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1. Introduction

The concept of a coherent pair of measures on the real line was introduced by Iserles et al. [1]
in the framework of the theory of polynomials orthogonal with respect to a Sobolev inner product
associated with a pair of nontrivial positive measures (ν0, ν1) supported on the real line. This Sobolev
inner product is defined by:

〈p, q〉S =
∫
R

p(x)q(x)dν0(x) + λ
∫
R

p′(x)q′(x)dν1(x), (1)

where p and q are polynomials with real coefficients and λ is a nonnegative real number.
The pair of measures (ν0, ν1) is said to be coherent if the corresponding sequences of monic

orthogonal polynomials {Pn(ν0; x)}n≥0 and {Pn(ν1; x)}n≥0 satisfying:

nPn−1(ν1; x) = P′n(ν0; x) + anP′n−1(ν0; x), n ≥ 1, (2)

with an 6= 0 for n ≥ 2. Assuming (2), if {Sn(ν0, ν1; λ; x)}n≥0 denotes the sequence of monic orthogonal
polynomials associated with the Sobolev inner product, then there exists a nice algebraic relation with
the sequence of monic orthogonal polynomials {Pn(ν0; x)}n≥0 with respect to the measure ν0. Indeed,

Sn(ν0, ν1; λ; x) + bn(λ)Sn−1(ν0, ν1; λ; x) = Pn(ν0; x) + anPn−1(ν0; x), n ≥ 1. (3)

Meijer in [2] proved that if (ν0, ν1) is a coherent pair of positive measures supported on the real
line, i.e., (2) holds, then one of the measures is classical (Laguerre or Jacobi), and its companion is the
rational perturbation of it.

What was proven by Meijer [2] is slightly more general than what is stated above. He dealt
with orthogonal polynomials with respect to a pair of quasi-definite linear functionals on the set
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of polynomials with real coefficients, and he proved that one of such linear functionals must be
classical, i.e., either a Laguerre, or Jacobi, or Bessel linear functional. Notice that positive definite linear
functionals are associated with nontrivial probability measures supported on the real line (see [3]).
Thus, Meijer [2] also determined all the possible coherent pairs of positive measures supported in the
real line.

The relation (3) is very useful when we study analytic properties of the corresponding Sobolev
orthogonal polynomials. In particular, outer relative asymptotics have been deeply analyzed in the
literature (see [4,5], as well as the recent survey [6], where an updated list of references concerning
this topic is presented).

In [7], the authors showed that there are Sobolev inner products of the type (1) where the pair of
measures (ν0, ν1) is not coherent, but the relation (3) still holds ( [7], Theorem 4.1), or in other words, a
combination of Sobolev orthogonal polynomials as:

Sn(ν0, ν1; λ; x) + bn(λ)Sn−1(ν0, ν1; λ; x), (4)

can be written as a linear combination of orthogonal polynomials Pn(ν; x) and Pn−1(ν; x), where the
measure ν is closely related to the measures ν0 and ν1 ( [7], Theorem 3.1).

The results obtained in [7] can be covered by extending the concept of coherence (see [8]). It is
important to observe that given the Sobolev inner product as (1), if the sequences {Sn(ν0, ν1; λ; x)}n≥0

and {Pn(ν0; x)}n≥0 satisfy (3), then:

nPn−1(ν1; x) + cnPn−2(ν1; x) = P′n(ν0; x) + anP′n−1(ν0; x), n ≥ 1, (5)

with an 6= 0, for n ≥ 2. When (5) holds (see [9]), the pair (ν0, ν1) is referred to as a (1, 1)-coherent
pair. In this case, one of the measures must be semiclassical of class at most 1, and the other one is
a rational perturbation of it. Semiclassical orthogonal polynomials have been introduced in [10,11].
A nice survey about this topic is [12]. In particular, the concept of the class of the corresponding
linear functional plays a central role in the study of the algebraic properties of semiclassical orthogonal
polynomials. The class s = 0 is constituted by the classical orthogonal polynomials (Hermite, Laguerre,
Jacobi, and Bessel). The classification of semiclassical orthogonal polynomials of Class 1 appears
in [13].

Several generalizations of the concept of coherent pair have been extensively studied and
documented. The more general case of coherence for standard orthogonal polynomials corresponds to
the concept of (M, N)- coherence of order (m, n), and it is defined as follows.

Definition 1. Let ν0, ν1 be a pair of positive Borel measures and {Pn(ν0; x)}n≥0 and {Pn(ν1; x)}n≥0 the
corresponding SMOPs. {ν0, ν1} is a (M, N)-coherent pair of measures of order (m, k) if the corresponding
monic orthogonal polynomial sequence (MOPS) satisfies:

M

∑
i=0

ai,nP[m]
n+m−i(ν0; x) =

N

∑
i=0

bi,nP[k]
n+k−i(ν1; x), (6)

where m, k, M, N ∈ N∪ {0}, P[i]
n (ν0; x) :=

P(i)
n+i(ν0; x)
(n + 1)i

, and {ai,n}n≥0 ,
{

bj,n
}

n≥0 , 0≤ i ≤ M, 0≤ j ≤ N,

are sequences of numbers with a0,n = b0,n = 1. If k = 0, then we will say that {ν0, ν1} is an (M, N)-coherent
pair of measures of order m.

The notion of “(M, N)-coherence” was introduced in [14] for order one, where the natural
connection with Sobolev polynomials orthogonal with respect to the inner product (1) is presented.
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In [15], the inverse problem of order (m, n) was studied. In the framework of order m, the connection
with Sobolev polynomials orthogonal with respect to the inner product:

〈p, q〉S =
∫
R

p(x)q(x)dν0(x) + λ
∫
R

p(m)(x)q(m)(x)dν1(x), (7)

was analyzed in [16] and for (1, 1)-coherent pairs in [17]. With this terminology, if (5) holds, then
the pair (ν0, ν1) is (1, 1)-coherent of order one. The (2, 0)-coherent pairs of order one were studied
in [18]. The (k + 1, 0)-coherence of order one was proposed in [19] through the so-called k-coherence.
Of course, the zero-coherence is the coherence defined in [1], and the one-coherence was defined
in [18]. The one-coherence was also studied in [20], but from a more general approach considering
pairs of quasi-definite functionals and proving that if (u, v) is a one-coherent pair, then u and v must
be semiclassical of classes at most 6 and 2, respectively. In [21,22], direct and inverse problems
associated with (1, 1)-coherence of order zero were studied. As for the solution of the inverse problem
for the (M, N)-coherence of order one, in [23], a rational relation satisfied by the linear functional was
obtained. In [24,25], a direct problem associated with the (M, 0)-coherence of order zero was analyzed.
Additional studies on the (2, 0)-coherence of order zero appeared in [26]. Finally, an inverse problem
associated with the (2, 1)-coherence of order zero was studied in [27], where the interesting topic
about when the (2, 1)-coherence algebraic relation is non-degenerate was analyzed, i.e., conditions in
such a way that the (2, 1)-coherence relation cannot be reduced to a (M, N)-coherence relation with
either M < 2 or N < 1 are given.

If the measures involved in (1) are symmetric, i.e., their odd moments are zero, in [1], the concept
of a symmetrically-coherent pair of measures was introduced. Indeed, a pair of symmetric measures
(ν0, ν1) is said to be symmetrically coherent if their corresponding sequences of monic orthogonal
polynomials {Pn(ν0; x)}n≥0 and {Pn(ν1; x)}n≥0 satisfy:

nPn−1(ν1; x) = P′n(ν0; x) + cnP′n−2(ν0; x), n ≥ 2, (8)

with cn 6= 0 for n ≥ 2.
In [2], H. G. Meijer proved that if (ν0, ν1) is a symmetrically-coherent pair of positive measures

supported on the real line, i.e., (8) holds, then one of such measures is symmetric and classical
(Hermite or Gegenbauer) and the other one is a rational perturbation of it. Analytic properties of
the corresponding sequences of Sobolev orthogonal polynomials have been studied in the literature
(see [6] and the references therein). Indeed, the main tool is the existence of an algebraic relation:

Sn(ν0, ν1; λ; x) + vn(λ)Sn−2(ν0, ν1; λ; x) = Pn(ν0; x) + cnPn−2(ν0; x), n ≥ 2, (9)

where cn 6= 0, for n ≥ 2 and {Sn(ν0, ν1; λ; x)}n≥0, denotes the sequence of monic orthogonal
polynomials associated with the Sobolev inner product (1), where ν0 and ν1 are symmetric measures.
(9) is an important tool to study such Sobolev orthogonal polynomials. Indeed, in [28], it was proven
that if (9) holds, then:

(n + 1)Pn(ν1; x) + rnPn−2(ν1; x) = P′n+1(ν0; x) + cnP′n−1(ν0; x), n ≥ 2, (10)

with cn 6= 0, for n ≥ 2. Some examples of symmetric measures whose sequences of orthogonal
polynomials satisfy (10) have been studied in [28]. Asymptotic properties of the corresponding
sequences of orthogonal polynomials and the location of their zeros were analyzed in [29,30] for the
Gegenbauer case, as well as in [31,32] for the Hermite case. The aim of the present contribution is to
find all the symmetric pairs of measures such that (10) holds.

Semiclassical symmetric linear functionals of order at most two are the natural framework of our
study. They have been analyzed by many authors (see [33–37], among others). On the other hand,
the so-called symmetrization process for linear functionals (see [3]) will play a central role in this
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contribution. In [38], the class of the symmetrized linear functional associated with a semiclassical
linear functional has been studied. Notice that this process can also be considered in the framework of
Sobolev inner products (see [39]).

The structure of this manuscript is the following. In Section 2, the basic background about linear
functionals and orthogonal polynomials is presented. A special emphasis on semiclassical linear
functionals is given. The symmetrization process for linear functionals is also analyzed. Moreover,
the main results about (1, 1)-coherent pairs of measures are summarized. By using a symmetrization
process, in Section 3, we study pairs (ũ, ṽ) whose respective symmetrized pairs (u, v) are symmetric
(1, 1)-coherent pairs. Finally, in Section 4, we deduce all positive-definite symmetric (1, 1)-coherent
pairs (u, v) when either u or v are of class s ≤ 2.

2. Preliminaries

Let P be the linear space of polynomials with complex coefficients. Its topological dual space will
be denoted by P′. Pn will represent the linear subspace of polynomials of degree at most n. If U ∈ P′,
then 〈U, p〉 will denote the action of the linear functional U on the polynomial p ∈ P. {un}n≥0 , with
un = 〈U, xn〉 , is said to be the sequence of moments associated with U.

