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Abstract: Matrix Fˆ derived from the Fibonacci sequence was first introduced by Kara (2013) and the
spaces lp(F) and l∞(F); (1 ≤ p < ∞) were examined. Then, Başarır et al. (2015) defined the spaces c0(F)
and c(F) and Candan (2015) examined the spaces c(F(r,s)) and c0(F(r,s)). Later, Yaşar and Kayaduman
(2018) defined and studied the spaces cs(F(s,r)) and bs(F(s,r)). In this study, we built the spaces cs(F)
and bs(F). They are the domain of the matrix F on cs and bs, where F is a triangular matrix defined by
Fibonacci Numbers. Some topological and algebraic properties, isomorphism, inclusion relations and
norms, which are defined over them are examined. It is proven that cs(F) and bs(F) are Banach spaces.
It is determined that they have the γ, β, α -duals. In addition, the Schauder base of the space cs(F) are
calculated. Finally, a number of matrix transformations of these spaces are found.

Keywords: matrix transformations; Fibonacci numbers; sequence spaces; Fibonacci double band
matrix; γ, β, α -duals

1. Introduction

Cooke [1] formulated the theory of infinite matrices in the book “Infinite Matrices and Sequence
Spaces”. Many researchers have investigated infinite matrices after the publication of this book in
1950. In most of these studies, the domain of infinite matrices on a sequence space was studied. In this
study, we address the question: What are the properties of the domain of the Fibonacci band matrix on
sequence spaces bs and cs? The domain of the Fibonacci band matrix creates a new sequence space.
We handle algebraic properties of this new space in order to determine its duals and its place among
other known spaces, and to characterize the matrix transformations of this space.

One difficulty of this study is to determine whether the new space is the contraction or the
expansion, or the overlap of the original space. Another difficulty is to determine the matrix
transformations on this space and into this space. For the first problem, we give a few inclusion
theorems. For the second problem, we use the matrix transformation between the standard sequence
spaces and two theorems.

Generating a new sequence space and researching on its properties have been important in the
studies on the sequence space. Some researchers examined the algebraic properties of the sequence
space while others investigated its place among other known spaces and its duals, and characterized
the matrix transformations on this space.

We can create a new sequence space by using the domain of infinite matrices. Ng-Lee [2] first
investigated the domain of an infinite matrix in 1978. In the same period, Wang [3] created a new
sequence space by using another infinite matrix. Many researchers such as Malkovsky [4], Altay, and
Başar [5] followed these studies. This topic was studied intensively after 2000.
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Leonardo Fibonacci invented Fibonacci numbers. He introduced Fibonacci numbers originated
from a rabbit problem. These numbers create a number sequence:

1,1,2,3,5,8,13,21,34,55,89,....

This sequence has important properties and applications in various fields.
Let us indicate the Fibonacci sequence by (fn). fn is defined as

fn = fn−1 + fn−2 (n ≥ 2)

with f 0 = f 1 = 1. The golden ratio is

lim
n→∞

fn+1

fn
=

1 +
√

5
2

= φ.

Let us indicate the set of all real-valued sequences with w and list some subspaces of w called
standard sequence spaces.

c =
{

r = (rk) ∈ w : lim
k→∞
|rk − p| = 0 for some p ∈ C

}
,

c0 =

{
r = (rk) ∈ w : lim

k→∞
|rk| = 0

}
,

bs =

{
r = (rk) ∈ w : sup

n∈N

∣∣∣∣∣ n

∑
k=0

rk

∣∣∣∣∣ < ∞

}
,

cs0 =

{
r = (rk) ∈ w : lim

n→∞

∣∣∣∣∣ n

∑
k=0

rk

∣∣∣∣∣ = 0

}
,

l∞ =

{
r = (rk) ∈ w : sup

k∈N
|rk| < ∞

}
,

bv =

{
r = (rk) ∈ w :

∞

∑
k=0
|rk − rk−1| < ∞

}
,

bv0 = bv ∩ c0

lp =

{
r = (rk) ∈ w :

∞

∑
k=0
|rk|p < ∞, 0 < p < ∞

}
,

l1 =

{
r = (rk) ∈ w :

∞

∑
k=0
|rk| < ∞

}
,

Now let us take real valued infinite matrix T = (tnk), where tnk is a real number for every n,k∈N
Let A and B be sequence spaces. Sequence Tx = {Tn(x)} is T-transform of a for every a = (ak)∈A. Here,
Ta∈B and

Tn(a) = ∑
k

tnkak (1)

and Tn(a)→t (t exists for every n∈N). Then, T is called a matrix transformation from A to B.
Now let us take infinite matrix T and sequence space δ to define domain of infinite matrix T. The

domain of the matrix T on δ is characterized by

δT = {x = (xk)∈w: Tx∈δ}. (2)



Mathematics 2019, 7, 204 3 of 16

Many reserachers have studied the domain of a matrix on a sequence space. For more detailed
information on these new sequence spaces, see references [6–26].

