1({0}) = {0} .

Definition 4. We denote Ẑ be the class of functions η : R+ ×R+ → R satisfying the following conditions:

(1) η(0, 0) = 0
(2) η(t, s) < s− t for all t, s > 0
(3) if {tn} ,{sn} are sequences in (0, ∞) such that lim

n→∞
tn = t, lim

n→∞
sn = s > 0, then lim sup

n→∞
η(tn, sn) < s− t.

For example, let ψ1 and ψ2 be two altering distance functions such that ψ1(t) < t ≤ ψ2(t) for all
t > 0. Then η1(t, s) = ψ1(s)− ψ2(t) for all t, s ∈ R+ is in the class of functions Ẑ.
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If we take ψ1(t) = λt for all t ≥ 0, λ ∈ [0, 1) and ψ2(t) = t then we obtain the following function
η2(t, s) = λs− t for all t, s ∈ R+ is in the class of functions Ẑ. If s ≤ t then η2(t, s) < 0.

Definition 5. Let F be the class of all functions G : R+ ×R+ → R+ satisfying the following conditions:

(1) max {a, b} ≤ G(a, b) for a, b ≥ 0.
(2) G is continuous and nondecreasing.
(3) G(a + b, c + d) ≤ G(a, c) + G(b, d).

For example G(a, b) = a + b.

2. Main Result

Theorem 3. Let C be a nonempty, bounded, closed and convex subset of a Banach space Ē. Also T : C → C
is continuous and φ : R+ → R+ is continuous and nondecreasing functions. Suppose that if for any
0 < a < b < ∞ there exists 0 < γ(a, b) < 1 such that for all X ⊆ C,

a ≤ G(µ(X), φ(µ(X))) ≤ b =⇒ η {G(µ(TX), φ(µ(TX))), γ(a, b)G(µ(X), φ(µ(X)))} ≥ 0,

where µ is an arbitrary measure of noncompactness and η ∈ Ẑ and G ∈ F. Then T has at least one fixed point
in C.

Proof. Let us construct a sequence (Cn) such that C0 = C and Cn+1 = Conv(TCn) for n ≥ 0.
We observe that TC0 = TC ⊆ C = C0, C1 = Conv(TC0) ⊆ C = C0, therefore by continuing
this process, we have C0 ⊇ C1 ⊇ C2 ⊇ . . . ⊇ Cn ⊇ Cn+1 ⊇ . . . .

If there exists a natural number m such that µ(Cm) = 0 then Cm is compact. By Schauder’s fixed
point theorem we conclude that T has a fixed point.

So we assume that µ(Cn) > 0 for some n ≥ 0 i.e., G(µ(Cn), φ(µ(Cn))) > 0 for all n ≥ 0.
Let X = Cn for some n ∈ N.
For a ≤ G(µ(Cn), φ(µ(Cn))) ≤ b gives

0 ≤ η {G(µ(TCn), φ(µ(TCn))), γ(a, b)G(µ(Cn), φ(µ(Cn)))}
= η {G(µ(ConvTCn), φ(µ(ConvTCn))), γ(a, b)G(µ(Cn), φ(µ(Cn)))}
= η {G(µ(Cn+1), φ(µ(Cn+1))), γ(a, b)G(µ(Cn), φ(µ(Cn)))}
< γ(a, b)G(µ(Cn), φ(µ(Cn)))− G(µ(Cn+1), φ(µ(Cn+1)))

i.e.,

γ(a, b) >
G(µ(Cn+1), φ(µ(Cn+1)))

G(µ(Cn), φ(µ(Cn)))
.

If G(µ(Cn+1), φ(µ(Cn+1))) ≥ G(µ(Cn), φ(µ(Cn))) then γ(a, b) > 1 which is a contradiction
hence G(µ(Cn+1), φ(µ(Cn+1))) < G(µ(Cn), φ(µ(Cn))) for all n ∈ N. Hence {G(µ(Cn), φ(µ(Cn)))}
is a nonnegative decreasing sequence so there exists α ≥ 0 such that lim

n→∞
G(µ(Cn), φ(µ(Cn))) = α.