Definition 2. For any polynomial q and a ∈ C, we define the operator θa : P→ P as follows:

(θaq) (x) =
q(x)− q(a)

x− a
. (11)

If U ∈ P′ and a, b ∈ C, b 6= 0, a displacement of U, denoted by (τa ◦ hb)U, is defined as follows:

〈(τa ◦ hb)U, p(x)〉 = 〈U, (hb ◦ τ−a) p(x)〉 = 〈U, p(bx + a)〉 , (12)

for every p ∈ P. If q ∈ P, then the linear functional qU is defined by:

〈qU, p〉 = 〈U, qp〉 , p ∈ P. (13)

The linear functional δ(x− c) given by 〈δ(x− c), p〉 = p(c), p ∈ P, c ∈ C, is said to be the Dirac
delta linear functional at c. Let U ∈ P′, and let σ ∈ P be a polynomial of degree n with zeros xk
∈ C, 1 ≤ k ≤ r, of multiplicities nk, respectively, i.e., ∑r

k=1 nk = n. Then, for every p ∈ P, we define
σ−1(x)U ∈ P′ as follows: 〈

σ−1(x)U, p(x)
〉
=

〈
U,

p(x)− Lσ(x; p)
σ(x)

〉
, (14)

where Lσ(x; p) is the interpolatory polynomial:

Lσ(x; p) =
r

∑
i=1

ni−1

∑
j=0

p(j)(xi)Li,j(x). (15)

There, Li,j(x) is the polynomial of degree at most n− 1 such that L(k)
i,j (xl) = δi,lδk,j, i, l = 1, · · · , r,

and 0 ≤ k, j ≤ ni − 1. As an illustrative example, when σ(x) = x2 − ζ, with ζ > 0 , the zeros of σ are
±
√

ζ. Then, if q ∈ P, we get:

Lx2−ζ(x; q) =
2

∑
i=1

q(xi)
x2 − ζ

(x− xi)2xi
=

x2 − ζ

2
√

ζ

(
q(
√

ζ)

(x−
√

ζ)
− q(−

√
ζ)

(x +
√

ζ)

)
.
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Furthermore, if q(x) = p(x2), we deduce:

Lx2−ζ(x; q) = p(ζ)
x2 − ζ

−(x +
√

ζ)2
√

ζ
+ p(ζ)

x2 − ζ

(x−
√

ζ)2
√

ζ
= p(ζ). (16)

Besides, if σ(x) = x− ζ, then Lx−ζ(x; p(x)) = p(ζ) ,and we conclude that:

Lx2−ζ(x; p(x2)) = Lx−ζ(x; p(x)) = p(ζ). (17)

On the other hand, if σ(x) = (x − ξ)n, i.e., σ has a zero of multiplicity n, then for any linear
functional U: 〈

(x− ξ)−nU, p(x)
〉
=

〈
U,

p(x)− Tξ
n−1(p)(x)

(x− ξ)n

〉
, (18)

where Tξ
n−1(p) denotes the Taylor polynomial of degree n− 1 of the polynomial p around x = ξ. When

ξ = 0, we will write Tn−1(p).

Definition 3. Given a ∈ C, the Pochhammer symbol (a)n is defined by (a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1),
n ≥ 1, and (a)0 = 1.

Lemma 1. Let p ∈ P and q(x) = p
(
(x− ξ)2) . Then, for n ≥ 0, we get:

Tn(p)((x− ξ)2) = Tξ
2n(q)(x). (19)

Remark 1. Since Tξ
2n+1(q)(x) = Tξ

2n(q)(x), then also Tn(p)((x− ξ)2) = Tξ
2n+1(q)(x).

If U ∈ P′, then the (distributional) derivative of U, denoted by DU, is the linear functional
such that:

〈DU, p〉 =
〈
U,−p′

〉
, p ∈ P.

Given U ∈ P′, U is said to be quasi-definite or regular (see [3,12]) if the leading principal submatrices
of the Hankel matrix

(
ui+j

)∞
i,j=0 are non-singular. If all of them have a positive determinant, then

U is said to be a positive definite linear functional. In this case, there exists a positive Borel measure µ

supported on an infinite set E ⊆ R such that:

〈U, p〉 =
∫

E
p(x)dµ(x), p ∈ P.

Proposition 1 ([3]). Let U ∈ P′. U is quasi-definite if and only if there exists a sequence of monic polynomials
{Pn}n≥0 , with deg Pn = n, such that 〈U, PnPm〉 = 0, for n 6= m, and

〈
U, P2

n
〉
6= 0, for every n ∈ N. Such a

sequence is said to be a monic orthogonal polynomial sequence (MOPS) with respect to the functional U.

Proposition 2 ([3]). Let U ∈ P′ be a quasi-definite linear functional, and let {Pn}n≥0 be the corresponding
MOPS. If Pn(0) 6= 0, for every n ≥ 1, then xU ∈ P′ is quasi-definite. Furthermore, if {P̃n}n≥0 is the
corresponding MOPS, then:

P̃n(x) = x−1
(

Pn+1(x)− Pn+1(0)
Pn(0)

Pn(x)
)

.

Moreover, if U is positive-definite in [a, b], then xU is also positive-definite on [a, b] if and only if a ≥ 0.
The polynomial P̃n is called the ntextth monic Kernel polynomial corresponding to U whit κ-parameter zero.

The above proposition defines a mapping in the linear space of quasi-definite linear functionals.
A natural question can be posed. Is this mapping one-to-one? The answer is no. It is well known
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that there exist infinitely many MOPS generating the same sequence of Kernel polynomials of the
κ-parameter. The next result gives the answer to this question.

Theorem 1 ([40]). Let u ∈ P′ be a quasi-definite linear functional and {Pn}n≥0 its corresponding MOPS. Let
v ∈ P′ be the linear functional v = u + Mδ(x− a), with M ∈ C, a ∈ R. Then, v is quasi-definite if and only if
dn := 1 + MKn(a, a) 6= 0, where Kn(x, y) is the nth Kernel polynomial associated with u. Besides {Rn}n≥0,
the MOPS associated with v, satisfies:

Rn(x) = Pn(x)−M
Pn(a)
dn−1

Kn−1(x, a), n ≥ 0,

with d1 = 1 and K−1(x, y) = 0.

To conclude this section, we state a lemma that will be needed later on.

Lemma 2. If u, v ∈ P′ are related by xv = u + Mδ(x− a) + Nδ(x), M, a 6= 0, then v = x−1u + M
a δ(x−

a) + (〈v, 1〉 − M
a )δ(x)− Nδ′(x).

Proof. For any polynomial p, it is enough to consider the action of the linear functional xv, defined as
above, on q(x) = p(x)−p(0)

x .

2.1. Semiclassical and Classical Linear Functionals

Let φ and ψ be two nonzero polynomials such that deg(φ) = m ≥ 0 and deg(ψ) = n ≥ 1 with
leading coefficients am and bn, respectively. (φ, ψ) is said to be an admissible pair if either m− 1 6= n
or if m − 1 = n, then kan+1 − bn 6= 0 for every k ∈ N. U ∈ P′ is said to be a semiclassical linear
functional if there exists an admissible pair (φ , ψ), where φ is monic, such that the following differential
relation holds,

D (φU) + ψU = 0, (Pearson equation). (20)

If U ∈ P′ is a semiclassical linear functional, then the nonnegative integer number:

s = min
Φ

max{deg φ− 2, deg ψ− 1},

is said to be the class of U. Here, Φ denotes the set of all admissible pairs of nonzero polynomials
(φ, σ) such that (20) holds. With respect to the class of a semiclassical linear functional, we describe the
next irreducibility condition.

Proposition 3 ([12]). Suppose that U ∈ P′ is semiclassical and D (φU) + ψ(x)U = 0. The class of U is a
non-negative real number s = max{deg φ− 2, deg ψ− 1} if and only if:∣∣φ′(c) + ψ(c)

∣∣+ ∣∣∣〈U, θcψ + θ2
c φ
〉∣∣∣ > 0, (21)

for every zero c of φ.

Next, we summarize some characterizations of semiclassical linear functionals.

Theorem 2 (see [12]). Let u be a quasi-definite linear functional and {Pn}n≥0 the corresponding MOPS. u is
semiclassical of class s if and only if one of the next equivalent conditions holds.

(A) There exists a polynomial φ̃, with deg(φ̃) = t ≤ s + 2, such that the MOPS {Pn}n≥0 satisfies:

φ̃(x)
P′n+1(x)

n + 1
=

n+t

∑
k=n−s

an,kPk(x), n ≥ s, (22)
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with an,n−s 6= 0 and n ≥ s + 1.

(B) There exists a monic polynomial φ̃ such that the sequence
{

P′n+1
n+1

}
n≥0

is quasi-orthogonal of order s

with respect to φ̃u, i.e., 〈
φ̃u, xk P′n+1(x)

n + 1

〉
= 0, k ≤ n− s− 1,

and: 〈
φ̃u, xn−s P′n+1(x)

n + 1

〉
6= 0.

Remark 2. Notice that the classification of semiclassical quasi-definite linear functionals of class s = 1 is given
in [13]. The semiclassical linear functionals of Class 2 are described in [41].

U ∈ P′ is said to be classical if its class is s = 0, i.e., there exist nonzero polynomials φ and ψ, with
deg(φ) ≤ 2 and deg(ψ) = 1, such that (20) holds. In this case, the MOPS associated with U is called
a classical MOPS. Up to an affine transformation on the variable, the Hermite, Laguerre, Bessel, and
Jacobi polynomials are the classical MOPS (see Table 1). Besides, except the Bessel polynomials, if U is
classical, then, under certain restrictions on the parameters, it is positive-definite, and it has an integral
representation with respect to a weight function ω on an interval (a, b), as described in Table 2.

Table 1. Quasi-definite classical orthogonal polynomials.

Linear
Functional φ; ψ

Restriction on
the Parameters

H, (Hermite) 1; 2x -

L(α), (Laguerre) x; −x− α− 1, −α /∈ N,

B(α), (Bessel) x2;−2(αx + 1), −α /∈ N

J (α,β), (Jacobi) x2 − 1;
−(α + β + 2)x + α− β

− α,−β /∈ N,
−α− β /∈ N\ {1}

Table 2. Positive-definite classical orthogonal polynomials.

Linear
Functional (a, b) ω(x) Restriction on

the Parameters

H (−∞, ∞) e−x2
-

L(α) [0, ∞) xαe−x, α > −1

J (α,β) [−1, 1] (1− x)α(1 + x)β, α, β > −1

The shifted Jacobi functional on a finite interval [a, b] will be denoted by J (α,β)
[a,b] , and J (α,β)

[−1,1] :=

J (α,β). Furthermore, the shifted Laguerre functional on [a, ∞) will be denoted by L(α)
[a,∞)

, and L(α)
[0,∞)

:=

L(α). In this way, the Jacobi functional J (α,β)
[a,b] satisfies:

D
[
(x− a) (x− b)J (α,β)

[a,b]

]
= ((α + β + 2) x + [a (α + 1) + b (β + 1)])J (α,β)

[a,b] ,

and: 〈
J (α,β)
[a,b] , p(x)

〉
=
∫ b

a
p(x) (b− x)α (x− a)β dx, p ∈ P.
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The Laguerre functional L(α,β)
[a,∞)

satisfies:

D
(
(x− a)Lα

[a,∞)

)
= (−x + α + a + 1)Lα

[a,∞),

and: 〈
Lα
[a,∞), p(x)

〉
=
∫ ∞

a
p(x)e−x(x− a)αdx, p ∈ P.