The Fibonacci difference matrix F was first introduced by Kara [27] in 2013. F is derived from (fn).
In this study, Kara [27] defined the spaces lp(F) and l∞(F); (1 ≤ p < ∞). After this study the c0(F(r,s)) and
c(F(r,s)) was introduced by Candan [28], in 2015, where F(r,s) is a generalized Fibonacci matrix. Candan
and Kara [19] introduced and examined lp(F(r,s)); (1 ≤ p < ∞). In 2018, Yaşar and Kayaduman [29]
defined and examined cs(F(s,r)) and bs(F(s,r)) and Kayaduman and Yaşar [30] studied spaces bs(Nt)
and cs(Nt), where Nt is a Nörlund matrix.

Let δ be a sequence space. The γ, β, α -duals of δ are defined, respectively, as follows

δγ = {x = (xk) ∈ w : xs = (xksk) ∈ bs for all s ∈ δ},

δβ = {x = (xk) ∈ w : xs = (xksk) ∈ cs for all s ∈ δ},

δα = {x = (xk) ∈ w : xs = (xksk) ∈ l1 for all s ∈ δ}.

In this study, spaces cs(F) and bs(F) are introduced and the related notations are given in Section 2.
In addition, some topological and algebric properties, isomorphism, inclusion relations and norms
which are defined over them are examined. The γ, β, α -duals of these spaces are determined in
Section 3. The Schauder base of space cs(F) are calculated. Finally, many matrix transformations of
these spaces are found. In the last section, the results and previous studies and the working hypotheses
are discussed.

A detailed literature review was performed before this study was started. Scans were made on
related articles, magazines, and books. As a result of these scans, the part related to our subject was
synthesized and the results were noted. These results were then applied to our problem area. Finally,
the results of this study were obtained.

2. Results

2.1. The Domain of Fibonacci Difference Matrix F on Bounded and Convergent Series

In this section, cs(F) and bs(F) are introduced. Related notations are given. In addition, some
topological and algebric properties, isomorphism, inclusion relations, and norms defined over them
are examined.

For similar studies, see refeerences [19] and [27–34].
Let spaces cs(F) and bs(F) be the domain of the matrix F on cs and bs, where F = {f nk} infinite matrix

is defined by (fn)

fnk =


− fn+1

fn
, k = n− 1

fn
fn+1

, k = n
0, 0 ≤ k < n− 1 or n < k

for all k,n∈N. Then we inroduce cs(F) and bs(F) as

cs(F) =

{
x = (xk) ∈ w :

(
n

∑
k=0

(
fk

fk+1
xk −

fk+1
fk

xk−1

))
n

∈ c

}

bs(F) =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ n

∑
k=0

(
fk

fk+1
xk −

fk+1
fk

xk−1

)∣∣∣∣∣ < ∞

}
.

We can see cs(F) = (cs)F and bs(F) = (bs)F by using Equation (2).
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Let the inverse matrix of F be F−1. For all k,n∈N, F−1 = {F−1
nk} is found as

f−1
nk =

{
f 2
n+1

fk fk+1
, 0 ≤ k ≤ n

0, k > n.
(3)

Let us take sequence x = (xn). If y = Fx, then we calculate as

yn = (Fx)n =

{
x0, n = 0

fn
fn+1

xn − fn+1
fn

xn−1, n ≥ 1.
(4)

Herefrom, if we calculate inverse of F, then we find that x = F−1y and

xn =
n

∑
k=0

f 2
n+1

fk fk+1
yk. (5)

Now, let us give some theorems related to our study.

Theorem 1. bs(F) is a linear space.

Proof. The proof is left to the reader since it is easy to show. �

Theorem 2. cs(F) is a linear space.

Proof. The proof is left to the reader since it is easy to show. �

Theorem 3. bs(F) is a normed space with:

‖x‖ = sup
n∈N

∣∣∣∣∣ n

∑
j=0

(
fk

fk+1
xk −

fk+1
fk

xk−1

)∣∣∣∣∣ (6)

Proof. The proof is left to the reader since it is easy to show. �

Theorem 4. cs(F) is a normed space with Equation (6).

Proof. The proof is left to the reader since it is easy to show. �

Theorem 5. bs(F) is isomorphic to bs.

Proof. Let us take T: bs(F)→bs mentioned Equation (4) by x→y = Tx = Fx. It is easy to see that T is
linear and injective.

We must find T is surjective. Let y = (yn)∈bs. By using Equation (5) and Equation (6), we see

‖x‖ = sup
n∈N

∣∣∣∣ n
∑

k=0

(
fk

fk+1
xk −

fk+1
fk

xk−1

)∣∣∣∣
= sup

n∈N

∣∣∣∣∣ n
∑

k=0

(
fk

fk+1

(
k
∑

j=0

f 2
k+1

f j f j+1
yj

)
− fk+1

fk

(
k−1
∑

k=0

f 2
k+1

f j f j+1
yj

))∣∣∣∣∣
= sup

n∈N

∣∣∣∣ n
∑

k=0
yk

∣∣∣∣ = ‖y‖bs < ∞.

