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Abstract: Let γ(D) denote the domination number of a digraph D and let Cm�Cn denote the
Cartesian product of Cm and Cn, the directed cycles of length n ≥ m ≥ 3. Liu et al. obtained the exact
values of γ(Cm�Cn) for m up to 6 [Domination number of Cartesian products of directed cycles,
Inform. Process. Lett. 111 (2010) 36–39]. Shao et al. determined the exact values of γ(Cm�Cn) for
m = 6, 7 [On the domination number of Cartesian product of two directed cycles, Journal of Applied
Mathematics, Volume 2013, Article ID 619695]. Mollard obtained the exact values of γ(Cm�Cn) for
m = 3k + 2 [M. Mollard, On domination of Cartesian product of directed cycles: Results for certain
equivalence classes of lengths, Discuss. Math. Graph Theory 33(2) (2013) 387–394.]. In this paper, we
extend the current known results on Cm�Cn with m up to 21. Moreover, the exact values of γ(Cn�Cn)

with n up to 31 are determined.

Keywords: domination number; Cartesian product; directed cycle

1. Introduction

In this paper, we only consider digraphs without multiple edges or loops. For a digraph
D = (V, A) (or D = (V(G), A(G))) with vertex set V, arc set A, and a vertex v ∈ V , N+

D (v) and
N−D (v) denote the set of out-neighbors and in-neighbors of v, d+D(v) = |N

+
D (v)| and d−D(v) = |N

−
D (v)|

denote the out-degree and in-degree of v in D, respectively. For two vertices u and v in D, we say u
dominates v if u = v or uv ∈ A. Let N+

D [v] = N+
D (v) ∪ {v}. A vertex v dominates all vertices in N+

D [v].
A set S ⊆ V is a dominating set of D if S dominates V(D). The domination number of D, denoted by
γ(D), is the minimum cardinality of a dominating set of D. A dominating set S is called a γ-set of D if
|S| is the minimum cardinality over all dominating sets of D.

The Cartesian product of graphs D1 and D2 is the graph D1 � D2 with the vertex set V(D1)×V(D2),
and (a, b)(a′, b′) ∈ A(D1 � D2) if either aa′ ∈ A(D1) and b = b′, or bb′ ∈ A(D2) and a = a′. For more
information on the Cartesian product of graphs [1]. It can be seen that if D1 and D2 are directed graphs,
then D1 � D2 is also a directed graph. We denote by Cn and Pn the directed cycle and directed path
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with n vertices, respectively. Then we study the domination number of directed graphs Cm�Cn for
n ≥ m ≥ 3.

Graph domination and associated concepts have been studied for many years and there are more
than 200 papers to study on the subject [2–4]. Among them, many authors study the domination
number of products of graphs [5,6], especially for cylinders [7], torus [8,9] and grids [10]. Liu et al.
initiated the study of the domination number of two directed cycles, and they [11,12] determined the
exact values of γ(Cm�Cn) for m up to 6 and showed that

Theorem 1. γ(Cm�Cn) =
mn
3 if m ≡ 0 (mod 3) and n ≡ 0 (mod 3).

Shao et al. [13] extended the exact values of γ(Cm�Cn) for m ∈ {7, 10}. Mollard [14] determined
exact values of γ(Cm�Cn) for m = 3k + 2.

In this paper, we again apply the “dynamic algorithm”, used in [15], to extend the exact values of
γ(Cm�Cn) for m up to 21. These results go much further from the previous known results. Moreover,
the exact values of γ(Cn�Cn) with n up to 31 are determined.

2. The Approach—General Outline

The “dynamic algorithm” was proposed to compute invariants of fasciagraphs and rotagraphs [16],
and thus it can be used to compute the chromatic number, independence number, domination number
etc. of products of graphs. For example, Shao et al. [13] apply the “dynamic algorithm” to compute the
domination number of Cartesian product of two cycles with one cycle of length 7 or 10 and in [15]
authors derived some formulas for the Roman domination number of products of paths and cycles.