2.2. Symmetric Linear Functionals

A linear functional U ∈ P′ is called symmetric if u2n+1 =
〈
U, x2n+1〉 = 0, for every n ∈ N

(see [3] for other characterizations of symmetric regular linear functionals). If U ∈ P′ is symmetric
and quasi-definite and {Pn}n≥0 is its corresponding MOPS, then we can define ũ ∈ P′ by:

〈ũ, xn〉 =
〈

U, x2n
〉

, n ∈ N, (23)

and the sequences of monic polynomials {An}n≥0 and {Ãn}n≥0 by:

P2n(x) = An(x2) and P2n+1(x) = xÃn(x2). (24)

Theorem 3 ([3]). If U ∈ P′ is a symmetric and quasi-definite linear functional and {Pn}n≥0 is its
corresponding MOPS, then ũ, defined by (23), is quasi-definite. Besides, {An}n≥0 and {Ãn}n≥0 defined
by (24) are the MOPS with respect to ũ and xũ, respectively.

Conversely, if ũ ∈ P′ is quasi-definite, we can define the symmetric linear functional U ∈ P′

given by: 〈
U, x2n

〉
= 〈ũ, xn〉 and

〈
U, x2n+1

〉
= 0, n ≥ 0. (25)

Theorem 4 ([3]). If ũ and xũ are quasi-definite linear functionals on P′ and {An}n≥0 and {Ãn}n≥0 are their
corresponding MOPS, then the symmetric linear functional U ∈ P′ defined by (25) is quasi-definite, and its
MOPS {Pn}n≥0 is given by (24).

Remark 3. Notice that {Ãn}n≥0 are the kernel polynomials with κ-parameter zero associated with ũ. Besides,
U is called the symmetrized linear functional of ũ.

Theorem 5 ([3]). U is positive definite on
[
−
√

b,
√

b
]

if and only if ũ and xũ are positive-definite on [a, b]
with a ≥ 0.

Now, we deduce some interesting consequences of (14).

Lemma 3. Let U be the symmetrization of ũ ∈ P′. Let σ be a polynomial with nonzero simple zeros. Then,
for every polynomial q, we get: 〈

σ−1(x2)U, q(x2)
〉
=
〈

σ−1(x)ũ, q(x)
〉

. (26)

Proof. If σ(x) =
k

∏
i=1

(x− xi), let σ(x) = σ(x2) =
2k
∏
i=1

(x− yi), where y2j =
√xj and y2j−1 = −√xj for

j = 1, ..., k. Then, from (14):

〈
σ−1(x2)U, q(x2)

〉
=
〈

σ−1(x)U, q(x2)
〉
=

〈
U,

q(x2)− Lσ(x; q(x2))

σ(x)

〉
,
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and from (15):

Lσ(x; q(x2)) =
2k

∑
i=1

q(y2
i )

σ(x)
(x− yi)σ

′(yi)

=
k

∑
i=1

q(xi)σ(x2)

σ′(xi)2yi

[
1

(x−√xi)
− 1

(x +
√

xi)

]

=
k

∑
i=1

q(xi)σ(x2)

σ′(xi)(x2 − xi)
,

then:

〈
σ−1(x2)U, q(x2)

〉
=

〈
U,

q(x2)−
k
∑

i=1

q(xi)σ(x2)

σ′(xi)(x2 − xi)

σ(x2)

〉
.

Besides, since U is the symmetrization of ũ, then for any polynomial p,
〈
U, p(x2)

〉
= 〈ũ, p(x)〉 ,

and as a consequence,

〈
σ−1(x2)U, q(x2)

〉
=

〈
ũ,

q(x)−
k
∑

i=1

q(xi)σ(x)
σ′(xi)(x−xi)

σ(x)

〉

=

〈
ũ,

q(x)− Lσ(x; q(x))
σ(x)

〉
=

〈
σ−1(x)ũ, q(x)

〉
.

Given a semiclassical quasi-definite linear functional ũ, the semiclassical character of the
symmetrized linear functional of ũ, its class and the respective Pearson equation are described in the
next theorem.

Theorem 6 ([38]). Let ũ ∈ P′ be semiclassical of class s̃ satisfying the Pearson equation:

D
[
φ̃(x)ũ

]
+ ψ̃(x)ũ = 0, (27)

and xũ is a quasi-definite linear functional and Ψ̂(x) := φ̃′(x) + 2ψ̃(x). Then, U, the symmetrization of ũ,
is semiclassical of class s satisfying the Pearson equation:

D [φ(x)U] + ψ(x)U = 0, (28)

where the number s and the polynomials φ and ψ are defined according to the next cases:
(i) If

φ̃(0) = 0 and Ψ̂(0) = 0, (29)

then:
φ(x) = (θ0φ̃)(x2), ψ(x) = x

[
2(θ0ψ̃)(x2) + (θ2

0 φ̃)(x2)
]

, (30)

and s = 2s̃.
(ii) If

φ̃(0) = 0 and Ψ̂(0) 6= 0, (31)

then:
φ(x) = x(θ0φ̃)(x2), ψ(x) = 2ψ̃(x2),
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and s = 2s̃ + 1.
(iii) If φ̃(0) 6= 0, then:

φ(x) = xφ̃(x2), ψ(x) = 2
[

x2ψ̃(x2)− φ̃(x2)
]

,

and s = 2s̃ + 3.

Corollary 1. If s is odd, the polynomials φ and ψ in (28) are, respectively, odd and even functions. If s is even,
the polynomials φ and ψ in (28) are, respectively, even and odd functions.

In the cases J (α,β)
[0,1] and L(α), where the weight functions are ω(x) = (1− x)αxβ on [0, 1] and

ω(x) = xαe−x on [0, ∞), respectively, the new weight functions associated with the symmetrized

linear functionals J (α,β)
[0,1] and L(α) are ω(x) = (1− x2)α |x|2β+1 on [−1, 1] (the generalized Gegenbauer

weight) and ω(x) = |x|2α+1 e−x2
on R (the generalized Hermite weight), respectively. Notice that〈

J (α,β)
[0,1] , p(x2)

〉
=
〈
J (α,β)
[0,1] , p(x)

〉
and

〈
L(α), p(x2)

〉
=
〈
L(α), p(x)

〉
for any polynomial p.

If u is a positive-definite linear functional, with weight function ω on the interval I, and if p and q
are polynomials, then the linear functional with weight |p(x)|

|q(x)|ω(x) (provided this is a weight function)

will be represented by |p(x)|
|q(x)| u.

Remark 4. In the symmetric framework, the quasi-definite semiclassical linear functionals of Class 1 were
described in [38], and in [37], the symmetric quasi-definite linear functionals of Class 2 were given. Finally,
examples of symmetric semiclassical linear functionals of Class 3 were studied in [42].

2.3. (1, 1)-Coherent Pairs

In [9], the (1, 1)-coherence relation:

T′n+1(x)
n + 1

+ ãn−1
T′n(x)

n
= Qn(x) + b̃n−1Qn−1(x), ãn−1 6= 0, n ≥ 1, (32)

was studied, where {T n}n≥0 and {Q n}n≥0 are orthogonal with respect to quasi-definite linear
functionals u and v, respectively. In such a paper, the following result is proven.

Theorem 7 ([9]). If (u, v) is a (1, 1)-coherent pair given by (32), such that ã0 6= b̃0, (or, equivalently, Qn 6=
T′n+1
n+1 , for n ≥ 1), then:

(i) Either u is a semiclassical linear functional of class at most 1, i.e., there exist polynomials β̃ and ϕ with
deg(β̃) ≤ 3 and deg(ϕ) ≤ 2 such that:

D[β̃u] = −ϕu.

(ii) Or v is a semiclassical linear functional of class at most 1, i.e., there exist polynomials β̃ and ϕ with
deg(β̃) ≤ 3 and deg(ϕ) ≤ 2 such that:

D[β̃v] = −ϕv.

Furthermore, there exists a constant ζ such that the pair (u, v) satisfies:

(x− ζ)v = β̃u. (33)

Moreover, in [9], all (1, 1)-coherent pairs of linear functionals were determined. Besides, in each
case (i) and (ii) of the above theorem, the pair (u, v) is called either type I or type II, respectively.
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2.4. Symmetric (1, 1)-Coherent Pairs

From now on, U and V will denote two symmetric quasi-definite linear functionals, and {Pn}n≥0
and {Rn}n≥0 will be their corresponding MOPS, respectively. For the above linear functionals,
the normalization 〈U, 1〉 = 〈V, 1〉 = 1 is assumed, as well as the existence of sequences of nonzero real
numbers {an}n≥0 and {bn}n≥0 , with an 6= 0, such that:

P′n+3(x)
n + 3

+ an
P′n+1(x)

n + 1
= Rn+2(x) + bnRn(x), n ≥ 0, (34)

holds. In this case, (U, V) is said to be a symmetric (1, 1)-coherent pair.
In [28], the relation (34) was studied. Indeed, when U is a classical linear functional, the authors

obtained the coefficients of the three-term recurrence relation that the MOPS {Rn}n≥0 satisfies. Besides,
its companion linear functional is a rational modification of U.

Lemma 4 ([9]). Let (U, V) be a symmetric (1, 1)-coherent pair given by (34). a0 6= b0 and a1 6= b1 if and only

if Rn 6=
P′n+1
n+1 for n ≥ 2.

Since U and V are symmetric quasi-definite linear functionals, from (24), we can define:

P2m(x) = Am(x2) and P2m+1(x) = xÃm(x2),

R2m(x) = Bm(x2) and R2m+1(x) = xB̃m(x2),

where {An}n≥0, {Ãn}n≥0, {Bn}n≥0, and {B̃n}n≥0 are the MOPS with respect to ũ, xũ, ṽ, and
xṽ, respectively.

Next, we will deduce some relevant results to be used in the sequel. For n ≥ 0 and from (34),
we obtain:

P′2n+3(x)
2n + 3

= R2n+2(x) +
n

∑
j=0

(−1)j

(
j

∏
k=0

ũ2n−2(k−1)

) (
s2n−2j − u2n−2j

)
R2n−2j(x),

where:

ũ2n−2(k−1) =

{
u2n−2(k−1), 1 ≤ k ≤ j,

1, k = 0,

and for n ≥ 1:

P′2n+2(x)
2n + 2

= R2n+1(x) +
n−1

∑
j=0

(−1)j

(
j

∏
k=0

ũ2n−2k+1

) (
s2n−1−2j − u2n−1−2j

)
R2n−1−2j(x),

where:

ũ2n−2k+1 =

{
u2n−2k+1, 1 ≤ k ≤ j,

1, k = 0.

Let us define r2n+1(x) := R2n+1(x) + A2n+1x, n ≥ 1. Then:

0 =

〈
(R2n+1 + A2n+1x) v,

P′2n+4
2n + 4

〉

= (s2n+1 − u2n+1)
〈

v, R2
2n+1

〉
+ A2n+1(−1)n

(
n−1

∏
k=0

u2n+1−2k

)
(s1 − u1)

〈
v, R2

1

〉
,
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if and only if:

A2n+1 =
(s2n+1 − u2n+1)

〈
v, R2

2n+1
〉

(−1)n+1
(

n−1
∏

k=0
u2n+1−2k

)
(s1 − u1)

〈
v, R2

1
〉 , n ≥ 1,

and inductively, we can prove that
〈
(R2n+1 + A2n+1x) v, P′2n+2k

〉
= 0 for k ≥ 2. On the other hand,

for n ≥ 1, we define r2n(x) := R2n(x) + A2n. Then:〈
r2nv,

P′2n+3
2n + 3

〉
= (s2n − u2n)

〈
v, R2

2n

〉
+ A2n

〈
v, (−1)n

(
n

∏
k=0

ũ2n−2(k−1)

)
(s0 − u0)

〉
= 0

if and only if:

A2n =
(s2n − u2n)

〈
v, R2

2n
〉

(−1)n+1
(

n
∏

k=1
u2n−2(k−1)

)
(s0 − u0)

.