We see that x∈bs(F). Hence, T is surjective. In addition, bs(F) and bs izometric because ‖x‖bs(F) =

‖y‖bs. �
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Theorem 6. cs(F) is isomorphic to cs.

Proof. The proof can be made similar to Theorem 5, so it is left to the reader. �

Theorem 7. bs(F) is a Banach space with Equtaion (6).

Proof. It is easy to see the norm conditions are ensured. Let a Cauchy sequence xi = (xk
i) in bs(F) for

each i∈N. For all k∈N, we have

yi
k =

fk
fk+1

xi
k −

fk+1
fk

xi
k−1

from Equation (4). For all ε > 0 there is n0 = n0(ε) such that

‖xi − xm‖bs(F) = sup
n∈N

∣∣∣∣ n
∑

k=0

(
fk

fk+1
(xi

k − xm
k )−

fk+1
fk

(xi
k−1 − xm

k−1)
)∣∣∣∣

= sup
n∈N

∣∣∣∣ n
∑

k=0
(yi

k − ym
k )

∣∣∣∣ = ‖yi − ym‖bs < ε

for all i,m ≥ n0. yi→y (i→∞) such that y ∈ bs exists, since bs is complete. Since bs and bs(F) are
isomorphic, bs(F) is complete. It hereby is a Banach space. �

Theorem 8. cs(F) is a Banach space with Equation (6).

Proof. It is easy to see the norm conditions are ensured. Let a Cauchy sequence xi = (xk
i) in cs(F) for

each i∈N. For all k∈N, we have

yi
k =

fk
fk+1

xi
k −

fk+1
fk

xi
k−1

from Equation (4). For all ε > 0, there is n0 = n0(ε) such that

‖xi − xm‖cs(F) = sup
n∈N

∣∣∣∣ n
∑

k=0

(
fk

fk+1
(xi

k − xm
k )−

fk+1
fk

(xi
k−1 − xm

k−1)
)∣∣∣∣

= sup
n∈N

∣∣∣∣ n
∑

k=0
(yi

k − ym
k )

∣∣∣∣ = ‖yi − ym‖cs < ε

for all i,m ≥ n0. yi→y (i→∞) such that y ∈ cs exists, since cs is complete. Since cs and cs(F) are
isomorphic, cs(F) is complete. It hereby is a Banach space. �

Now, let R = (rnk) infinite matrix. Let us list the following:

sup
n∈N

∑
k
|rnk| < ∞, (7)

lim
k

rnk = 0 for each n ∈ N, (8)

sup
m

∑
k

∣∣∣∣∣ m

∑
n=0

(rnk − rn,k+1)

∣∣∣∣∣ < ∞, (9)

lim
n ∑

k
rnk = p for each k ∈ N, p ∈ C, (10)

sup
n

∑
k

∣∣rnk − rn,k+1
∣∣ < ∞, (11)

lim
n

rnk = ak for each k ∈ N, ak ∈ C, (12)
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sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

(rnk − rn,k+1)

∣∣∣∣∣ < ∞, (13)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

(rnk − rn,k−1)

∣∣∣∣∣ < ∞, (14)

lim
n
(rnk − rn,k+1) = a for each k ∈ N, a ∈ C, (15)

lim
n ∑

k

∣∣rnk − rn,k+1
∣∣ = ∑

k

∣∣∣lim
n
(rnk − rn,k+1)

∣∣∣, (16)

sup
n

∣∣∣∣limk rnk

∣∣∣∣ < ∞, (17)

lim
n ∑

k

∣∣rnk − rn,k+1
∣∣ = 0 uniformly in n, (18)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(rnk − rn,k+1)

∣∣∣∣∣ = 0, (19)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(rnk − rn,k+1)

∣∣∣∣∣ = ∑
k

∣∣∣∣∣∑n
(rnk − rn,k+1)

∣∣∣∣∣, (20)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(rnk − rn,k+1)− (rn−1,k − rn−1,k+1)]

∣∣∣∣∣ < ∞, (21)

sup
m∈N

∣∣∣∣∣limk m

∑
n=0

rnk

∣∣∣∣∣ < ∞, (22)

∃ak ∈ C 3∑
n

rnk = ak for each k ∈ N, (23)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(rnk − rn−1,k)− (rn,k−1 − rn−1,k−1)]

∣∣∣∣∣ < ∞. (24)

The collection of all finite subsets of N denoted by F .