In [17], the approach was used to derive closed expressions for domination numbers γ(Pn�Ck)

(for k ≤ 11, n ∈ N) and domination numbers γ(Cn�Pk) and γ(Cn�Ck) (for k ≤ 7, n ∈ N). We recall a
brief formal description from [17].

Let D1, . . . , Dn be arbitrary mutually disjoint (di)graphs, here called monographs, and X1, . . . , Xn

a sequence of sets of arcs. An arc of Xi joins a vertex of V(Di) with a vertex of V(Di+1) (Xi ⊆
V(Di) × V(Di+1) for i = 1, . . . , n). Furthermore, for convenience we set Dn+1 = D1. A polygraph
Ωn = Ωn(D1, . . . Dn; X1, . . . Xn) over monographs D1, . . . , Dn is defined in the following way:

V(Ωn) = V(D1) ∪ . . . ∪V(Dn),

A(Ωn) = A(D1) ∪ X1 ∪ . . . ∪ A(Dn) ∪ Xn.

For a polygraph Ωn and for i = 1, . . . , n we also define

Li = {u ∈ V(Di) | ∃v ∈ Di+1 : uv ∈ Xi},

Ri = {u ∈ V(Di+1) | ∃v ∈ Di : uv ∈ Xi}.

In general, Ri ∩ Li+1 does not have to be empty. Special types of polygraphs are rotagraphs and
fasciagraphs. If all (di)graphs Di are isomorphic to a fixed (di)graph D and all sets Xi are equal to
a fixed set X, we call such a graph rotagraph, ωn(D; X). More precisely, in a rotagraph (1) there are
isomorphisms ϕi : V(Di) −→ V(D) for i = 1, . . . , n + 1, and ϕn+1 = ϕ1 and (2) all sets Xi are equal
to a fixed set X ⊆ V(D)×V(D) ((u, v) ∈ X ⇐⇒

(
ϕ−1

i (u), ϕ−1
i+1(v)

)
∈ Xi for all i). Losely speaking,

a fasciagraph, ψn(D; X) is a rotagraph without edges between the last and the first copy of D. Formally,
in a fasciagraph we have Xn = ∅ and X1 = X, . . . , Xn−1 = X. Note that in a rotagraph, all sets Li and
Ri are equal to fixed sets L and R (i.e., Li = ϕ−1

i (L) and Ri = ϕ−1
i+1(R)). This holds for fasciagraphs

with one exception, namely Ln = ∅ and Rn = ∅. Clearly, the Cartesian products of paths Pn�Pk are
examples of fasciagraphs and Cartesian products of cycles Cn�Ck are examples of rotagraphs. Products
of a path and a cycle can be seen either as rotagraphs or as fasciagraphs. In previous work [15,17,18],
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this fact has been used in studies of undirected graphs to obtain a number of results regarding the
products of paths and cycles.

We now recall the definition of a semiring P = (P,⊕, ◦, e⊕, e◦). It is a set P together with two
binary operations, ⊕ and ◦ such that the following hold:

1. (P,⊕) is a commutative monoid with e⊕ as a unit;
2. (P, ◦) is a monoid with e◦ as a unit;
3. ◦ is left– and right–distributive over ⊕;
4. ∀x ∈ P, x ◦ e⊕ = e⊕ = e⊕ ◦ x.

A path algebra is an idempotent semiring. It is well known that a semiring is a path algebra exactly
when e◦ ⊕ e◦ = e◦ holds for e◦, the unit of the monoid (P, ◦). Let N0 denote the set of nonnegative
integers and N the set of positive integers. An example of a path algebra that is important here is
P1 = (N0 ∪ {∞}, min,+, ∞, 0).

Let P = (P,⊕, ◦, e⊕, e◦) be a path algebra and letMn(P) be the set of all n× n matrices over P.
Let M, N ∈ Mn(P) and define operations ⊕ and ◦ in the usual way:

(M⊕ N)ij = Mij ⊕ Nij,

(M ◦ N)ij =
n⊕

k=1

Mik ◦ Nkj.

