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Abstract: Let k be a positive integer, and set [k] := {1, 2, . . . , k}. For a graph G, a k-rainbow dominating
function (or kRDF) of G is a mapping f : V(G) → 2[k] in such a way that, for any vertex v ∈ V(G)

with the empty set under f , the condition
⋃

u∈NG(v) f (u) = [k] always holds, where NG(v) is the open
neighborhood of v. The weight of kRDF f of G is the summation of values of all vertices under f .
The k-rainbow domination number of G, denoted by γrk(G), is the minimum weight of a kRDF of G.
In this paper, we obtain the k-rainbow domination number of grid P3�Pn for k ∈ {2, 3, 4}.

Keywords: k-rainbow dominating function; k-rainbow domination number; grids

1. Introduction

For a graph G, we denote by V(G) and E(G) the vertex set and the edge set of G, respectively. For a
vertex v ∈ V(G), the open neighborhood of v, denoted by NG(v), is the set {u ∈ V(G) : uv ∈ E(G)}
and the closed neighborhood of v, denoted by NG[v], is the set NG(v) ∪ {v}. The degree of a vertex
v ∈ V(G), denoted by dG(v), is defined by dG(v) = |NG(v)|. We let δ(G) and ∆(G) denote the
minimum degree and maximum degree of a graph G, respectively.

Let k be a positive integer, and [k] := {1, 2, . . . , k}. For a graph G, a k-rainbow dominating function
(or kRDF) of G is a mapping f : V(G) → 2[k] in such a way that for any vertex v ∈ V(G) with the
empty set under f , the condition

⋃
u∈NG(v) f (u) = [k] always holds. The weight of a kRDF f of G is

the value ω( f ) := ∑v∈V(G) | f (v)|. The k-rainbow domination number of G, denoted by γrk(G), is the
minimum weight of a kRDF of G. A kRDF f of G is a γrk-function if ω( f ) = γrk(G). The k-rainbow
domination number was introduced by Brešar, Henning, and Rall [1] was studied by several authors
(see, for example [2–15]).

For graphs F and G, we let F�G denote the Cartesian product of F and G. Vizing [16] conjectured
that for arbitrary graphs F and G, γ(F�G) ≥ γ(F)γ(G). This conjecture is still open, and the
domination number or its related invariants of F�G are extensively studied with the motivation from
Vizing’s conjecture.

Concerning the k-rainbow domination number of F�G, one problem naturally arises: Given two
graphs F and G under some conditions, determine γrk(F�G) for all k. In [3], the authors determined
γrk(P2�Pn) for k = 3, 4, 5.
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In this paper, we examine grid graphs P3�Pn, and determine the value γrk(P3�Pn) for k ∈ {2, 3, 4}
and all n, where Pm is the path of order m.

2. 2-Rainbow Domination Number of P3�Pn

We write V(P3�Pn) = {vi, ui, wi | 0 ≤ i ≤ n − 1} and let E(P3�Pn) = {viui, uiwi | 0 ≤ i ≤
n − 1} ∪ {vivi+1, uiui+1, wiwi+1 | 0 ≤ i ≤ n − 1} (see Figure 1). A 2RDF f is given in three lines,
where in the first line there are values of the function f for vertices {v0, v1, . . . , vn−1}, in the second line
of the vertices {u0, u1, . . . , un−1}, and in the third line of the vertices {w0, w1, . . . , wn−1} (see Figure 2).
Furthermore, we use 0, 1, 2, 3 to encode the sets ∅, {1}, {2}, {1, 2}.

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15

Figure 1. The grid graph P3�P16.

0 2 0 0 3 0 0 1 0 2 0 0 3 0 0 1

1 0 1 0 0 0 2 0 0 0 1 0 0 0 2 0

0 2 0 2 0 1 0 0 3 0 0 2 0 1 0 1

Figure 2. A 2RDF of P3�Pn.

To provide a complete answer, we need the following fact that can easily be proved as an exercise.