Lemma 9. Let us suppose infinite matrix R = (rnk). Then,
(1) R = (rnk) ∈ (bs, l∞) iff Equations (11) and (8) hold [35].
(2) R = (rnk) ∈ (cs, c) iff Equations (11) and (12) hold [36].
(3) R = (rnk) ∈ (bs, l1) iff Equations (13) and (8) hold [37].
(4) R = (rnk) ∈ (cs, l1) iff Equation (14) holds [35].
(5) R = (rnk) ∈ (bs, c) iff Equations (8), (15) and (16) hold [37].
(6) R = (rnk) ∈ (cs, l∞) iff Equations (17) and (11) hold [35].
(7) R = (rnk) ∈ (bs, c0) iff Equations (18) and (8) hold [35].
(8) R = (rnk) ∈ (bs, cs0)iff Equations (19) and (8) hold [38].
(9) R = (rnk) ∈ (bs, cs) iff Equations (20) and (8) hold [38].
(10) R = (rnk) ∈ (bs, bv) iff Equations (21) and (8) hold [38].
(11) R = (rnk) ∈ (bs, bs) iff Equations (8) and (9) hold [38].
(12) R = (rnk) ∈ (cs, cs) iff Equations (9) and (10) hold [39].
(13) R = (rnk) ∈ (bs, bv0) iff Equations (21), (18) and (21) hold [35].
(14) R = (rnk) ∈ (cs, c0) iff Equations (11) and (12) hold with ak = 0 for all k ∈ N [40].
(15) R = (rnk) ∈ (cs, bs) iff Equations (9) and (22) hold [38].
(16) R = (rnk) ∈ (cs, cs0)iff Equations (9) and (23) hold with ak = 0 for all k ∈ N [38].
(17) R = (rnk) ∈ (cs, bv) iff Equation (24) holds [38].
(18) R = (rnk) ∈ (cs, bv0) iff Equations (24) and (12) hold with ak = 0 for all k ∈ N [35].
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Theorem 10. bs(F) ⊃ ⋂ bs is valid.

Proof. Suppose x∈bs. If we show that F is an element of (bs,bs) then x is element of bs(F). For this, F
must provide Equations (8) and (9). Since lim

k
fnk = 0 for each n ∈ N, Equation (8) is provided.

If we examine Equation (9), we find

sup
m

∑
k

∣∣∣∣∣ m

∑
n=0

( fnk − fn,k+1)

∣∣∣∣∣ = 0.

�

Theorem 11. bs(F) ⊃ ⋂ `∞ is not valid.

Proof. Suppose x = (xk) = (f2k+1). Then y = Fx = (1,0,0....)∈bs. On the other hand, f 2
k+1→∞ as k→∞. It

is clear x∈bs(F), but x /∈ `∞. This result completes the proof. �

Theorem 12. cs(F) ⊃ ⋂ cs is valid.

Proof. Suppose x∈cs. If we show that F is element of (cs,cs) then x is element of cs(F). For this, F must
provide Equations (10) and (9). Equation (9) has been provided from the Theorem 10. If we look at the
Equation (10) then, for each k∈N,

lim
n ∑

k
fnk = lim

n

(
fn

fn+1
− fn+1

fn

)
=

1
φ
− φ = l

such that l∈C exists. �

Theorem 13. cs(F) ⊃ ⋂ c is not valid.

Proof. Let x = (xk) = (f2k+1). Then y = Fx = (1,0,0....)∈cs. On the other hand, f2k+1→∞ as k→∞. It is clear
x∈cs(F), but x /∈ c. This result completes the proof. �

Theorem 14. cs(F) ⊂ bs(F) is valid.

Proof. If x∈cs(F), y = Fx∈cs. Hence, ∑k Fx ∈ c. Since c⊂`∞, ∑k Fx ∈ l∞. Hence, Fx∈bs. That is, x∈bs(F).
This result completes the proof. �

Let us take normed space A and let (ak) ∈ A. If there is only one scalar sequence (vk) such that

y =
∞
∑

k=0
νkak and lim

n→∞
‖y−

n
∑

k=0
νkak‖ = 0 then (ak) is called a Schauder base for A.

Now, let us give corallary releated to Schauder basis.

Corallary 15. Let a sequence u(k) =
{

u(k)
n

}
n∈N

in cs(F) be for each k ∈ N and

u(k)
n =

{
f 2
n+1

fk fk+1
, 0 ≤ k ≤ n

0, n < k.

Then
{

u(k)
n

}
n∈N

is a base for cs(F). Every x ∈ cs(F) can write as a single x =
∞
∑

k=0
ykuk such that

yk = (F̂x)k.
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2.2. The Duals of cs(F) and bs(F) and Matrix Transformations

Let us give the two lemmas to use in the next stage.

Lemma 16. Let infinite matrix C = (cnk)
1
2 and a = (an) ∈ w. Let us take C = aF−1, that is,

cnk =

{
an f−1

nk , 0 ≤ k ≤ n
0, n < k

for all k, n ∈ N, δ ∈ {cs, bs}. Then, a ∈
{

δ(F−1)
}α iff C ∈ {δ, l1}.

Proof. Let x = (xn) and a = (an) elements of w. y = (yn) such that y = Fx which is defined in Equation (4).
If we use to Equation (4), then

anxn = an(F−1y)n = (Cy)n. (25)

ax = (an xn)∈`1 with x = (xn)∈µ(F) iff Cy∈`1 with y∈λ. Consequently, C∈(µ,`1). �

Lemma 17. [41] Let us take a = (ak)∈w and infinite matrix C = (cnk). Let the inverse matrix H = (hnk) of the
triangular matrix G = (gnk) is given by

cnk =


n
∑

j=k
ajhjk, 0 ≤ k ≤ n

0, n < k.