Note that in the case of the path algebra P1 = (N0 ∪ {∞}, min,+, ∞, 0), the above definitions can
be rewritten as:

(M⊕ N)ij = min{Mij, Nij},
(M ◦ N)ij = min

k∈{1,...,n}
{Mik + Nkj}.

Mn(P) equipped with above operations is a path algebra where the units of semiring are the zero
matrix and the unit matrix. In our example, P1 = (N0 ∪ {∞}, min,+, ∞, 0), all elements of the zero
matrix are ∞, the unit of the monoid (P, min), and the unit matrix is a diagonal matrix with diagonal
elements equal to e◦ = 0 and all other elements equal to e⊕ = ∞.

Let D be a labeled digraph with a labeling function ` which assigns to every arc of D an element
of a path algebra P. Let V(D) = {v1, v2, . . . , vn}. The labeling ` of D can be extended to paths in the
following way: For a path Q = (vi0 , vi1)(vi1 , vi2) . . . (vik−1

, vik ) of D let

`(Q) = `
(
vi0 , vi1

)
◦ `
(
vi1 , vi2

)
◦ . . . ◦ `

(
vik−1

, vik

)
.

Let Sk
ij be the set of all paths of order k from vi to vj in D and let M(D) be the matrix defined by:

M(D)ij =

{
`
(
vi, vj

)
; if (vi, vj) is an arc of D

e⊕; otherwise

It is well-known [19] that (
M(D)k

)
ij
=

⊕
Q∈Sk

ij

`(Q).

Let ωn(D; X) be a rotagraph and ψn(D; X) a fasciagraph. Set Ui = Li ∪ Ri. Note that in the case of
fasciagraphs or rotagraphs, all sets Li and Ri are equal to fixed sets L and R, respectively. Therefore we
can write U = L ∪ R, keeping in mind that this is a disjoint union of sets L and R, where L ⊆ Di and
R ⊆ Di+1. Denote N = 2|U|. The labeled digraph D = D(D; X) is defined as follows: (1) elements of
vertex set of D are the subsets of U, denoted Vi; (2) the label (or, weight) of the arc that joins a subset Vi
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with a subset Vj is the contribution of the monograph Di to the solution, assuming the sets Vi and Vj
are part of the solution. In general however, for example when independent domination is considered,
some of the pairs of sets Vi and Vj do not allow any feasible solution. In such case either a very large
label is given (∞), or the arc ViVj is deleted from D = D(D; X), and consequently D need not be a
complete graph.

Consider for a moment ψ3(D; X) and let Vi ⊆ L1 ∪ R1 and Vj ⊆ L2 ∪ R2 (of course R1 = R2 = R
and L1 = L2 = L (see Figure 1)). Let γi,j(D; X) stand for the size of minimum dominating set
of D2 \

(
(Vi ∩ R1) ∪ (L2 ∩Vj)

)
. Then we define a labeling of D, ` : A(D) −→ N0 ∪ {∞}, in the

following way:

`(Vi, Vj) = |Vi ∩ R|+ γi,j(D; X) +
∣∣L ∩Vj

∣∣− ∣∣Vi ∩ R ∩ L ∩Vj
∣∣ . (1)

D D D

L1 R1 L2 R2

L ∪ R L ∪ R

Vi
Vj

Figure 1. An example of a fasciagraf ψ3(D; X) with corresponding sets, defined above.

We now recall Algorithm 1, first proposed in [16], that computes the domination number of a
fasciagraph or a rotagraph in O(log n) time:

Algorithm 1 The domination number.
Step 1: Let P1 = (N0 ∪ {∞}, min,+, ∞, 0) be a path algebra.

Step 2: Label D(D; X) with the labeling, defined in (1).

Step 3: InM(P1) calculate M (D)n.

Step 4: Let γ (ψn(D; X)) =
(

M (D)n)
00 and γ (ωn(D; X)) = mini

(
M (D)n)

ii .