Suppose α > 0. Then, 0 < α = a ≤ G(µ(Cn), φ(µ(Cn))) ≤ G(µ(C0), φ(µ(C0))) = b for all n ≥ 0.
Again, we have for X = Cn there exists 0 < γ(a, b) < 1 such that

0 ≤ η {G(µ(TCn), φ(µ(TCn))), γ(a, b)G(µ(Cn), φ(µ(Cn)))}
= η {G(µ(Cn+1), φ(µ(Cn+1))), γ(a, b)G(µ(Cn), φ(µ(Cn)))} .

Let G(µ(Cn+1), φ(µ(Cn+1))) = tn, γ(a, b)G(µ(Cn), φ(µ(Cn))) = sn.
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Since tn < sn for all n ≥ 0 and lim
n→∞

tn = α, lim
n→∞

sn = γ(a, b)α therefore

lim sup
n→∞

η {G(µ(TCn), φ(µ(TCn))), γ(a, b)G(µ(Cn), φ(µ(Cn)))} < γ(a, b)α− α < 0

which is a contradiction. Thus we conclude α = 0 i.e., lim
n→∞

G(µ(Cn), φ(µ(Cn))) = 0. Hence we get

lim
n→∞

µ(Cn) = 0 and lim
n→∞

φ(µ(Cn)) = 0.

Since Cn ⊇ Cn+1 in the view of Definition 1, we conclude that C∞ =
⋂∞

n=1 Cn is nonempty, closed
and convex subset of C and C∞ is invariant under T. Thus Schauder’s theorem implies that T has a
fixed point in C∞ ⊆ C. This completes the proof.

Theorem 4. Let C be a nonempty, bounded, closed and convex subset of a Banach space Ē. Also T : C → C
is continuous and φ : R+ → R+ is continuous and nondecreasing functions. Suppose that if for any
0 < a < b < ∞ there exists 0 < γ(a, b) < 1 such that for all X ⊆ C,

a ≤ µ(X) + φ(µ(X)) ≤ b =⇒ η {µ(TX) + φ(µ(TX)), γ(a, b)(µ(X) + φ(µ(X)))} ≥ 0,

where µ is an arbitrary measure of noncompactness and η ∈ Ẑ. Then T has at least one fixed point in C.

Proof. The result follows by taking G(a, b) = a + b in Theorem 3.

Theorem 5. Let C be a nonempty, bounded, closed and convex subset of a Banach space Ē and T : C → C is a
continuous function. Suppose that if for any 0 < a < b < ∞ then there exists 0 < γ(a, b) < 1 such that for all
X ⊆ C,

a ≤ µ(X)) ≤ b =⇒ η {µ(TX), γ(a, b)µ(X)} ≥ 0

where µ is an arbitrary measure of noncompactness and η ∈ Ẑ. Then T has at least one fixed point in C.

Proof. The result follows by taking G(a, b) = a + b and φ ≡ 0 in Theorem 3.

Theorem 6. Let C be a nonempty, bounded, closed and convex subset of a Banach space Ē and T : C → C is a
continuous function. Suppose ψ1 and ψ2 be two altering distance functions such that ψ1(t) < t ≤ ψ2(t) for
all t > 0 and a constant 0 < γ < 1 such that for all X ⊆ C, and a ≤ µ(X) ≤ b we have ψ2(µ(T(X))) ≤
ψ1(γµ(X)) where µ is an arbitrary measure of noncompactness. Then T has at least one fixed point in C.

Proof. The result follows by taking η(t, s) = ψ1(s)− ψ2(t) for all t, s ≥ 0 in Theorem 5.

Theorem 7. Let C be a nonempty, bounded, closed and convex subset of a Banach space Ē and T : C → C is a
continuous function. Suppose for any 0 < a < b < ∞ there exists 0 < γ(a, b) < 1 such that for all X ⊆ C,
and a ≤ µ(X) ≤ b we have µ(T(X)) ≤ γ(a, b)µ(X), where µ is an arbitrary measure of noncompactness.
Then T has at least one fixed point in C.