Furthermore,
〈

r2nv, P′k
k

〉
= 0, k ≥ 2n + 2. On the other hand, let us consider the linear functional

r2n+1v and its expansion in terms of the dual basis {Ûn}n≥0 associated with { P′n+1
n+1 }n≥0. Namely,

r2n+1v =
∞

∑
k=0

λ̃nkÛk, λ̃nk =

〈
r2n+1v,

P′k+1
k + 1

〉
= 0 , k ≥ 2n + 2,

where λ̃nk =

〈
r2n+1v,

P′k+1
k+1

〉
= 0, if k + 1 is odd. If r2n+1v = ∑n

k=0 λ̃n,2k+1Û2k+1, then we can apply

the distributional derivative on both sides, and we obtain:

D [r2n+1v] = −
n

∑
k=0

λ̃n,2k+1(2k + 2)U2k+2,

where {Un}n≥0 is the dual basis associated with {Pn}n≥0. Since Um = Pm
〈u,P2

m〉u, then:

D [r2n+1v] = −

 n

∑
k=0

λ̃n,2k+1(2k + 2)
P2k+2〈

u, P2
2k+1

〉
 u.

In an analogous way, for n ≥ 1, we consider r2nv and, as above,

r2nv =
∞

∑
k=0

λnkÛk, λnk =

〈
r2nv,

P′k+1
k + 1

〉
= 0, if k ≥ 2n + 3,

and λnk =

〈
r2nv,

P′k+1
k+1

〉
= 0, if k + 1 is even. Then, D [r2nv] = −∑n

k=0 λn,2k(2k + 1)U2k+1 and:

D [r2nv] = −

 n

∑
k=0

λn,2k(2k + 1)
P2k+1(x)〈
u, P2

2k+1

〉
 u.

Next, we summarize the above results.
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Proposition 4. For m ≥ 2, there exist polynomials rm and φm+1 with deg rm = m, deg φm+1 ≤ m + 1
such that:

D [rmv] = −φm+1u, m ≥ 2, (35)

with rm(x) := Rm(x) + Amx
(

1−(−1)m
2

)
,

Am =
(sm − um)

〈
v, R2

m
〉

(−1)[m/2]+1
(

n
∏

k=1
um+2−2k

)(
s 1−(−1)m

2
− u 1−(−1)m

2

)〈
v, R2

1−(−1)m
2

〉 .

Moreover,

φ2n+2(x) =
n

∑
k=0

λ̃n,2k+1(2k + 2)〈
u, P2

2k+2

〉 P2k+2(x), n ≥ 1, (36)

and:

φ2n+1(x) =
n

∑
k=0

λn,2k(2k + 1)〈
u, P2

2k+1

〉 P2k+1(x), n ≥ 1. (37)

3. Symmetric (1, 1)-Coherent Pairs and Symmetrization

The concept of symmetric (1, 1)-coherent pair was introduced in [9] where, among others,
the relation between connection coefficients in the coherence relation and recurrence coefficients
for the MOPS, and the particular case when u is classical, were deeply studied. The associated inverse
problem was solved in [43]. Namely,

Theorem 8. Let (u, v) be a symmetric (1,1)-coherent pair. There exist polynomials A, B, and C with deg(A) =

4, deg(B) ≤ 5, and deg(C) ≤ 6, such that:

A(x)Dv = B(x)u, (38)

B(x)v = C(x)Dv, (39)

xC(x)u = xA(x)v, (40)

where:

A(x) =
r′4(x)r2(x)− r4(x)r′2(x)

x
, (41)

B(x) =
r′2(x)φ5(x)− r′4(x)φ3(x)

x
, (42)

C(x) =
r4(x)φ3(x)− r2(x)φ5(x)

x
. (43)

Depending on the nature of the zeros of A, it is possible to refine the rational relation (40). Besides,
according to (41), A is an even function. In this way, either A(x) = 2(x2 − ξ2

1)(x2 − ξ2
2), ξ2

1 6= ξ2
2,

or A(x) = 2
(

x2 − ξ2)2 . In the sequel, we will assume that ξ2
1, ξ2

2 ∈ R. Next, we study each case.

Definition 4. Given an even polynomial p of degree 2n, the polynomial pE, with of deg(pE) = n, is defined as
pE(x2) := p(x).

Lemma 5. (i) Let u and v be the symmetrized functionals of ũ and ṽ, respectively. If φ and ψ are even
polynomials such that φu = ψv, holds, then φEũ = ψEṽ. Besides, the converse also holds.

(ii) If u and v satisfy D (xφu) = ψv, where φ and ψ are even polynomials, then D
(

xφEũ
)
= 1

2 ψEṽ.
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3.1. Case A(x) = 2
(

x2 − ξ2)2

If A(x) = 2
(

x2 − ξ2)2, then (40) can be written as xC(x)u = 2x
(
x2 − ξ2)2 v, as well as r2(x) =

x2 − a2 and r4(x) = x4 + f x2 + g. As a consequence, A(x) = 2x4 − 4x2ξ2 + 2ξ4, where ξ2 = a2

and f a2 + g = ξ4. Thus, r2(x) = x2 − ξ2. Since (xA(x))′ = r′′4 (x)r2(x) − r4(x)r′′2 (x), we deduce
r′′4 (ξ)r2(ξ) − 2r4(ξ) = 0. From this expression, taking into account r2(ξ) = 0, we get r4(ξ) = 0.
As a consequence, r4(x) = r2(x)ρ2(x), where ρ2 is a even and monic polynomial with deg(ρ2) = 2.
From (43),

C(x) = r4(x)
φ3(x)

x
− r2(x)

φ5(x)
x

= r2(x)
(

ρ2(x)
φ3(x)

x
− φ5(x)

x

)
= r2(x)σ4(x).

According to (42), B(x) = 2φ5(x)− 2 (ρ(x) + r2(x)) φ3(x), then from (38), we get:

r2
2(x)Dv =

(
φ5(x)−

(
x2 + r2(x)

)
φ3(x)

)
u.

For m = 2, multiplying (35) by r2(x), we deduce r2
2(x)Dv = −r2(x)φ3(x)u− 2xr2(x)v. On the

other hand, from the above expressions, we get:

(φ5(x)− (ρ(x) + r2(x)) φ3(x)) u + r2(x)φ3(x)u + 2xr2(x)v = 0,

i.e.,
(φ5(x)− ρ(x)φ3(x)) u + 2xr2(x)v = 0.

Thus, we get:
xσ4(x)u = 2xr2(x)v, (44)

where:

σ4(x) = ρ(x)
φ3(x)

x
− φ5(x)

x
. (45)

If a symmetric (1, 1)-coherent pair (u, v) satisfies (44), then:

x2σ4(x)u = 2x2r2(x)v. (46)

Through the symmetrization process, we can find pairs (u, v) of symmetric linear functionals
such that (46) holds. Among such pairs, we will identify all the symmetric (1, 1)-coherent ones later on.

Lemma 6. (i) For m = 2n, (35) implies:

xD
(

rE
2n(x)ṽ

)
= −1

2
rE

2n(x)ṽ− 1
2

xφ̃E
2n(x)ũ,

where φ2n+1(x) := xφ̃2n(x).
(ii) For m = 2n + 1, (35) yields:

D
(

xr̃E
2n(x)ṽ

)
= −1

2
xφE

2n+2(x)ũ,

where r2n+1(x) = xr̃2n(x).

Proof. We will prove (ii). The proof of (i) is similar. The Pearson-type relation is equivalent to:

D(xr̃2n(x)v) = −φ2n+2(x)u. (47)
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For every polynomial p,〈
D
(

xr̃E
2n(x)ṽ

)
, p(x)

〉
= −

〈
ṽ, xr̃E

2n(x)p′(x)
〉

= −
〈

v, x2r̃2n(x)p′(x2)
〉

=
1
2

〈
D (xr̃2n(x)v) , p(x2)

〉
,

and from (47): 〈
D
(

xr̃E
2n(x)ṽ

)
, p(x)

〉
= −1

2

〈
φ2n+2(x)u, p(x2)

〉
= −1

2

〈
φE

2n+2(x)ũ, p(x)
〉

.

Thus, our statement follows.

From the previous lemma, we get that D(r2(x)v) = −φ3(x)u implies:

xD
(

rE
2 (x)ṽ

)
= −1

2
rE

2 (x)ṽ− 1
2

xφ̃E
2 (x)ũ. (48)

On the other hand, D(r3(x)v) = −φ4(x)u is equivalent to:

D(xr̃E
2 (x)ṽ) = −1

2
φE

4 (x)ũ, (49)

and D(r4(x)v) = −φ5u = −xφ̃4(x)u yields:

xD(rE
4 (x)ṽ) = −1

2
rE

4 (x)ṽ− 1
2

xφ̃E
4 (x)ũ. (50)

On the other hand, let u and v be the symmetrizations of ũ and ṽ, respectively. Then,

Lemma 7. u and v satisfy (46) if and only if ũ and ṽ satisfy:

xσE
4 (x)ũ = 2xrE

2 (x)ṽ. (51)

Proof. We assume that x2σ4(x)u = 2x2r2(x)v. Let p be any polynomial. Then:

〈
xσE

4 (x)ũ, p(x)
〉
=
〈

u, )x2 p(x2σE
4 (x2)

〉
=
〈

2xrE
2 (x)ṽ, p(x)

〉
.

On the other hand, assume that xσE
4 (x)ũ = 2xrE

2 (x)ṽ. If p(x) =
n
∑

k=0
akxk, then pE(x2) =

[n/2]
∑

k=0
a2kx2k.

As a consequence,
〈

x2σ4(x)u, p(x)
〉
=
〈
2x2r2(x)v, p(x)

〉
.

Taking derivatives on both sides of (51) and by using (48), we get:

D(xσE
4 (x)ũ) = 2D(xrE

2 ṽ) = rE
2 (x)ṽ− xφ̃E

2 (x)ũ.

If we multiply by x, then from (51):

xD(xσE
4 (x)ũ) = xrE

2 (x)ṽ− x2φ̃E
2 (x)ũ =

(
1
2

xσE
4 (x)− x2φ̃E

2 (x)
)

ũ
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and, equivalently,

D(x2σE
4 (x)ũ) =

(
1
2

xσE
4 (x) + xσE

4 (x)− x2φ̃E
2 (x)

)
ũ =

(
3
2

xσE
4 (x)− x2φ̃E

2 (x)
)

ũ.

Next we summarize the above results.

Proposition 5. If A(x) = 2
(

x2 − ξ2)2 and (u, v) is a symmetric (1, 1)-coherent pair, then (ũ, ṽ) satisfy (51)
and:

D(φ̃ũ) + ψ̃ũ = 0, (52)

where:
φ̃(x) = x2σE

4 (x),

σE
4 (x) = xφ̃E

2 (x)− φ̃E
4 (x),

and:
ψ̃(x) = x2φ̃E

2 (x)− 3
2

xσE
4 (x) = −1

2
x2φ̃E

2 (x) +
3
2

xφ̃E
4 (x).