Fact 1. γr2(P3�P3) = 4, γr2(P3�P4) = 6, γr2(P3�P5) = 7, γr2(P3�P6) = 8, γr2(P3�P7) = 10.

Theorem 1. For n ≥ 8, γr2(P3�Pn) =

⌈
5n + 3

4

⌉
.

Proof. First, we present constructions of a 2RDF of P3�Pn of the desired weight.

1. n ≡ 0 (mod 8):

0200 30010200 . . . 30010200 3001

1010 00200010 . . . 00200010 0020

0202 01003002 . . . 01003002 0101
2. n ≡ 1 (mod 8):

0200 30010200 . . . 30010200 30010

1010 00200010 . . . 00200010 00202

0202 01003002 . . . 01003002 01010
3. n ≡ 2 (mod 8):

0200 30010200 . . . 30010200 300101

1010 00200010 . . . 00200010 002020

0202 01003002 . . . 01003002 010101
4. n ≡ 3 (mod 8):

0200 30010200 . . . 30010200 3001001

1010 00200010 . . . 00200010 0020220

0202 01003002 . . . 01003002 0101001
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5. n ≡ 4 (mod 8):

0200 30010200 . . . 30010200 30010010

1010 00200010 . . . 00200010 00202202

0202 01003002 . . . 01003002 01010010
6. n ≡ 5 (mod 8):

0200 30010200 . . . 30010200 300102020

1010 00200010 . . . 00200010 002000101

0202 01003002 . . . 01003002 010030020
7. n ≡ 6 (mod 8):

0200 30010200 . . . 30010200 30

1010 00200010 . . . 00200010 01

0202 01003002 . . . 01003002 01
8. n ≡ 7 (mod 8):

0200 30010200 . . . 30010200 301

1010 00200010 . . . 00200010 002

0202 01003002 . . . 01003002 010

To show that these are also lower bounds, we prove there is a γr2(P3�Pn)-function, f such that for
every 0 ≤ i ≤ n− 1, ω( fi) = | f (vi)|+ | f (ui)|+ | f (wi)| ≥ 1. Let n ≥ 8 and f be a γr2(P3�Pn)-function
such that the cardinality of S = {i | 0 ≤ i ≤ n− 1 and ω( fi) = 0} is as small as possible. We claim
that |S| = 0. Suppose, to the contrary, that |S| ≥ 1 and let s be the smallest positive integer for which
ω( fs) = 0. Then, ω( fs−1) + ω( fs+1) ≥ 6. Then, we consider the following cases.

Case 1. s = 1 (the case s = n− 1 is similar).
Then, we have f (v1) = f (u1) = f (w1) = {1, 2} and the function g defined by g(u0) = {1},
g(v1) = g(w1) = {2}, g(u2) = f (u2) ∪ {1}, g(v0) = g(w0) = g(u1) = ∅ and g(x) = f (x)
otherwise, is a 2RDF of P3�Pn of weight at most ω( f ), which contradicts the choice of f .

Case 2. s = 1 (s = n− 2 is similar).
Then, ω( f0) + ω( f2) ≥ 6 and the function g defined by g(u0) = g(u2) = {1}, g(v1) =

g(w1) = {2}, g(v3) = f (v3) ∪ {2}, g(w3) = f (w3) ∪ {2}, g(v0) = g(w0) = g(u1) = g(v2) =

g(w2) = ∅ and g(x) = f (x) otherwise, is an 2RDF of P3�Pn of weight at most ω( f ), which
contradicts the choice of f .