Proof. The result follows by taking η(t, s) = λs− t for all t, s ≥ 0 and γ(a, b) = λγ̂(a, b) in Theorem 6
where λ ∈ [0, 1) and 0 < γ̂(a, b) < 1.

3. Application

In this article, we shall work in the space E = C([0, 1]× [0, 1]) which consists of the set of real
continuous on [0, 1]× [0, 1]. The space E is equipped with the norm

‖ x ‖= sup {|x(t, s)| : t, s ≥ 0} , x ∈ E.

The space E has the Banach algebra structure.
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Let X be a fixed nonempty and bounded subset of the space E = C([0, 1]× [0, 1]) and for x ∈ X
and ε > 0, denote by ω(x, ε) the modulus of the continuity function x i.e.,

ω(x, ε) = sup {|x(t, s)− x(u, v)| : t, s, u, v ∈ [0, 1], |t− u| ≤ ε, |s− v| ≤ ε} .

Further we define
ω(X, ε) = sup {ω(x, ε) : x ∈ X} .

ω0(X) = lim
ε→0

ω(X, ε).

Similar to [5] it can be shown that the function ω0 is a measure of non-compactness in the space
C([0, 1]× [0, 1]).

In this part we are going to study the existence of the solution of the following integral equation

x(t, s) = G(t, s) + F
(

t, s, x(t, s),
∫ t

0

∫ s

0
u(t, s, v, w, x(v, w))dvdw

)
, t, s ∈ [0, 1] = I. (1)

We consider the following assumptions

(1) The function G : I × I → R is continuous and nondecreasing. Also B = sup {|G(t, s)| : t, s ∈ I} .
(2) Let u : I × I × I × I ×R → R is continuous function such that u : I × I × I × I ×R+ → R+

and for arbitrary fixed v, w ∈ I and x ∈ R+ we have u(t, s, v, w, x) is nondecreasing. Also,
|u(t, s, v, w, x)| ≤ L |x| for t, s, v, w ∈ I; x ∈ R and L ≥ 0.

(3) The function F : I × I ×R×R→ R is continuous such that there exists K ∈ [0, 1) satisfying

|F(t, s, x, y)− F(t, s, x̄, ȳ)| ≤ K |x− x̄|+ |y− ȳ|

and M = sup {|F(t, s, 0, 0)| : t, s ∈ I} .
(4) There exists r > 0 such that B + M + (K + L)r < r.

Let the closed ball with center 0 and radius r be denoted by Br = {x ∈ C(I × I) :‖ x ‖≤ r} .

Theorem 8. Under the hypothesis (1)–(4), Equation (1) has at least one solution in C(I × I), where I = [0, 1].

Proof. Let us consider the operators F̂ and T̂ defined on C(I × I) as follows

(F̂x)(t, s) = F
(

t, s, x(t, s),
∫ t

0

∫ s

0
u(t, s, v, w, x(v, w))dvdw

)
and

(T̂x)(t, s) = G (t, s) + (F̂x)(t, s)

where t, s ∈ I.
From assumptions (1) to (3) we infer T̂x is continuous on I × I for x ∈ C(I × I). Thus T̂ maps

C(I × I) into itself. Also for t, s ∈ I we get
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∣∣(F̂x)(t, s)
∣∣

≤
∣∣∣∣F(t, s, x(t, s),

∫ t

0

∫ s

0
u(t, s, v, w, x(v, w))dvdw

)
− F(t, s, 0, 0)

∣∣∣∣+ |F(t, s, 0, 0)|

≤ K |x(t, s)|+
∣∣∣∣∫ t

0

∫ s

0
u(t, s, v, w, x(v, w))dvdw

∣∣∣∣+ M

≤ K |x(t, s)|+
∫ t

0

∫ s

0
L |x(v, w)| dvdw + M

≤ K |x(t, s)|+ L ‖ x ‖ +M

≤ (K + L) ‖ x ‖ +M.