Moreover, deg ψ̃ ≤ 3 and deg φ̃ ≤ 4. As a consequence, ũ is a semiclassical linear functional of class at most 2.

In the sequel, given a linear functional Ũ and its symmetrized U,
{

µ̃U
n
}

n≥0 and
{

µU
n
}

n≥0 will

denote the corresponding moment sequences. From (37), we get φ3(x) =
λ1,0

〈u,P2
1 〉

x +
3λ1,2

〈u,P2
3 〉

P3(x),

with λ1,0 = 〈v, r2〉 = µv
2 − ξ2. After some straightforward calculations, we get:

λ1,2 = µv
4 −

(
ξ2 +

1
3

γu
1 +

1
3

γu
2

)
µv

2 +
ξ2

3
(γu

1 + γu
2 ) ,

where {γu
n}n≥1 are the coefficients of the three-term recurrence relation that the MOPS {Pn}n≥0

satisfies. Then:

φ̃E
2 (x) =

3λ1,2〈
u, P2

3
〉 x +

(
λ1,0〈
u, P2

1
〉 − 3λ1,2〈

u, P2
3
〉 (γu

1 + γu
2 )

)
.

In particular,

φ̃E
2 (0) =

µv
2 − ξ2〈
u, P2

1
〉 − 3µv

4 − 3
(

ξ2 + 1
3 γu

1 + 1
3 γu

2

)
µv

2 + ξ2 (γu
1 + γu

2
)〈

u, P2
3
〉 (γu

1 + γu
2 ) . (53)

From (51) and taking into account that ũ is a linear functional of class s ≤ 2, according to the
above classification, we can find its companion ṽ. As a consequence, we can deduce all the candidates
(u, v) to be symmetric (1, 1)-coherent pairs. From (52), we get:

x2σE
4 (x)D(ũ) = −

(
ψ̃(x) +

(
x2σE

4 (x)
)′)

ũ. (54)

In the sequel, we consider s̃ ≤ 1. The case s̃ = 2 will not be considered. From the classification
of the semiclassical linear functionals of class s̃ ≤ 1, we will analyze the semiclassical character of ũ
taking into account the algebraic structure of σE

4 (x).

3.1.1. ũ of Class s̃ = 0

In order to arrive at a classical case, we start the discussion by considering the following situations:
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(i) σE
4 (x) = x2, ψ̃(x) = x2 (φ̃E

2 (x)− 3
2 x
)

. From (52), we get D(x4ũ) = −x2 (φ̃E
2 (x)− 3

2 x
)

ũ
or, equivalently,

D(x2ũ) = −
(

φ̃E
2 (x) +

1
2

x
)

ũ + N1δ(x) + N2δ′(x).

It is easy to see that N1 =
〈

ũ, φ̃E
2 (x) + 1

2 x
〉

and N2 = 1
2
〈
ũ, x2〉− 〈ũ, xφ̃

E(x)
2

〉
. Thus, if

〈
ũ, φ̃E

2 (x)
〉
+

1
2 µ̃u

1 = 1
2 µ̃u

2 −
〈
ũ, xφ̃E

2 (x)
〉
= 0, then ũ is the Bessel classical functional, since:

D(x2ũ) = −
(

φ̃E
2 (x) +

1
2

x
)

ũ.

(ii) σE
4 (x) = x(x − 1), ψ̃(x) = x2 (φ̃E

2 (x)− 3
2 (x− 1)

)
. Then, D(x3(x − 1)ũ) =

−x2 (φ̃E
2 (x)− 3

2 (x− 1)
)

ũ. This yields:

D(x(x− 1)ũ) = −
(

φ̃E
2 (x) +

1
2
(x− 1)

)
ũ + N1δ(x) + N2δ′(x),

where N1 =
〈

ũ, φ̃E
2 (x) + 1

2 (x− 1)
〉

and N2 = 1
2 〈ũ, x(x− 1)〉 −

〈
ũ, xφ̃E

2 (x)
〉
. If

〈
ũ, φ̃E

2 (x)
〉
+ 1

2 (µ̃
u
1 −

1) = 1
2 (µ̃

u
2 − µ̃u

1 ) −
〈
ũ, xφ̃E

2 (x)
〉
= 0, then ũ = J (α,β)

[0,1] , i.e., the Jacobi classical functional on [0, 1],
such that:

D(x(x− 1)ũ) = −
(

φ̃E
2 (x) +

1
2
(x− 1)

)
ũ.

(iii) σE
4 (x) = x, ψ̃(x) = x2 (φ̃E

2 (x)− 3
2
)
. From (52), we get x3D(ũ) = −

(
x2 (φ̃E

2 (x)− 3
2
)
+ 3x2) ũ and:

xD(ũ) = −
(

φ̃E
2 (x) +

3
2

)
ũ + N1δ(x) + N2δ′(x).

Then, 〈xD(ũ), 1〉 = −
〈
ũ,
(
φ̃E

2 (x) + 3
2
)〉

+ N1 and 〈xD(ũ), x〉 = −
〈
ũ, φ̃E

2 (x) + 3
2 x
〉
− N2. If:

N1 =
〈

ũ, φ̃E
2 (x)

〉
+

1
2
= 0,

and N2 = −
〈

ũ, φ̃
E(
2 x)

〉
+ 1

2 µ̃u
1 = 0, we get D(xũ) = −

(
φ̃E

2 (x) + 1
2

)
ũ, i.e., ũ is the classical Laguerre

linear functional.

Remark 5. We do not consider σE
4 (x) = 1, since in such a case, ũ is the classical Hermite functional.

3.1.2. ũ of Class s̃ = 1

In order to analyze the semiclassical case when s̃ = 1, we will discuss two possible situations in
order to reduce the degrees of the polynomials involved in the initial Pearson equation.

(a)
(i) σE

4 (x) = x2, ψ̃(x) = x2 (φ̃E
2 (x)− 3

2 x
)
. From (52):

x3D(ũ) = −
(

ψ̃(x) + 4x3
)

ũ = −x
((

φ̃E
2 (x)− 3

2
x
)
+ 4x

)
ũ + Mδ(x).

If:

M =
〈

x3D(ũ), 1
〉
+

〈
x
(

φ̃E
2 (x) +

5
2

x
)

ũ, 1
〉

=
〈

ũ, xφ̃E
2 (x)

〉
− 1

2
µ̃u

2 = 0,
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then you can reduce the Pearson equation to:

D(x3ũ) = −x
(

φ̃E
2 (x) +

5
2

x
)

ũ + 3x2ũ =

(
−xφ̃E

2 (x) +
1
2

x2
)

ũ,

and you have here ψ̃(x) = xφ̃E
2 (x)− 1

2 x2, ψ̃(0) = 0 and ψ̃′(0) = φ̃E
2 (0). If φ̃E

2 (0) 6= 0, then ũ corresponds
to the case A3,2 of Belmehdi’s classification in [13], and as a consequence, ũ = x−1B(α) + Mδ(x).

(ii) σE
4 (x) = x(x− 1), ψ̃(x) = x2 (φ̃E

2 (x)− 3
2 (x− 1)

)
. In this case:

x2(x− 1)D(ũ) = −
(

xφ̃E
2 (x)− 3

2
x2 +

3
2

x + 4x2 − 3x
)

ũ + M1δ(x).

Then:

M1 = −3
〈

ũ, x2
〉
+ 2 〈ũ, x〉+

〈
ũ, xφ̃E

2 (x)
〉
+

5
2

〈
ũ, x2

〉
− 3

2
〈ũ, x〉

=
〈

ũ, xφ̃E
2 (x)

〉
− 1

2
µ̃u

2 +
1
2

µ̃u
1 .

If M1 = 0, then D(x2(x− 1)ũ) = −
(

xφ̃E
2 (x) + 1

2 x− 1
2 x2
)

ũ, and according to the case A2 in [13], ũ

has an integral representation in terms of the weight function w(x) = (1− x)α xβe−
γ
x , on [0, 1], with

αγ 6= 0, γ > 0, α > −1.
(iii) σE

4 (x) = (x− 1)(x− ζ), ζ 6= 0, 1, ψ̃(x) = x
(
xφ̃E

2 (x)− 3
2 (x− 1)(x− ζ)

)
. Then,

D(x(x− 1)(x− ζ)ũ) = −
(

xφ̃E
2 (x)− 1

2
(x− 1)(x− ζ)

)
ũ + Mδ(x).

If:

M =
〈

ũ, xφ̃E
2 (x)

〉
− 1

2
µ̃u

2 +

(
1
2

ζ +
1
2

)
µ̃u

1 −
1
2

ζ = 0,

this corresponds to the case A1 in [13] with ω̃(x) = (1− x)α xβ |x− ζ|γ on [0, 1] with the conditions
αβγ 6= 0, α, β, γ > −1, ζ ∈ (0, 1).

(b)
(i) σE

4 (x) = x, ψ̃(x) = x2 (φ̃E
2 (x)− 3

2
)
. As above, if M =

〈
ũ, xφ̃E

2
〉
− 1

2 µ̃u
1 = 0, then:

D(x2ũ) = −x
(

φ̃E
2 (x)− 1

2

)
, ũ,

and according to the case B2 in [13], we obtain an integral representation of ũ in terms of the
weight function:

w(x) = xα (1 + x)β+1 e−x+ β
x ,

on [0, ∞), with β < 0, α, β > −1.
(ii) σE

4 (x) = x − 1, ψ̃(x) = x
(
xφ̃E

2 (x)− 3
2 (x− 1)

)
. Then, D(x(x − 1)ũ) =

−
(

xφ̃E
2 (x)− 1

2 (x− 1)
)

ũ, when M =
〈
ũ, xφ̃E

2 (x)
〉
− 1

2 µ̃u
1 + 1

2 = 0. This is the case B1 in [13] with

ω(x) = (1− x)α+1 xβ+1e−λx on [0, 1] and the conditions αβ 6= 0, α, β > −1.

(iii) σE
4 (x) = 1, ψ̃(x) = x

(
xφ̃E

2 (x)− 3
2
)
. If M =

〈
ũ, xφ̃E

2
〉
− 1

2 = 0, then D(xũ) =

−
(

xφ̃E
2 (x)− 1

2

)
ũ, and according to the case B3 in [13], we get that ũ is represented in terms of

the weight function w(x) = x2µe−x2−λx, on R+, µ > −1/2, λ ∈ R.
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As in the classical case, it is possible to reduce (51). Indeed, the general form of the Pearson
equation is:

D(xσE
4 (x)ũ) = −

(
xφ̃E

2 (x)− 1
2

σE
4 (x)

)
ũ.

Taking derivatives in (51) and using (48), we get 2D(xrE
2 (x)ṽ) = −

(
xφ̃E

2 (x)− 1
2 σE

4 (x)
)

ũ.
In other words,

rE
2 (x)ṽ− xφ̃E

2 (x)ũ = −xφ̃E
2 (x)ũ +

1
2

σE
4 (x)ũ,

and as a consequence, 2rE
2 (x)ṽ = σE

4 (x)ũ.

Remark 6. Notice that according to Theorem 6, we get Ψ̂(x) = x
((

σE
4
)′
(x) + 2φ̃E

2 (x)
)

, and as a consequence,
the class of u is s = 2.