Then, for any sequence space δ,
δ

γ
G = {a = (ak) ∈ w : C ∈ (δ, l∞) },

δ
β
G = {a = (ak) ∈ w : C ∈ (δ, c) }.

If we consider Lemma 9, Lemma 16 and Lemma 17 together, the following is obtained;

Corallary 18. Let us take r = (rk)∈ w and infinite matrix A = (ank) and B = (bnk) such that

ank =

{
rn f−1

nk , 0 ≤ k ≤ n
0, n < k

and bnk =
n

∑
j=k

f 2
j+1

fk fk+1
rj.

If we take d1, d2, d3, d4, d5, d6, d7 and d8 as follows:

d1 =

{
r = (rk) ∈ w : sup

N,K∈F

∣∣∣∣ ∑
n∈N

∑
k∈N

(ank − an,k+1)

∣∣∣∣ < ∞

}
,

d2 =

{
r = (rk) ∈ w : sup

N,K∈F

∣∣∣∣ ∑
n∈N

∑
k∈N

(ank − an,k−1)

∣∣∣∣ < ∞

}
,

d3 =

{
r = (rk) ∈ w : lim

k
cnk = 0

}
,

d4 =
{

r = (rk) ∈ w : ∃α ∈ C 3 lim
n
(bnk − bn,k+1) = α f or all k ∈ N

}
,

d5 =

{
r = (rk) ∈ w : lim

n
∑
k

∣∣bnk − bn,k+1
∣∣ = ∑

k

∣∣∣lim
n
(bnk − bn,k+1)

∣∣∣ },

d6 =
{

r = (rk) ∈ w : ∃α ∈ C 3 lim
n

bnk = α f or all k ∈ N
}

,

d7 =

{
r = (rk) ∈ w : sup

n∈N
∑
k

∣∣bnk − bn,k+1
∣∣ < ∞

}
,

d8 =

{
r = (rk) ∈ w : sup

n∈N

∣∣∣∣limk bnk

∣∣∣∣ < ∞

}
.
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then,
(1) {bs(F)}α = d1
(2) {cs(F)}α = d2
(3) {bs(F)}β = d3∩d4∩d5
(4) {cs(F)}β = d6∩d7
(5) {bs(F)}γ = d3∩d7
(6) {cs(F)}γ = d7∩d8.

Theorem 19. Let µ ∈ {cs, bs} and λ ⊂ w. Then, U = (unk) ∈ (µ(F), λ) iff

Vm = (v(m)
nk ) ∈ (µ, c) for all n ∈ N (26)

V = (vnk) ∈ (µ, λ), (27)

where

v(m)
nk =


m
∑

j=k

f 2
j+1

fk fk+1
unj, 0 ≤ k ≤ m

0, m < k
(28)

and

vnk =
∞

∑
j=k

f 2
j+1

fk fk+1
unj (29)

for all k, m, n ∈ N.

Proof. Necessity part: Let us take that A = (ank) ∈ (µ(F), λ) and x = (xk) ∈ µ(F). If we use
Equation (5), then we find

m
∑

k=0
ankxk =

m
∑

k=0
ank

m
∑

k=0

f 2
j+1

fk fk+1
yj

=
m
∑

k=0

m
∑

j=k

f 2
j+1

fk fk+1
ankyk =

m
∑

k=0
d(m)

nk yk = D(m)
n (y).

(30)

According to the hypothesis, for each m∈N, Am(x) ∈ c. Then, V(m) ∈ c for each m∈N and V(m) ∈
(µ, c). Ax = Vy if we consider for m→∞ from Equation (30). As a result, we find V = (vnk) ∈ (µ, λ).

Sufficient part: Suppose that Equations (26) and (27) are satisfied and x = (xk) ∈ µ(F) be.
By using Corollary 18 and Equations (26) and (30), we have that y = Fx ∈ µ and

V(m)
n (y) =

m

∑
k=0

v(m)
nk yk =

m

∑
k=0

ankxk = A(m)
n (x) ∈ c.

Hence, A = (ank)k∈N exists. Ax = Vy if we consider for m→∞ from Equation (30). Consequently,
we find A = (ank) ∈ (µ(F), λ). �

Theorem 20. Let µ ∈ {bs,cs} and λ ⊂ w and U = (unk) and B = (bnk) be infinite matrices. Let

bnk :=
fn

fn+1
unk −

fn+1

fn
un−1,k. (31)

Then, U ∈ (λ, µ(F̂)) iff B ∈ (λ, µ).
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Proof. Let z = (zk)∈ l and Equation (31) exist. Then, we have

m

∑
k=0

bnkzk =
m

∑
k=0

(
fn

fn+1
ank −

fn+1

fn
an−1,k

)
zk. (32)

If we take m→∞ to Equation (32), we have that (Bz)n = (F(Az))n. Consequently, Az∈µ(F) iff Bz∈µ. That
is, B ∈ (λ, µ). �

Let us give almost convergent sequences space, which was first defined by Lorentz [42]. Let

t = (tk)∈`∞. t is almost convergent to limit ` iff lim
m→∞

m
∑

k=0

tn+k
m+1 = α uniformly in n. It is denoted by

ĉ − limt = α. In addition, ĉs and ĉ0 mean the spaces of almost convergent series and almost null
sequences, respectively. ĉ0 and ĉ are

ĉ0 =

{
x = (xk) ∈ l∞ : lim

m→∞

m
∑

k=0

xn+k
m+1 = 0 uni f ormly in n

}
,

ĉ =
{

x = (xk) ∈ l∞ : ∃l ∈ C 3 lim
m→∞

m
∑

k=0

xn+k
m+1 = α uni f ormly in n

}
.