Then we have ∣∣(T̂x)(t, s)
∣∣

≤ |G(t, s)|+
∣∣(F̂x)(t, s)

∣∣
≤ B + (K + L) ‖ x ‖ +M.

Thus if ‖ x ‖≤ r, we have
∣∣(T̂x)(t, s)

∣∣ ≤ B + (K + L)r + M ≤ r i.e., ‖ T̂x ‖≤ r.
Therefore the operator T̂ maps Br into itself.
Next we have to prove that T̂ is continuous on Br. Let {xn} be a sequence in Br such that xn → x.
For every t, s ∈ I, we have∣∣(F̂xn)(t, s)− (F̂x)(t, s)

∣∣
=
∣∣∣F (t, s, xn(t, s),

∫ t
0

∫ s
0 u(t, s, v, w, xn(v, w))dvdw

)
− F

(
t, s, x(t, s),

∫ t
0

∫ s
0 u(t, s, v, w, x(v, w))dvdw

) ∣∣∣
≤ K |xn(t, s)− x(t, s)|+

∫ t
0

∫ s
0 |u(t, s, v, w, xn(v, w))− u(t, s, v, w, x(v, w))| dvdw

≤ K ‖ xn − x ‖ +Ur(ε),

where ε > 0 and

Ur(ε) = sup {|u(t, s, v, w, x)− u(t, s, v, w, x̄)| : t, s, v, w ∈ I; x, x̄ ∈ [−r, r]; ‖ x− x̄ ‖< ε} .

As ∣∣(T̂xn)(t, s)− (T̂x)(t, s)
∣∣

≤ K ‖ xn − x ‖ +Ur(ε)

It follows ‖ T̂xn − T̂x ‖≤ K ‖ xn − x ‖ +Ur(ε).
As ε → 0 we get Ur(ε) → 0 because u is uniformly continuous on I × I × I × I × [−r, r]. Thus

‖ T̂xn − T̂x ‖→ 0. Hence T̂ is continuous on Br.
Let us consider an nonempty subset X of Br and x ∈ X then for a fixed ε > 0 and t1, t2, s1, s2 ∈ I

such that t1 ≤ t2, s1 ≤ s2, |t1 − t2| ≤ ε, |s1 − s2| ≤ ε.
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Then we get∣∣(F̂x)(t2, s2)− (F̂x)(t1, s1)
∣∣

≤
∣∣∣∣∣F
(

t2, s2, x(t2, s2),
∫ t2

0

∫ s2

0
u(t2, s2, v, w, x(v, w))dvdw

)

− F
(

t2, s2, x(t1, s1),
∫ t2

0

∫ s2

0
u(t2, s2, v, w, x(v, w))dvdw

) ∣∣∣∣∣
+

∣∣∣∣∣F
(

t2, s2, x(t1, s1),
∫ t2

0

∫ s2

0
u(t2, s2, v, w, x(v, w))dvdw

)

− F
(

t1, s1, x(t1, s1),
∫ t2

0

∫ s2

0
u(t2, s2, v, w, x(v, w))dvdw

) ∣∣∣∣∣
+

∣∣∣∣∣F
(

t1, s1, x(t1, s1),
∫ t2

0

∫ s2

0
u(t2, s2, v, w, x(v, w))dvdw

)

− F
(

t1, s1, x(t1, s1),
∫ t2

0

∫ s2

0
u(t1, s1, v, w, x(v, w))dvdw

) ∣∣∣∣∣
+

∣∣∣∣∣F
(

t1, s1, x(t1, s1),
∫ t2

0

∫ s2

0
u(t1, s1, v, w, x(v, w))dvdw

)

− F
(

t1, s1, x(t1, s1),
∫ t1

0

∫ s1

0
u(t1, s1, v, w, x(v, w))dvdw

) ∣∣∣∣∣
≤ K |x(t2, s2)− x(t1, s1)|+ ω(F, ε)