This algorithm can be considerably improved because in some cases, computing the powers
of M (D)n = Mn in O(C) time is possible. For example, it is well-known that improvements
using special structure of the matrices give rise to constant time algorithm for computation of the
domination numbers:

Lemma 1. ([20]) Let k = |V(D(D; X))| and K = |V(D)|. Then there is an index q ≤ (2K + 2)k2
such that

Mq = Mp + C for some index p < q and some constant matrix C. Let P = q− p. Then for every r ≥ p and
every s ≥ 0 we have

Mr+sP = Mr + sC .

Note that this phenomena is not restricted to domination type problems. For example,
an analogous lemma for distance based invariants was elaborated already in [21].

Hence, if we assume that the size of the monograph is a given constant (and n is a variable),
the algorithm will run in constant time. But it is important to emphasize that the algorithm
is useful for practical purposes only if the number of vertices of the monograph is relatively
small. Namely, the matricesM(D)k are of size |V(D)| × |V(D)|, and manipulating such matrices
implies that the time complexity is in general exponential in the number of vertices of the
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monograph. Therefore, a straightforward implementation of the algorithm may have prohibitively
long running times.

A method that is particulary useful for fasciagraphs is the following. Observe that one may
consider each row of the matrices separately. Thus, instead of using O(|V(D)|2) space, only O(|V(D)|)
is required. Furthermore, depending on the problem, it may not be necessary to compute all the rows
ofM(D)n. Instead of calculating the whole matricesM(D)n, the correct answer is obtained if only
those rows which are important for the result are calculated and the difference of the new row against
the previously stored rows is checked until a constant difference is detected. This idea was used in [15]
on Roman domination problem and in [22] for pentomino exclusion problem. Formally, it is based on
the following lemma

Lemma 2. [15] Assume that the j-th row of Mn+P and Mn differ by a constant, Mn+P
ji = Mn

ji + C for all i.

Then min
i

Mn+P
ji = min

i
Mn

ji + C.

The idea may be even easier to explain directly in terms of graphs, avoiding the matrix notation.
As we study products of cycles in this paper, we restrict attention to rotagraph type problems. Observe
that a dominating set in Cm�Cn corresponds to a cycle of length n in the auxiliary graph D. This leads
to the problem of finding a cycle of length n with minimal weight. Above considerations translate into
the ideas that if there is a subset of vertices of D that must be in any solution, then we can start the
search for cycles on these vertices only.

In this paper we make use of another idea [13]. Namely, if there are vertices of D that can not be
on any minimal cycle, then we can ignore them.

3. The Approach: Details

Below, we define the labelled auxiliary digraph D that can be used to solve our domination
problem. Then we provide a procedure for reducing the number of vertices of the auxiliary digraph D,
similarly as in [13]. The dynamic algorithm is then applied on the reduced auxiliary graph.

Before we continue, let us denote V(Cn) = {0, 1, . . . , n − 1} and Ci
m a Cm-layer of Cm�Cn,

which corresponds to vertex i ∈ V(Cn). Similarly as in [13], the vertices v of the auxiliary digraph are
represented with a “pattern”, i.e., a dominating set on two consecutive Cm-layers. A pattern here is a
sequence of 0 s and 1 s, where 1 stands for a vertex in a dominating set of Ci

m ∪ Ci+1
m and 0 for a vertex

that needs to be dominated from a neighboring vertex. The weight of a vertex v, w(v), is defined to
be the number of 1 s in a given pattern, i.e., w(v) =

∣∣S ∩ (Ci
m ∪ Ci+1

m )
∣∣, where S is a dominating set of

Cm�Cn. Clearly, for a cycle C of length n we have w(C) = 2|S|, since every vertex in S appears in two
consecutive patterns.

The following procedure is used to provide a subset of patterns that will be the vertices of D.

Procedure ReduceNumberOfVertices:

Step 1: for a fixed m, find an upper bound of γ(Cm�Cn) in the form of an + b for some a, b ∈ Q;
Step 2: establish a lower bound `b > 0 for the number of vertices in a minimum dominating set of

Ci
m ∪ Ci+1

m for any i ∈ {0, . . . , n− 2}.
Step 3: remove each vertex v in D such that w(v)− `b > 2na + 2b− n`b.