Now, let us take infinite matrix R = (rnk) and list the following:

∃ak ∈ C 3 f − limrnk = ak for each k ∈ N, (33)

lim
q ∑

k

1
q + 1

∣∣∣∣∣ q

∑
i=0

∆

[
n+i

∑
j=0

(rjk − ak)

]∣∣∣∣∣ = 0 uniformly in n, (34)

sup
n∈N

∑
k

∣∣∣∣∣∆
[

n

∑
j=0

rjk

]∣∣∣∣∣ < ∞, (35)

∃ak ∈ C 3 f − lim
n

∑
j=0

rjk = ak for each k ∈ N, (36)

sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=0

rjk

∣∣∣∣∣ < ∞, (37)

∃ak ∈ C 3∑
n

∑
k

rnk = ak for each k ∈ N, (38)

lim
n ∑

k

∣∣∣∣∣∆
[

n

∑
j=0

(rjk − ak

]∣∣∣∣∣ = 0, (39)

sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=0

rjk

∣∣∣∣∣
p

< ∞, q =
p

p− 1
, (40)

sup
m,n∈N

∣∣∣∣∣ m

∑
n=0

rnk

∣∣∣∣∣ < ∞, (41)

sup
m,l∈N

∣∣∣∣∣ m

∑
n=0

∞

∑
k=l

rnk

∣∣∣∣∣ < ∞, (42)

sup
m,l∈N

∣∣∣∣∣ m

∑
n=0

l

∑
k=0

rnk

∣∣∣∣∣ < ∞, (43)
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lim
m ∑

k

∣∣∣∣∣ ∞

∑
n=m

rnk

∣∣∣∣∣ = 0, (44)

∑
n

∑
k

rnk convergent (45)

lim
m→∞

m

∑
n=0

(rnk − rn,k+1) = a for each k ∈ N, a ∈ C. (46)

Lemma 21. Let infinite matrix R = (rnk) for all k,n∈N. Then,
(1) R = (rnk) ∈ (ĉ, cs) iff Equation (23) and Equations (37)–(39) hold [43].
(2) R = (rnk) ∈ (cs, ĉ) iff Equation (11) and Equation (33) hold [44].
(3) R = (rnk) ∈ (bs, ĉ) iff Equations (8), (11), (33) and (34) hold [45].
(4) R = (rnk) ∈ (bs, ĉs) iff Equations (8) and (34)–(36) hold [45].
(5) R = (rnk) ∈ (cs, ĉs) iff Equation (35) and Equation (36) hold [44].
(6) R = (rnk) ∈ (l∞, bs) = (c, bs) = (c0, bs) iff Equation (37) holds [38].
(7) R = (rnk) ∈ (lp, bs) iff Equation (40) holds [46].
(8) R = (rnk) ∈ (l, bs) iff Equation (41) holds [38].
(9) R = (rnk) ∈ (bv, bs) iff Equation (42) holds [38].
(10) R = (rnk) ∈ (bv0, bs) iff Equation (43) holds [46].
(11) R = (rnk) ∈ (l∞, cs) iff Equation (44) holds [38].
(12) R = (rnk) ∈ (c, cs) if and only Equations (10), (37) and (45) hold [38].
(13) R = (rnk) ∈ (cs0, cs) iff Equations (9) and (46) hold [38].
(14) R = (rnk) ∈ (lp, cs) iff Equations (10) and (40) hold [46].
(15) R = (rnk) ∈ (l, cs) iff Equations (10) and (41) hold [46].
(16) R = (rnk) ∈ (bv, cs) if and only Equations (10), (41) and (43) hold [38].
(17) R = (rnk) ∈ (bv0, cs) iff Equations (10) and (43) hold [46].
Now, suppose vnk and v(m)

nk which mentioned Equations (28) and (29) and give the following equations

lim
k

v(m)
nk = 0 for each n ∈ N, (47)

lim
n ∑

k

∣∣∣v(m)
nk − v(m)

n,k+1

∣∣∣= 0 uniformly in n, (48)

∃vk ∈ C 3 lim
n→∞

(v(m)
nk − v(m)

n,k+1) = vk for each k ∈ N, (49)

lim
k→∞

vnk = 0 for each n ∈ N, (50)

sup
n

∑
k

∣∣vnk − vn,k+1
∣∣ < ∞, (51)

∃vk ∈ C 3 lim
n→∞

(vnk − vn,k+1) = dk for each k ∈ N, (52)