3.2. Case A(x) = 2(x2 − ξ2
1)(x− ξ2

2), ξ2
1 6= ξ2

2

In this case, the following result is obtained in [43].

Theorem 9. Suppose that A(x) = 2(x2 − ξ2
1)(x− ξ2

2), ξ2
1 6= ξ2

2. Then, there exist odd and even polynomials
ψ and φ, respectively, with deg ψ ≤ 3 and deg φ ≤ 4 such that:

D (φv) + ψv = 0. (55)

As a consequence, v is a semiclassical linear functional of class at most 2. Besides:

xφ(x)u = x(x2 − ξ2)v, (56)

holds, where ξ ∈ {ξ1, ξ2}. Furthermore, (x2 − ξ2)Dv = − (φ′(x) + ψ(x)) u.

Multiplying in (55) by x, if we define ψ(x) := xψ̃(x), where ψ̃ is an even polynomial of degree
≤ 2, and using the symmetrization process, after straightforward calculations, we get:

D
(

xφE(x)ṽ
)
= −1

2

(
xψ̃E(x)− φE(x)

)
ṽ, (57)

xφE(x)D(ũ) =
1
2

(
ρE(x) + 2x

)
ṽ−

(
2x(φE)′(x) +

1
2

xψ̃E(x) + φE(x)
)

ũ, (58)

xρE(x)D(ṽ) = −1
2

ρE(x)ṽ− 1
2

x
(

2(φE)′(x) + ψ̃E(x)
)

ũ, (59)

and:
xφE(x)ũ = x(x− ξ2)ṽ. (60)

Notice that ṽ is semiclassical of class s̃ ≤ 1. Next, the class of ṽ will be analyzed according to the zeros
of φE.

3.2.1. ṽ Semiclassical of Class s̃ = 0

(A1) φE(x) = x2. In this case, (57) can be written as D
(
x3ṽ
)
= − 1

2
(

xψ̃E(x)− x2) ṽ. Since ṽ is
classical, we can reduce the degree of the polynomials involved in this relation in one degree, namely
D
(

x2ṽ
)
= − 1

2
(
ψ̃E(x) + x

)
ṽ + Nδ(x). Since:

0 =
〈

D
(

x2ṽ
)

, 1
〉
= −1

2

〈(
ψ̃E(x) + x

)
ṽ, 1
〉
+ N,
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if N = 0, equivalently,
〈
ṽ, ψ̃E(x) + x

〉
= 0, then D

(
x2ṽ
)
= − 1

2
(
ψ̃E(x) + x

)
ṽ. In such a way, it is well

known that ṽ = B(α).
(A2) φE(x) = x(x− 1). (57) reads D (x(x− 1)ṽ) = − 1

2
[
ψ̃E(x) + (x− 1)

]
ṽ + Nδ(x). Since:

0 = 〈D (x(x− 1)ṽ) , 1〉 = −1
2

〈
ṽ, ψ̃E(x) + x− 1

〉
+ N,

if
〈
ṽ, ψ̃E(x) + x− 1

〉
= 0, then D (x(x− 1)ṽ) = − 1

2
[
ψ̃E(x) + (x− 1)

]
ṽ. This means that ṽ = J (α,β)

(0,1)
and:

〈ṽ, p(x)〉 =
∫ 1

0
p(x)(1− x)αxβdx.

(A3) φE(x) = x. If N =
〈
ṽ, ψ̃E(x) + 1

〉
= 0, then D (xṽ) = − 1

2
(
ψ̃E(x) + 1

)
ṽ. As a consequence,

ṽ = L(α).
On one hand, from the symmetrization process and since the class of ṽ is 0, the class s of v is

determined by the polynomial Ψ(x) =
(
φE)′ (x) + ψ̃E(x)− φE(x)

x . Indeed, if Ψ(0) = 0, then s = 0.
If Ψ(0) 6= 0, then s = 1. In Table 3, we describe the conditions leading to Ψ(0) = 0.

Table 3. Conditions for v to be classical.

ṽ ψ̃E Ψ(x) Conditions for Ψ(0) = 0

B(α) − (2α + 5) x− 4 (−2α− 4) x− 4 Ψ(0) 6= 0 always

J (α,β)
(0,1) (2α + 2β + 3) x− (2β + 1) (2α + 2β + 4) x− (2β + 1) β = −1/2

L(α) 2x− (2α + 3) 2x− (2α + 3) α = −3/2

Next, we will prove that we can reduce (60) in order to obtain:

φE(x)ũ = ρE(x)ṽ,

where ρE(x) := x− ξ2. In general, the Pearson equation is:

D(φE(x)ṽ) = −1
2

(
ψ̃E(x) +

φE(x)
x

)
ṽ, (61)

or, equivalently,

φE(x)Dṽ = −1
2

(
ψ̃E(x) +

φE(x)
x

+ 2
(

φE
)′

(x)
)

ṽ, (62)

under the condition
〈

ṽ, ψ̃E(x) + φE(x)
x

〉
= 0.

The case A1, where ṽ is the classical Bessel functional, reads as:

D(x2ṽ) = ((α + 2)x + 2) ṽ = −1
2

(
ψ̃E(x) + x

)
ṽ.

Then, ψ̃E(x) = (−2α− 5) x− 4, and the above differential relation can be written as:

x2D(ṽ) = (αx + 2)ṽ, (63)

with the condition 〈ṽ, (α + 2)x + 2〉 = 0. Furthermore, in this case, the linear functionals ũ and ṽ are
related by x3ũ = xρE(x)ṽ, and as a consequence,

ũ =
ρE(x)

x2 ṽ + K1δ(x) + K2δ′(x) + K3δ′′(x).
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From (59) and (63), we get:(
αx + 2 +

1
2

ρE(x)
)

ṽ− ξ2xD(ṽ) = −1
2

x ((−2α− 1) x− 4) ũ.

The action of the linear functionals of both sides on p(x) = x yields:〈
ṽ, αx2 + 2x +

1
2

xρE(x) + 2xξ2
〉

=
1
2

〈
ũ, (2α + 1) x3 + 4x2

〉
=

1
2

〈
ρE(x)ṽ, (2α + 1) x + 4

〉
+ 8K3.

As a consequence,

8K3 =

〈
ṽ, αx2 + 2x +

1
2

xρE(x) + 2xξ2 − 1
2
(2α + 1) xρE(x)− 2ρE(x)

〉
=

〈
ṽ, αx2 + 2x + 2xξ2 + (−αx− 2) ρE(x)

〉
= ξ2 〈ṽ, (2 + α) x + 2〉 .

Thus, K3 = 0. In a similar way, in the case A2, we get:

ũ =
ρE(x)

x(x− 1)
ṽ + K1δ(x) + K2δ′(x) + K3δ(x− 1).

The action of the linear functional of both sides on p(x) = x− 1 yields:

−1
2

〈(
ψ̃E(x) + x− 1 + 4x− 2− x + ξ2

)
ṽ, (x− 1)

〉
− (1− ξ2) 〈xDṽ, x− 1〉

= −1
2

〈
ũ, x(x− 1)

(
4x− 2 + ψ̃E(x)

)〉
or, equivalently, 〈

ṽ,−1
2
(x− 1)

(
ψ̃E(x) + 4x− 3 + ξ2

)
− (1− ξ2) (2x− 1)

〉
= −1

2

〈
ṽ, ρE(x)

(
4x− 2 + ψ̃E(x)

)〉
+

1
2

K2

(
−2 + ψ̃E(0)

)
.

Then:
1
2

K2

(
−2 + ψ̃E(0)

)
= −1

2
(ξ − 1)

〈
ṽ, ψ̃E(x) + x− 1

〉
.

In this case, since ṽ = J (α,β)
(0,1) , it is well known that:

1
2

(
ψ̃E(x) + (x− 1)

)
= (α + β + 2) x− (β + 1) .

In other words,
ψ̃E(x) = (2α + 2β + 3) x− (2β + 1) .

If ψ̃E(0) = 2, then β = −3/2. Notice that this up to K2 = 0 for this value.In the same way, for the case
A3, (60) becomes:

xũ = (x− ξ2)ṽ ,

when 2 + ψ̃E(0) 6= 0. This means that α 6= − 1
2 .
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3.2.2. ṽ Semiclassical of Class s̃ = 1

From (57), the following situations appear.
A deg

(
xφE(x)

)
= 3, 1 ≤ deg

(
xψ̃E(x)− φE(x)

)
≤ 2.

(A1) φE(x) = x2, Ψ(x) = 1
2 (xψ̃E(x)− x2) and D

(
x3ṽ
)
= − 1

2
(

xψ̃E(x)− x2) ṽ. This corresponds
to the case A32 in [13], where:

D
(

x3ṽ
)
= x ((α + 2) x + 2) ṽ,

with the condition Ψ′(x) 6= 0. Since Ψ′(x) = 1
2

(
ψ̃E(x) + x

(
ψ̃E)′ (x)− 2x

)
, the above condition means

Ψ′(0) = 1
2 ψ̃E(0) and ψ̃E(0) 6= 0. In addition, ṽ = x−1B(α) + Mδ(x).

(A2) φE(x) = x(x − 1), Ψ(x) = 1
2
(
xψ̃E(x)− x(x− 1)

)
and D

(
x2(x− 1)ṽ

)
=

− 1
2
(

xψ̃E(x)− x(x− 1)
)

ṽ. This corresponds to the case A2 in [13], where ṽ satisfies D
(
x2(x− 1)ṽ

)
=

−x (− (α + β + 3) x + β + 2) ṽ, and:

ṽ = x−1 (τ1/2 ◦ h1/2)J (α,β+1) + sδ(x), s 6= 0,

taking into account that for every polynomial p and α, β + 1 > −1,

〈
J (α,β+1), p(x)

〉
=
∫ 1

−1
p(x)(1− x)α(x + 1)β+1dx.

The affine transformation 2t = x + 1 yields:

〈
(τ1/2 ◦ h1/2)J (α,β+1), p(x)

〉
=

∫ 1

−1
p
(

1
2

x +
1
2

)
(1− x)α(x + 1)β+1dx,

=
〈
J (α,β+1)
[0,1] , p(x)

〉
.

As a consequence, ṽ = J (α,β)
[0,1] + sδ(x), s 6= 0.

(A3) φE(x) = (x− 1)(x− ζ), Ψ(x) = 1
2
(
xψ̃E(x)− x(x− 1)

)
. This corresponds to the case A1 in

[13], where ṽ satisfies:

D (x(x− 1)(x− ζ)ṽ)

= −
[
− (α + β + γ + 3) x2 + ((α + β + 2) ζ + α + γ + 2) x− ζ(α + 1)

]
,

and it has the integral representation:

〈ṽ, p(x)〉 =
∫ 1

0
p(x) (1− x)α xβ |x− ζ|γ dx,

with the conditions αβγ 6= 0, α, β, γ > 0, ζ ∈ (0, 1).
B deg

(
xφE(x)

)
< 3, deg

(
xψ̃E(x)− φE(x)

)
= 2.