Remark 1. Procedure ReduceNumberOfVertices can reduce the order of D for finding the domination
number of Cm�Cn.

Let S be a minimum dominating set of Cm�Cn. Steps 1 and 2 of Procedure
ReduceNumberOfVertices provide a, b ∈ Q, and `b > 0, such that

γ(Cm�Cn) ≤ an + b, (2)
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and
|S ∩ (Ci

m ∪ Ci+1
m )| ≥ `b for any i ∈ {0, 1, · · · , n− 2}. (3)

Assume that S is such a dominating set, that for some i there is a corresponding vertex v with
w(v)− `b > 2na + 2b− n`b and recall that w(v) = |S ∩ (Ci

m ∪ Ci+1
m )|.

Let ξ j = |S ∩ (Cj
m ∪ Cj+1

m )| − `b for each j ∈ {0, 1, . . . , n− 2}. It is clear ξ j ≥ 0. Let

ξ =
n−1

∑
j=0

ξ j = 2|S| − n`b. (4)

Since ξ j ≥ 0 for each j, we have ξ = 2|S| − n`b ≥ ξ j = |S ∩ (Cj
m ∪ Cj+1

m )| − `b. Since |S ∩ (Cj
m ∪

Cj+1
m )| − `b > 2na + 2b− n`b, we have |S| > na + b, contradicting Equation (2) (and the minimality

of S). Therefore, there is no vertex v of D with w(v)− `b > 2na + 2b− n`b and those vertices can be
removed from the auxiliary digraph.

In practice, the procedure ReduceNumberOfVertices reduce the vertices of auxiliary graph
dramatically for almost all cases, and we give the following examples:

Example 1. For m = 10, let `b = 7n
2 . We label the graph P2�Cn and the constructed auxiliary digraph has

328362 vertices. By removing unnecessary vertices, the auxiliary digraph can be reduced to 16,575 vertices
by letting (w1, w2) ∈ {(3, 3), (3, 4), (4, 3), (4, 4), (3, 5), (5, 3), (4, 5), (5, 4)}, where w1, w2 are the weight
restricted to the first and second column of P2�C10, respectively.

Example 2. For m = 11, let `b = 4n. We label the graph P2�C11 and the constructed auxiliary digraph has
1,169,558 vertices. By removing unnecessary vertices, the auxiliary digraph can be reduced to 2442 vertices by
letting (w1, w2) ∈ {(4, 4), (3, 5), (5, 3), (3, 4), (4, 3), (2, 4), (4, 2)}, where w1, w2 are the weight restricted to
the first and second column of P2�C11, respectively.

We apply Algorithm 1 with the auxiliary graph D reduced by procedure ReduceNumberOfVertices,
and it is carried out on a 2.6-GHz Intel(R) Core(TM) i7-5600U CPU with a memory of 20G. As a result
we are able to extend the formulae for γ(Cm�Cn) with m up to 20.

4. Results

The formulae for γ(Cm�Cn) are listed below for m ≤ 20 and arbitrary n ≥ m. For m ≤ 6 the
formulae were proved by Liu, Zhang, Chen, and Meng [11,12]. Shao et al. proved the formulae for
m = 7, 10. All these formulae were confirmed by the algorithm described in this paper and furthermore
formulae for m ≤ 21 were determined. In particular, the domination numbers of the square torus
graphs Cn�Cn with n up to 31 (n 6≡ 0 (mod 3)) are presented in Table 1, where a dominating set with
290 vertices in C29�C29 is presented in Figure 2 and a dominating set with 331 vertices in C31�C31 is
presented in Figure 3, the sets of black vertices stand for the corresponding dominating sets, and the
direction of the cycle is top to bottom and left to right.

Table 1. Exact values of some square torus Cn�Cn.

n 19 20 22 23 25 26 28 29 31
γ(Cn�Cn) 127 140 169 184 217 234 271 290 331
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Figure 2. A dominating set with 290 vertices in C29�C29.