∃l ∈ C 3 lim
n→∞∑

k

∣∣∣vnk − vn,k+1

∣∣∣ = l uniformly in n, (53)

sup
m∈N

∑
k

∣∣∣∣∣ m

∑
n=0

(vnk − vn,k+1)

∣∣∣∣∣ < ∞, (54)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(vnk − vn,k+1)

∣∣∣∣∣ = 0, (55)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(vnk − vn,k+1)

∣∣∣∣∣ = ∑
k

∣∣∣∣∣∑n
(vnk − vn,k+1)

∣∣∣∣∣ = 0, (56)
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sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(vnk − vn,k+1)− (vn−1,k − vn−1,k+1)]

∣∣∣∣∣ < ∞, (57)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

(vnk − vn−1,k)

∣∣∣∣∣ < ∞. (58)

∃vk ∈ C 3 lim
n

v(m)
nk = vk for each k ∈ N, (59)

sup
n

∑
k

∣∣∣v(m)
nk − v(m)

n,k+1

∣∣∣ < ∞, (60)

sup
n

∣∣∣∣limk vnk

∣∣∣∣ < ∞, (61)

∃vk ∈ C 3 lim
n→∞

vnk = vk for each k ∈ N, (62)

sup
m∈N

∣∣∣∣∣limk m

∑
n=0

vnk

∣∣∣∣∣ < ∞, (63)

sup
m∈N

∑
k

∣∣∣∣∣ m

∑
n=0

(vnk − vn,k−1)

∣∣∣∣∣ < ∞, (64)

∃vk ∈ C 3∑
n

vnk = vk for each k ∈ N, (65)

sup
N,K∈F

∑
n∈N

∣∣∣∣∣∑k∈N (vnk − vn,k−1)

∣∣∣∣∣ < ∞, (66)

∃vk ∈ C 3 f − limvnk = vk for each k ∈ N, (67)

sup
N,K∈F

∣∣∣∣∣∑n∈N ∑
k∈N

[(vnk − vn−1,k)− (vn,k−1 − vn−1,k−1)]

∣∣∣∣∣ < ∞, (68)

lim
q ∑

k

1
q + 1

∣∣∣∣∣ q

∑
i=0

∆

[
n+i

∑
j=0

(vjk − lk)

]∣∣∣∣∣ = 0 uniformly in n, (69)

sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=0

vjk

∣∣∣∣∣ < ∞, (70)

∃l ∈ C 3∑
n

∑
k

vnk = l (71)

lim
n ∑

k

∣∣∣∣∣∆
[

n

∑
j=0

(vjk − lk

]∣∣∣∣∣ = 0, (72)

sup
n∈N

∑
k

∣∣∣∣∣∆
[

n

∑
j=0

vjk

]∣∣∣∣∣ < ∞, (73)

∃vk ∈ C 3 f − lim
n

∑
j=0

vjk = vk for each k ∈ N. (74)

If we consider Theorems 19 and 20, Lemmas 9 and 21, then we give the below conclusions.

Corollary 22. Let us take U = (unk) mentioned in Theorem 19. Then,
(1) U = (unk) ∈ (bs(F), c0) iff Equations (47) and (49) hold and Equation (53) holds with l= 0.
(2) U = (unk) ∈ (bs(F), cs0) iff Equations (47)–(50) and Equation (55) hold.
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(3) U = (unk) ∈ (bs(F), c) iff Equations (47)–(50) and Equations (52) and (53) hold.
(4) U = (unk) ∈ (bs(F), cs) iff Equations (47)–(50) and Equation (56) hold.
(5) U = (unk) ∈ (bs(F), l∞) iff Equations (47)–(51) hold.
(6) U = (unk) ∈ (bs(F), bs) iff Equations (47)–(50) and Equation (54) hold.
(7) U = (unk) ∈ (bs(F), l1) iff Equations (47)–(50) and Equation (58) hold.
(8) U = (unk) ∈ (bs(F), bv) iff Equations (47)–(50) and Equation (57) hold.
(9) U = (unk) ∈ (bs(F), bv0) iff Equations (57) and (47)–(49) and Equation (51) hold and Equation (53)

also holds with l= 0.

Corallary 23. Let us take U = (unk) mentioned in Theorem 19. Then,
(1) U = (unk) ∈ (cs(F), c0) iff Equations (59), (60), Equation (51) hold and Equation (62) also holds

with vk = 0 for all k ∈ N.
(2) U = (unk) ∈ (cs(F), cs0) iff Equations (59), (60), Equation (54) hold and Equation (65) also holds

with vk = 0 for all k ∈ N.
(3) U = (unk) ∈ (cs(F), c) iff Equations (59), (60), Equation (51) and Equation (62) hold.
(4) U = (unk) ∈ (cs(F), cs) iff Equations (59), (60), Equation (64) and Equation (65) hold.
(5) U = (unk) ∈ (cs(F), l∞) iff Equations (51) and (59)–(61) hold.
(6) U = (unk) ∈ (cs(F), bs) iff Equations (59), (60), (54) and (63) hold.
(7) U = (unk) ∈ (cs(F), l1) iff Equations (59), (60) and (66) hold.
(8) U = (unk) ∈ (cs(F), bv) iff Equations (59), (60) and (68) hold.
(9) U = (unk) ∈ (cs(F), bv0) iff Equation (59), (60) and (62) hold and Equation (68) holds with vk = 0

for all k ∈ N.