Case 3. 2 ≤ s ≤ n− 3.
Since ω( fs−2) ≥ 1, then | f (vs−2)|+ | f (us−2)|+ | f (ws−2)| ≥ 1. First, let | f (us−2)| ≥ 1. We
may assume that {1} ⊆ f (us−2). It is easy to see that the function g defined by g(vs−1) =

g(vs+1) = g(ws−1) = g(ws+1) = {2}, g(us) = {1}, g(us+2) = f (us+2) ∪ {1}, g(us−1) =

g(vs) = g(ws) = g(us+1) = ∅ and g(x) = f (x) otherwise, is an 2RDF of P3�Pn of weight
at most ω( f ), which contradicts the choice of f . Now, let | f (ws−2)| ≥ 1 (| f (vs−2)| ≥ 1 is
similar). We may assume that {1} ⊆ f (ws−2). Hence, the function g defined by g(vs−2) =

f (vs−2) ∪ {1}, g(vs+1) = g(us−1) = g(ws+1) = {2}, g(us) = {1}, g(us+2) = f (us+2) ∪ {1},
g(us−1) = g(vs) = g(ws) = g(ws−1) = g(us+1) = ∅ and g(x) = f (x) otherwise, is an 2RDF
of P3�Pn of weight ω( f ), which is contradicting the choice of f . Therefore, |S| = 0.

We can see that for every 0 ≤ i ≤ n − 2, if ω( fi) = ω( fi+1) = ω( fi+2) = 1,
then ω( fi−1), ω( fi+3) > 1. In addition, there is the function f such that, if ω( f0) = 1 (ω( fn−1) = 1
is similar), then ω( f1) > 1 and ω( f1) + ω( f2) + ω( f3) + ω( f4) ≥ 6 and if ω( f0) = 2 (ω( fn−1) = 2 is
similar), then ω( f0) + ω( f1) + ω( f2) + ω( f3) ≥ 6.
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If ω( f0) = 1 and ω( fn−1) = 1, then

4ω( f ) = 4 ∑
0≤i≤n−1

ω( fi)

= [3ω( f0) + 2ω( f1) + ω( f2)] + [3ω( fn−1) + 2ω( fn−2) + ω( fn−3)]

+ ∑
i∈{0,...,n−4}−{1,n−5}

(ω( fi) + ω( fi+1) + ω( fi+2) + ω( fi+3))

+[ω( f1) + ω( f2) + ω( f3) + ω( f4)] + [ω( fn−5) + ω( fn−4) + ω( fn−3) + ω( fn−2)]

≥ 8 + 8 + 5(n− 5) + 12

= 5(n− 3) + 18.

If ω( f0) = 1 and ω( fn−1) = 2, then

4ω( f ) = 4 ∑
0≤i≤n−1

ω( fi)

= [3ω( f0) + 2ω( f1) + ω( f2)] + [3ω( fn−1) + 2ω( fn−2) + ω( fn−3)]

+ ∑
i∈{0,...,n−4}−{1}

(ω( fi) + ω( fi+1) + ω( fi+2) + ω( fi+3))

+[ω( f1) + ω( f2) + ω( f3) + ω( f4)]

≥ 8 + 9 + 5(n− 4) + 6

= 5(n− 3) + 18.

If ω( f0) = 2 and ω( fn−1) = 2, then

4ω( f ) = 4 ∑
0≤i≤n−1

ω( fi)

= [3ω( f0) + 2ω( f1) + ω( f2)] + [3ω( fn−1) + 2ω( fn−2) + ω( fn−3)]

+ ∑
i∈{0,...,n−4}−{1}

[ω( fi) + ω( fi+1) + ω( fi+2) + ω( fi+3)]

+[ω( f1) + ω( f2) + ω( f3) + ω( f4)]

≥ 9 + 9 + 5(n− 3)

= 5(n− 3) + 18.

Thus, ω( f ) =
⌈ 5n+3

4
⌉
.

3. 3-Rainbow Domination Number of P3�Pn

As in the previous section, a 3RDF is given in three lines and we use 0, 1, 2, 3 to encode the sets
∅, {1}, {2}, {3}.

To provide a complete answer, we need the following fact.

Fact 2. γr3(P3�P3) = 5, γr3(P3�P4) = 8.

Theorem 2. For n ≥ 5,

γr3(P3�Pn) =

{
(3n + 1)/2 if n ≡ 1 (mode 2),
(3n + 2)/2 if n ≡ 0 (mode 2),
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Proof. First, we present constructions of a 3RDF of P3�Pn of the desired weight.