Figure 3. A dominating set with 331 vertices in C31�C31.

• γ(C3�Cn) =

{
n, n ≡ 0 (mod 3);
n + 1, otherwise.

• γ(C4�Cn) =

{
3n
2 , n ≡ 0 (mod 8);

n + d n+1
2 e, otherwise.

• γ(C5�Cn) = 2n.

• γ(C6�Cn) =

{
2n, n ≡ 0 (mod 3);
2n + 2, otherwise.

• γ(C7�Cn) =


b 5n

2 c, n ≡ 0 (mod 14);
b 5n

2 c+ 1, n ≡ 3, 4, 6, 8, 10, 11 (mod 14);
b 5n

2 c+ 2, n ≡ 1, 2, 5, 7, 9, 12, 13 (mod 14).
• γ(C8�Cn) = 3n.
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• γ(C9�Cn) =

{
3n, n ≡ 0 (mod 3);
3n + 3, otherwise.

• γ(C10�Cn) =


b 7n

2 c, n ≡ 0 (mod 20);
b 7n

2 c+ 1, n ≡ 3, 6, 14, 17 (mod 20);
b 7n

2 c+ 2, n ≡ 4, 7, 8, 9, 10, 11, 12, 13, 16 (mod 20);
b 7n

2 c+ 3, n ≡ 1, 2, 5, 15, 18, 19 (mod 20).
• γ(C11�Cn) = 4n.

• γ(C12�Cn) =

{
4n, n ≡ 0 (mod 3);
4n + 4, otherwise.

• γ(C13�Cn) =



b 9n
2 c, n ≡ 0 (mod 26);
b 9n

2 c+ 1, n ≡ 3, 6, 20, 23 (mod 26);
b 9n

2 c+ 2, n ≡ 9, 10, 12, 14, 16, 17 (mod 26);
b 9n

2 c+ 3, n ≡ 4, 7, 8, 11, 13, 15, 18, 19, 22 (mod 26);
b 9n

2 c+ 4, n ≡ 1, 2, 5, 21, 24, 25 (mod 26).
• γ(C14�Cn) = 5n.

• γ(C15�Cn) =

{
5n, n ≡ 0 (mod 3);
5n + 5, otherwise.

• γ(C16�Cn) =



b 11n
2 c, n ≡ 0 (mod 32);
b 11n

2 c+ 1, n ≡ 3, 6, 26, 29 (mod 32);
b 11n

2 c+ 2, n ≡ 9, 12, 20, 23 (mod 32);
b 11n

2 c+ 3, n ≡ 10, 13, 14, 15, 16, 17, 18, 19, 22 (mod 32);
b 11n

2 c+ 4, n ≡ 4, 7, 8, 11, 21, 24, 25, 28 (mod 32);
b 11n

2 c+ 5, n ≡ 1, 2, 5, 27, 30, 31 (mod 32).
• γ(C17�Cn) = 6n.

• γ(C18�Cn) =

{
6n, n ≡ 0 (mod 3);
6n + 6, otherwise.

• γ(C19�Cn) =



b 11n
2 c, n ≡ 0 (mod 38);
b 11n

2 c+ 1, n ≡ 3, 6, 32, 35 (mod 38);
b 11n

2 c+ 2, n ≡ 9, 12, 26, 29 (mod 38);
b 11n

2 c+ 3, n ≡ 15, 16, 18, 20, 22, 23 (mod 38);
b 11n

2 c+ 4, n ≡ 10, 13, 14, 17, 19, 21, 24, 25, 28 (mod 38);
b 11n

2 c+ 5, n ≡ 4, 8, 11, 34 (mod 38);
b 11n

2 c+ 6, n ≡ 1, 2, 5, 33, 36, 37 (mod 38).
• γ(C20�Cn) = 7n.

• γ(C21�Cn) =

{
7n, n ≡ 0 (mod 3);
7n + 7, otherwise.
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