Corollary 24. Let us take U = (unk) mentioned Theorem 19. Then,
(1) U = (unk) ∈ (bs(F), ĉ) iff Equations (47)–(51), (67) and (69) hold.
(2) U = (unk) ∈ (bs(F), ĉ0) iff Equations (47)–(51) hold and Equations (68) and (69) also hold with

vk = 0 in Equation (67) and lk = 0 in Equation (69).
(3) U = (unk) ∈ (cs(F), ĉ) iff Equations (59), (60), (67) and (51) hold.
(4) U = (unk) ∈ (cs(F), ĉ0) iff Equations (51), (59), (60) hold and Equation (67) also holds with vk = 0.
(5) U = (unk) ∈ (bs(F), ĉs) iff Equations (69), (73), (74) and (47)–(50), hold.
(6) U = (unk) ∈ (cs(F), ĉs) iff Equations (73), (74), (59) and (60) hold.

Corallary 25. Let us take U = (unk) mentioned Theorem 20. Then,
(1) U = (unk) ∈ (lp, bs(F)) iff Equation (40) holds with bnk instead of rnk, where bnk is defined by

Equation (31).
(2) U = (unk) ∈ (l∞, bs(F)) = (c, bs(F)) = (c0, bs(F)) iff Equation (37) holds with bnk instead of rnk,

where bnk is defined by Equation (31).
(3) U = (unk) ∈ (l1, bs(F)) iff Equation (41) holds with bnk instead of rnk, where bnk is defined by

Equation (31).
(4) U = (unk) ∈ (bv, bs(F)) iff Equation (42) holds with bnk instead of rnk, where bnk is defined by

Equation (31).
(5) U = (unk) ∈ (bv0, bs(F)) iff Equation (43) holds bnk instead of rnk, where bnk is defined by

Equation (31).
(6) U = (unk) ∈ (l∞, cs(F)) iff Equation (44) holds with bnk instead of rnk, where bnk is defined by

Equation (31).
(7) U = (unk) ∈ (c, cs(F)) iff (10), Equations (37) and (47) hold bnk instead of rnk, where bnk is defined

by Equation (31).
(8) U = (unk) ∈ (cs0, cs(F)) iff Equations (9) and (46) hold with bnk instead of rnk, where bnk is defined

by Equation (31).
(9) U = (unk) ∈ (lp, cs(F)) iff Equations (10) and (40) hold with bnk instead of rnk, where bnk is defined

by Equation (31).
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(10) U = (unk) ∈ (l, cs(F)) iff Equations (10) and (41) hold with bnk instead of rnk, where bnk is defined
by Equation (31).

(11) U = (unk) ∈ (bv, cs(F)) iff Equations (10), (41) and (43) hold with bnk instead of rnk, where bnk is
defined by Equation (31).

(12) U = (unk) ∈ (bv0, cs(F)) iff Equations (10) and (43) hold bnk instead of rnk, where bnk is defined by
Equation (31).

(13) U = (unk) ∈ (ĉ, cs(F)) iff Equation (65) and Equations (70)–(72) hold with bnk instead of vnk,
where bnk is defined by Equation (31).

3. Discussion

Kızmaz [47] first introduced the difference sequence operator in 1981. Generalized difference
sequence spaces were characterized and investigated by Kirişçi and Başar [4] in 2010. Kara [27] first
defined the Fibonacci Difference Matrix F, which created the Fibonacci sequence (fn) in 2013. He also
introduced the new sequence spaces `p(F) and `∞(F); where 1≤ p < ∞. The spaces c(F(r,s)) and c0(F(r,s))
were introduced by Candan [28] in 2015. In 2015, the sequence space `p(F(r,s)) was introduced and
studied by Candan and Kara [19]; where 1 ≤ p ≤ ∞. In addtion, a class of compact operators on `p(F)
and `∞(F) was characterized by Kara et al. [32], where 1 ≤ p < ∞.

In the present study, we introduced the domain of a triangular infinite matrix on a sequences
space. We described spaces cs(F) and bs(F), where F, cs, and bs are the Fibonacci Difference Matrix,
convergent and bounded series, respectively. It was demonstrated that bs(F) are the linear spaces, and
given that cs(F) is linear space in Theorem 6. without proof and, they have the same norm

‖x‖ = sup
n∈N

∣∣∣∣∣ n

∑
j=0

(
fk

fk+1
xk −

fk+1
fk

xk−1

)∣∣∣∣∣
where x∈cs(F) or x∈bs(F). It was found that they are Banach spaces. In addition, inclusions theorems
were examined and found. Finally, the γ, β, α -duals of them were calculated. Finally, some matrix
transformations as a main result were given.
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