(B1) φE(x) = x − 1, Ψ(x) = 1
2
(

xψ̃E(x)− (x− 1)
)
. This corresponds to the case B1 in [13],

where ṽ satisfies D (x(x− 1)ṽ) = −
(
2λx2 + (−α− β− 2λ− 2) x + β + 1

)
ṽ and has the integral

representation:

〈ṽ, p(x)〉 =
∫ 1

0
p(x) (1− x)α+1 xβ+1e−λxdx,

with the conditions αβ 6= 0, α, β > −1, and deg ψ̃E = 1.
(B2) φE(x) = x, Ψ(x) = 1

2
(

xψ̃E(x)− x
)
. This is the case B2 in [13], where ṽ satisfies:

D
(

x2ṽ
)
= −x (x− α− 2) ṽ.
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Besides, for α > −1, we get:

〈ṽ, p(x)〉 =
∫ ∞

0
p(x)xαe−xdx + sp(0), s 6= 0.

(B3) φE(x) = 1, Ψ(x) = 1
2
(

xψ̃E(x)− 1
)
. This corresponds to the case B3 in [13], where ṽ satisfies:

D (xṽ) = −
(

2x2 − λx− 2µ− 1
)

ṽ,

and it has the integral representation:

〈ṽ, p(x)〉 =
∫ ∞

0
p(x)x2µe−x2−λxdx,

with the conditions µ > −1/2, λ ∈ R and deg ψ̃E = 1.
Now, we will analyze the reduction of (60) in the positive-definite case in order to get integral

representations of such linear functionals. Then, we assume that ṽ has an integral representation in
terms of a weight function ωṽ on an interval [a, b] with a ≥ 0, that is:

〈ṽ, p(x)〉 =
∫ b

a
p(x)ωṽdx.

First, we analyze the A2 and B2 cases. We get the rational relation x2σ1(x)ũ = x(x − ξ2)ṽ with
σ1(x) = x− 1 in A2 and σ1(x) = 1 in B2. Besides:

〈ũ, p(x)〉 =
∫ b

a
p(x)

ρ(x)ωṽ
φE(x)

dx + M1 p(0) + M2 p′(0) + Np(1),

where N = 0 in B2. By using (59) and (60), we get:〈
xρE(x)Dṽ, p(x)

〉
= −

〈
ṽ,
(

xρE p
)′〉

=
∫ b

a
pρE xφE(x)ω′ṽ

φE(x)
dx

= −1
2

∫ b

a
p(x)

(
xψ̃E(x) + 2x

(
φE
)′) ρE(x)ωṽ(x)

φE(x)
dx− 1

2

∫ b

a
p(x)ωṽ(x)dx.

Since:

−1
2

∫ b

a
p(x)

(
xψ̃E(x) + 2x

(
φE
)′) ρE(x)ωṽ(x)

φE(x)
dx

= −1
2

〈
ũ, p(x)

(
xψ̃E(x) + 2x

(
φE
)′)〉

+
1
2

M2 p(0)
(

ψ̃E(0) + 2
(

φE
)′

(0)
)
+

1
2

Np(1)
(

ψ̃E(1) + 2
(

φE
)′

(1)
)

,

we get:

M2 p(0)
(

ψ̃E(0) + 2
(

φE
)′

(0)
)
+ Np(1)

(
ψ̃E(1) + 2

(
φE
)′

(1)
)
= 0,

for every polynomial p. In particular, for p(x) = x− 1:

M2

(
ψ̃E(0) + 2

(
φE
)′

(0)
)
= 0.
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Next, we deal with ψ̃E(0) + 2
(
φE)′ (0) 6= 0. When φE(x) = x(x− 1), ṽ is positive-definite if α, (β +

1) > −1. Taking into account that in this case, ψ̃E(x) = − (2α + 2β + 5) x + 2β + 3, then:

ψ̃E(0) + 2
(

φE
)′

(0) = 2β + 1,

and M2 = 0 if β 6= −1/2. In a similar way, we get ψ̃E(x) = 2x− 2α− 3, and ṽ is positive definite if
α > −1. After straightforward calculations, we obtain:

ψ̃E(0) + 2
(

φE
)′

(0) = −2α− 1.

Thus, M2 = 0 if α 6= −1/2.
In A3 and B1, we get:

〈ũ, p(x)〉 =
∫ b

a
p(x)

ρ(x)ωṽ
φE(x)

dx + M1 p(0) + M2 p(1) + M3 p(ζ),

where M3 = 0 in B1. An iteration of the above procedure yields:

−1
2

∫ b

a
p(x)

(
xψ̃E(x) + 2x

(
φE
)′) ρE(x)ωṽ(x)

φE(x)
dx

= −1
2

〈
ũ, p(x)

(
xψ̃E(x) + 2x

(
φE
)′)〉

+
1
2

M2 p(1)
(

ψ̃E(1) + 2
(

φE
)′

(1)
)
+

1
2

M3 p(ζ)
(

ζψ̃E(ζ) + 2ζ
(

φE
)′

(ζ)

)
.

Then:
1
2

M2 p(1)
(

ψ̃E(1) + 2
(

φE
)′

(1)
)
+

1
2

M3 p(ζ)
(

ζψ̃E(ζ) + 2ζ
(

φE
)′

(ζ)

)
= 0. (64)

On the one hand, in A3:

xψ̃E(x)

= − (2α + 2β + 2γ + 5) x2

+2
(
(α + β + 2) ζ + α + γ + 2− 1

2
(1 + ζ)

)
x− 2ζ(α + 1) + ζ.

Then, α = − 1
2 . In this way, the case A3 will not be considered. On the other hand, in the case B1:

xψ̃E(x) = 4λx2 + (−2α− 2β− 4λ− 3) x + (2β + 1) ,

and thus, β = −1/2 and ψ̃E(x) = 4λx− 2α− 4λ− 2. Then, ψ̃E(1) = −2α− 2 and:

ψ̃E(1) + 2
(

φE
)′

(1) = −2α.

Therefore, M2 = 0 if α 6= 0.
In the case B3, we cannot simplify the factor x. However, we get:

xψ̃E(x) = 4x2 − 2λx− 4µ− 1,

and, as a consequence, µ = − 1
4 . Then, ψ̃E(x) = 4x− 2λ, and ṽ satisfies D (xṽ) = − 1

2
(
4x2 − 2λx− 1

)
ṽ,

as well as:
〈ṽ, p(x)〉 =

∫ ∞

0
p(x)x−1/2e−x2−λxdx.
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4. Positive-Definite Symmetric (1, 1)-Coherent Pairs (u, v)

According to the functionals ũ and ṽ obtained in the previous section when A(x) = 2(x2 −
ξ2

1)(x− ξ2
2), ξ2

1 6= ξ2
2, or A(x) = 2

(
x2 − ξ2)2 , respectively, the symmetrization process allows us to

recover the original symmetric functionals u and v, and as a consequence, we get a classification of
symmetric (1, 1)-coherent pairs. Of course, if we recover one pair (u, v), we must also prove that it is a
symmetric (1, 1)-coherent one. For this purpose, we state the next results.

Theorem 10 ([43]). Let u be a symmetric, semiclassical, and quasi-definite linear functional of odd class
s satisfying:

D (φu) + ψu = 0,

where deg φ ≤ s + 2 and deg ψ ≤ s + 1. Notice that, φ and ψ are even and odd polynomials, respectively.
{Pn}n≥0 will denote the corresponding MOPS. We assume that the linear functional w = xφ(x)u is
quasi-definite, with {Wn}n≥0 as the corresponding MOPS. Then:

P′n+1(x)
n + 1

= Wn(x) +
(s+1)/2

∑
k=1

ηn,n−2kWn−2k(x), n ≥ s + 1,

with ηn,n−(s+1) 6= 0.

Theorem 11. Let u be a symmetric, semiclassical, and quasi-definite linear functional of even class s satisfying:

D (φu) + ψu = 0,

where deg φ ≤ s + 2 and deg ψ ≤ s + 1. Notice that φ and ψ are odd and even polynomials, respectively.
{Pn}n≥0 will denote the corresponding MOPS. We assume that the linear functional w = φ(x)u is
quasi-definite, and {Wn}n≥0 is the corresponding MOPS. Then:

P′n+1(x)
n + 1

= Wn(x) +
s/2

∑
k=1

ηn,n−2kWn−2k(x), n ≥ s,

with ηn,n−s 6= 0.

Proof. It is enough to expand the sequence
{

P′n+1
n+1

}
n≥0

in terms of the basis {Wn}n≥0 and to consider

its quasi-orthogonal character described in Theorem 2, B).

As a consequence of the above theorems, we get the next result.

Corollary 2. Let u be as above with class s either 1 or 2. Let v denote a symmetric and quasi-definite linear
functional such that there exist even polynomials p and q, with 0 ≤ deg p ≤ 4 and deg q = 2, such that:

p(x)u = q(x)v

holds. In addition, let {Qn}n≥0 be the MOPS associated with v. Then, (u, v) is a symmetric (1, 1)-coherent pair.

Proof. We consider the above theorems with s = 1 and s = 2, respectively. In both cases, we get:

Qn(x) = Wn(x) + βnWn−2(x),

and:
P′n+1(x)

n + 1
= Wn(x) + λnWn−2(x),
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where βnλn 6= 0. From the above equations, we obtain:

P′n+1(x)
n + 1

+ βn−2
(λn − βn)

(λn−2 − βn−2)

P′n−1(x)
n− 1

= Qn(x) + λn−2
(λn − βn)

(λn−2 − βn−2)
Qn−2(x),

where βn 6= λn for every n.

4.1. Case A(x) = 2
(

x2 − ξ2)2

According to Theorem 6, if the class of ũ is s̃ = 0, then the class of u is either 0 or 1. The classical
cases (Gegenbauer, Hermite) have been analyzed in [9]. We suppose that s = 1, i.e.,

Ψ̂(0) =
(

σE
4

)′
(0) + lim

x→0

σE
4 (x)

x
+ 2φ̃E

2 (0) 6= 0.

(i) If σE
4 (x) = x2, assuming that φ̃E

2 (0) 6= 0, then u = B(α) satisfies:

D(x3u) = −2
(

φ̃2(x) + x2
)

u.

(ii) If σE
4 (x) = x(x− 1), assuming that φ̃E

2 (0) 6= 1, then:

D(x
(

x2 − 1
)

u) = −
(

2φ̃2(x) +
1
2
(x2 − 1)

)
u.

Notice that u = J (α,β)
[0,1] .

(iii) If σE
4 (x) = x, assuming φ̃E

2 (0) 6= −1, then u = L(α) and:

D(xu) = −
(

2φ̃2(x) +
1
2

)
u.

On the other hand, if ũ is of class s̃ = 1, then from the symmetrization theorem, we deduce that
the class of u is s = 2. Next, we will describe u according to σE

4 .

(i) If σE
4 (x) = x2 and φ̃E

2 (0) 6= 0, then D(x4u) = −2xφ̃2(x)u. Thus, u = x−2B(α) + Mδ(x).

(ii) If σE
4 (x) = x(x − 1), then u satisfies D(x2(x2 − 1)u) = −2xφ̃2(x)u, and it has the

integral representation:

〈u, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2

)α
|x|2β+1 e−

γ

x2 dx,

with the conditions αγ 6= 0, γ > 0, α > −1.

(iii) If σE
4 (x) = (x− 1)(x− ζ), with ζ ∈ (0, 1), then u satisfies D((x2− 1)(x2− ζ)u) = −2xφ̃2(x)u.