+
∫ t2

0

∫ s2

0
|u(t2, s2, v, w, x(v, w))− u(t1, s1, v, w, x(v, w))| dvdw

+
∫ t2

t1

∫ s2

s1

|u(t1, s1, v, w, x(v, w))| dvdw

≤ K |x(t2, s2)− x(t1, s1)|+ ω(F, ε) +
∫ t2

0

∫ s2

0
ω(u, ε)dvdw +

∫ t2

t1

∫ s2

s1

Ūdvdw

≤ K |x(t2, s2)− x(t1, s1)|+ ω(F, ε) + ω(u, ε) + Ūε2,

where

ω(u, ε) = sup

{
|u (t2, s2, v, w, x)− u (t1, s1, v, w, x)| : t1, t2, s1, s2, v, w ∈ I,

|t2 − t1| ≤ ε, |s2 − s1| ≤ ε, x ∈ [−r, r]

}
,

Ū = sup {|u(t, s, v, w, x)| : t, s, v, w ∈ I, x ∈ [−r, r]}

and

ω(F, ε) = sup

{
|F (t, s, x, y)− F (t1, s1, x, y)| : t, t1, s, s1 ∈ I,

|t− t1| ≤ ε, |s− s1| ≤ ε, x ∈ [−r, r], y ∈ [−Ū, Ū]

}
.

Hence ∣∣(T̂x)(t2, s2)− (T̂x)(t1, s1)
∣∣

≤ |G(t2, s2)− G(t1, s1)|+
∣∣(F̂x)(t2, s2)− (F̂x)(t1, s1)

∣∣
≤ ω(G, ε) + K |x(t2, s2)− x(t1, s1)|+ ω(F, ε) + ω(u, ε) + Ūε2,

where

ω(G, ε) = sup

{
|G (t2, s2)− G (t1, s1)| : t1, t2, s1, s2 ∈ I,

|t2 − t1| ≤ ε, |s2 − s1| ≤ ε

}
.
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Now taking the supremum on x, we get

ω(T̂X, ε) ≤ ω(G, ε) + Kω(X, ε) + ω(F, ε) + ω(u, ε) + Ūε2.

Since G, F and u are uniformly continuous on I× I, I× I× [−r, r]× [−Ū, Ū] and I× I× I× [−r, r]
respectively therefore, we get, ω(G, ε)→ 0, ω(F, ε)→ 0 and ω(u, ε)→ 0 as ε→ 0. Thus we obtain

ω0(T̂X) ≤ Kω0(X).

This implies T̂ is a contraction operator on Br with respect to ω0. Thus by Theorem 7, we have T̂
has at least one fixed point in Br. Hence Equation (1) has at least one solution in Br ⊂ C(I × I). This
completes the proof.

Example 1. Consider the following equation

x(t, s) =
ts

1 + ts
+

t2s2x(t, s)
4 (1 + t2s2)

+
ts
4

∫ t

0

∫ s

0
vw sin(x(v, w))dvdw (2)

for t, s ∈ [0, 1] = I.
Here we have

G(t, s) =
ts

1 + ts
,

F(t, s, x, y) =
t2s2x

4 (1 + t2s2)
+ y,

u(t, s, v, w, x) =
tsvw sin x

4
.

It can be easily seen that G, u are continuous functions on I × I and I × I × I × I ×R, respectively.
The function u is nondecreasing and

|u(t, s, v, w, x)| ≤ 1
4
|x| .

Also we have B = 1 and L = 1
4 .

The function F is continuous on I × I ×R×R and

|F(t, s, x, y)− F(t, s, x̄, ȳ)|

=

∣∣∣∣ t2s2x
4 (1 + t2s2)

+ y− t2s2 x̄
4 (1 + t2s2)

− ȳ
∣∣∣∣

≤ t2s2

4 (1 + t2s2)
|x− x̄|+ |y− ȳ|

≤ 1
4
|x− x̄|+ |y− ȳ| .

Here K = 1
4 and M = 0.

The inequality in the assumption (4) has the following form

1 +
r
2
< r.

For r = 3 we observe that all the assumption from (1)–(4) of Theorem 8 are satisfied. Thus applying the
Theorem 8 we conclude that the Equation (2) has at least one solution in C(I × I).
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