Moreover,

〈u, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2

)α
|x|2β+1

∣∣∣x2 − ζ
∣∣∣γ dx,

with the conditions αβγ 6= 0, α, β, γ > −1.

(iv) If σE
4 (x) = x, then u satisfies D(x2u) = −2xφ̃2(x)u, as well as:

〈u, p(x)〉 =
∫ ∞

−∞
p(x) |x|2α+1

(
1 + x2

)β+1
e−x2+

β

x2 dx,
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with β < 0, α, β > −1.

(v) If σE
4 (x) = x− 1, then u satisfies D((x2 − 1)u) = −2xφ̃2(x)u. Moreover,

〈u, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2

)α+1
|x|2β+3 e−λx2

dx,

with the conditions αβ 6= 0, α, β > −1.

(vi) If σE
4 (x) = 1, then u satisfies Du = −2xφ̃2(x)u, and it has the integral representation:

〈u, p(x)〉 =
∫ ∞

−∞
p(x) |x|4µ+1 e−x4−λx2

dx,

under the conditions µ > −1/2, λ ∈ R.
Since in the previous cases, u and v are related by:

σ4(x)u = 2r2(x)v,

then according to Corollary 2, in each case, the pair (u, v) is a symmetric (1, 1)-coherent pair. Next,
the corresponding symmetric (1, 1)-coherent pairs are described in the positive-definite framework.

Theorem 12. Let (u, v) be a symmetric (1, 1)-coherent pair satisfying:

σ4(x)u = 2(x2 − ξ2)v,

such that σ4 is an even polynomial with deg σ4 ≤ 4 and u is a semiclassical linear functional of class at most 2.
In addition, u and v are positive-definite, and A(x) = (x2 − ξ2)2 in (40).

(A) u of class s = 1.

S1,1. If σ4(x) = x2(x2 − 1) and either ξ2 = 0 or ξ2 = 1, then:

〈u, p(x)〉 =
∫ 1

−1
p(x)(1− x2)α |x|2β+1 dx,

and:

〈v, p(x)〉 =
∫ 1

−1
p(x)

(1− x2)α+1 |x|2β+3

(x2 − ξ2)
dx,

+
M
2

(δ(x + |ξ|) + δ(x− |ξ|)) .

S1,2. If σ4(x) = x2 and ξ2 = 0, then u = L(α) and v = L(α) + Mδ(x).

(B) u of class s = 2.

S1,3. If σ4(x) = x2(x2 − 1), αγ 6= 0, γ > 0 α > −1, and either ξ2 = 0 or ξ2 = 1, then:

〈u, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2

)α
|x|2β+1 e−

γ

x2 dx,

and:

〈v, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2)α+1

(x2 − ξ2)
|x|2β+3 e−

γ

x2 dx +
M
2

(p(|ξ|) + p(− |ξ|)) .
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S1,4. If σ4(x) = (x2 − 1)(x2 − ζ), with ζ ∈ (0, 1), αβγ 6= 0, α, β, γ > 0, and either ξ2 = 0 or ξ2 = 1,
then:

〈u, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2

)α
|x|2β+1

∣∣∣x2 − ζ
∣∣∣γ dx,

and:

〈v, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2)α+1

(x2 − ξ2)
|x|2β+1

∣∣∣x2 − ζ
∣∣∣γ+1

dx +
M
2

(p(|ξ|) + p(− |ξ|)) .

S1,5. If σ4(x) = x2, β ∈ (−1, 0), α > −1 and ξ2 = 0, then:

〈u, p(x)〉 =
∫ ∞

−∞
p(x) |x|2α+1

(
1 + x2

)β+1
e−x2+

β

x2 dx,

and:
〈v, p(x)〉 =

∫ ∞

−∞
p(x) |x|2α+1

(
1 + x2

)β+1
e−x2+

β

x2 dx + Mp(0).

S1,6. If σ4(x) = 1, µ > 0, λ ∈ R, and ξ2 = 0, then:

〈u, p(x)〉 =
∫ ∞

−∞
p(x) |x|4µ+1 e−x4−λx2

dx,

and:
〈v, p(x)〉 =

∫ ∞

−∞
p(x) |x|4µ−1 e−x4−λx2

dx + Mp(0).

S1,7. If σ4(x) = x2 − 1, αβ 6= 0, α, β > −1, and either ξ2 = 0 or ξ2 = 1, then:

〈u, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2

)α+1
|x|2β+3 e−λx2

dx,

and:

〈v, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2)α+2

(x2 − ξ2)
|x|2β+3 e−λx2

dx +
M
2

(p(|ξ|) + p(− |ξ|)) .

4.2. Case A(x) = 2(x2 − ξ2
1)(x− ξ2

2), ξ2
1 6= ξ2

2

When ṽ is a semiclassical linear functional of class s̃ = 0, the class of v is either 0 or 1. When
the class of v is s = 0, we get J (α,−1/2)

(0,1) and L(−3/2), which are nonpositive-definite linear functionals.

Next, we describe the cases when the class of v is s = 1 according to the expression of φE.

(i) If φE(x) = x2, then v = B(α), and it satisfies D
(

x3v
)
= −

(
ψ̃(x) + x2) v. Notice that this is not

a positive-definite case.

(ii) If φE(x) = x(x − 1) and β 6= −1/2, then v = J (α,β)
(0,1) ; moreover, D

(
x(x2 − 1)v

)
=

−
(
ψ̃(x) + (x2 − 1)

)
v.

Notice that:

〈v, p(x)〉 =
∫ 1

−1
p(x)(1− x2)α |x|2β+1 dx.

(iii) If φE(x) = x, then v satisfies D (xv) = −
(
ψ̃(x) + 1

)
v, and as a consequence, v = L(α). Thus,

〈v, p(x)〉 =
∫ ∞

−∞
p(x) |x|2α+1 e−x2

dx.

If ṽ is a semiclassical linear functional of class s̃ = 1, notice that, according to Theorem 6, v must
be semiclassical of class s = 2. Next, we describe the possible choices for v.

(iv) If φE(x) = x2, then v satisfies D
(

x4v
)
= −xψ̃(x)v, i.e., v = x−2B(α) + Mδ(x).
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(v) If φE(x) = x(x− 1), then v = J (α,β)
[0,1] + sδ(x), s 6= 0, and v satisfies:

D
(

x2(x2 − 1)v
)
= −xψ̃(x)v = −x (− (2α + 2β + 5) x + 2β + 3) v,

with β 6= −1/2.

(vi) If φE(x) = x− 1, α 6= 0, α > −1, λ 6= 0, then v satisfies:

D
(
(x2 − 1)v

)
= −2x

(
2λx2 − α− 2λ− 1

)
v,

i.e.,

〈v, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2

)α+1
x2e−λx2

dx.

(vii) If φE(x) = x, α > −1, α 6= −1/2 and s 6= 0, then:

〈v, p(x)〉 =
∫ ∞

−∞
p(x) |x|2α+1 e−x2

dx + sp(0),

and D
(

x2v
)
= −x

(
2x2 − 2α− 3

)
v.

(viii) If φE(x) = 1, then v satisfies Dv = −x(4x2 − 2λ)v and:

〈v, p(x)〉 =
∫ ∞

−∞
p(x)e−x4−λx2

dx.

Moreover,

〈u, p(x)〉 =
∫ ∞

−∞
p(x)

(
x2 − ζ2

)
e−x4−λx2

dx + Mp(0).

In Cases (i)–(v) and (vii), we will assume that ξ2 = 0. From (58), we get:

xφE(x)D(ũ) =
3
2

xṽ−
(

2x(φE)′(x) +
1
2

xψ̃E(x) + φE(x)
)

ũ.

Taking into account φE(x)ũ = xṽ, then:

D(xφE(x)ũ) =
(

5
2

φE(x)− (xφE(x))′ − 1
2

xψ̃E(x)
)

ũ.

As a consequence, ũ is semiclassical of class at most 1. According to Theorem 6 and Corollary 2, since
φE(0) = 0, then the class of u must be at most 2, and the pairs (u, v) are symmetric (1, 1)-coherent.
For Cases (vi) and (viii), we get x2u = x2(x2 − ξ2)v and x2u = x2v, respectively. Then, it is enough to
apply the arguments of the above lemma, but by using the fact that v is of class s ≤ 2.

For the positive-definite case, the previous analysis is summarized next.

Theorem 13. Let (u, v) be a symmetric (1, 1)-coherent pair satisfying:

xφ(x)u = x(x2 − ξ2)v

such that φ is an even polynomial with deg φ(x) ≤ 4 and v is semiclassical of class at most 2. In addition, let us
assume that u and v are positive-definite, as well as in (40) A(x) = (x2 − ξ2

1)(x2 − ξ2
2), ξ2

1 6= ξ2
2.

(A) v classical.
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S2,1. If φ(x) = x2(x2 − 1), then v = J (α,−1/2)
(0,1) = G(λ), λ > −1, λ 6= 0, i.e., the classical Gegenbauer

functional. Thus:

〈u, p(x)〉 =
∫ 1

−1
p(x)(1− x2)λ−1/2dx + M1 p(0) +

M2

2
(p(1) + p(−1)) .

(B) v of Class 1.

S2,2. If φ(x) = x2(x2 − 1), β 6= −1/2, then:

〈v, p(x)〉 =
∫ 1

−1
p(x)(1− x2)α |x|2β+1 dx,

and:

〈u, p(x)〉 =
∫ 1

−1
p(x)(1− x2)α−1 |x|2β+1 dx + M1 p(0) +

M2

2
(p(1) + p(−1)) .

S2,3. If φ(x) = x2 then:

〈v, p(x)〉 =
∫ ∞

−∞
p(x) |x|2α+1 e−x2

dx,

and:
〈u, p(x)〉 =

∫ ∞

−∞
p(x) |x|2α+1 e−x2

dx + Mp(0).

(C) v of Class 2.

S2,4. If φ(x) = x2(x2 − 1), β 6= −1/2, then:

〈v, p(x)〉 =
∫ 1

−1
p(x)(1− x2)α |x|2β+1 dx + Mp(0),

and:

〈u, p(x)〉 =
∫ 1

−1
p(x)(1− x2)α−1 |x|2β+1 dx + Mp(0) +

N
2
(p(1) + p(−1)) .

S2,5. If φ(x) = x2, α > −1, α 6= −1/2, and M 6= 0, then:

〈v, p(x)〉 =
∫ ∞

−∞
p(x) |x|2α+1 e−x2

dx + Mp(0),

and:
〈u, p(x)〉 =

∫ ∞

−∞
p(x) |x|2α+1 e−x2

dx + Mp(0).

S2,6. If φ(x) = x2 − 1, ξ2 = 1, α 6= 0, α > −1, λ 6= 0, then:

〈v, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2

)α+1
x2e−λx2

dx,

and:

〈u, p(x)〉 =
∫ 1

−1
p(x)

(
1− x2

)α
e−λx2

dx + Mp(0).

S2,9. If φ(x) = 1, then:

〈v, p(x)〉 =
∫ ∞

−∞
p(x)e−x4−λx2

dx,



Mathematics 2019, 7, 213 31 of 33

as well as:
〈u, p(x)〉 =

∫ ∞

−∞
p(x)|x2 − ξ2|e−x4−λx2

dx + Mp(0).
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