1. n ≡ 0 (mod 4):

2010 . . . 2010 2201

0303 . . . 0303 0030

1020 . . . 1020 1102
2. n ≡ 1 (mod 4):

2010 . . . 2010 2

0303 . . . 0303 0

1020 . . . 1020 1
3. n ≡ 2 (mod 4):

2010 . . . 2010 201201

0303 . . . 0303 030030

1020 . . . 1020 102102
4. n ≡ 3 (mod 4):

2010 . . . 2010 201

0303 . . . 0303 030

1020 . . . 1020 102

To show that these are also lower bounds, we prove there is a γr3(P3�Pn)-function, f that satisfies
the following conditions:

1. For every 0 ≤ i ≤ n− 1, ω( fi) = | f (vi)|+ | f (ui)|+ | f (wi)| ≥ 1,
2. For every 1 ≤ i ≤ n− 2, if ω( fi) = 1, then ω( fi−1) + ω( fi+1) ≥ 4. In particular, if ω( fi) = 1,

then (ω( fi−1) + ω( fi)) + (ω( fi) + ω( fi+1)) ≥ 6,
3. ω( f0) ≥ 2 and ω( fn−1) ≥ 2.

First, we show that for every γr3(P3�Pn)-function f , ω( fi) = | f (vi)|+ | f (ui)|+ | f (wi)| ≥ 1 when
0 ≤ i ≤ n− 1. Let n ≥ 5 and f be a γr3(P3�Pn)-function and S = {i | 0 ≤ i ≤ n− 1 and ω( fi) = 0}.
We claim that |S| = 0. Assume to the contrary that |S| ≥ 1. Then, we consider the following cases.

Case 1. 0 ∈ S (the case n− 1 ∈ S is similar).
Then, we have f (v1) = f (u1) = f (w1) = {1, 2, 3} and it is easy to see that the function g
defined by g(v0) = {1}, g(u1) = {3}, g(w0) = {2}, g(v2) = f (v2) ∪ {2}, g(w2) = f (w2) ∪
{1}, g(u0) = g(v1) = g(w1) = ∅ and g(x) = f (x) otherwise, is an 3RDF of P3�Pn of weight
less than ω( f ), which is a contradiction.

Let s be the smallest positive integer for which ω( fs) = 0. Then, s ≥ 1 and ω( fs−1) +

ω( fs+1) ≥ 9.

Case 2. s = 1 (s = n− 2 is similar).
Then, the function g defined by g(v0) = g(u0) = g(w0) = {1}, g(v1) = {2}, g(w1) = {1},
g(u2) = {3}, g(v3) = f (v3) ∪ {1}, g(w3) = f (w3) ∪ {2}, g(u1) = g(v2) = g(w2) = ∅ and
g(x) = f (x) otherwise, is an 3RDF of P3�Pn of weight less than ω( f ), which is a contradiction.

Case 3. 2 ≤ s ≤ n− 3.
The function g defined by g(us−1) = g(us+1) = {3}, g(vs) = {2}, g(ws) = {1}, g(vs−2) =

f (vs−2) ∪ {1}, g(ws−2) = f (ws−2) ∪ {2}, g(vs+2) = f (vs+2) ∪ {1}, g(ws+2) = f (ws+2) ∪ {2},
g(vs−1) = g(vs+1) = g(us) = g(ws−1) = g(ws+1) = ∅ and g(x) = f (x) otherwise, is an
3RDF of P3�Pn of weight less than ω( f ), which is a contradiction. Therefore, |S| = 0.
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Now, let f be a γr3(P3�Pn)-function. It is easy to see that, if ω( fi) = 1, then ω( fi−1)+ω( fi+1) ≥ 4
when 1 ≤ i ≤ n− 2.

Finally, we show that there is γr3(P3�Pn)-function f such that ω( f0) ≥ 2 ( ω( fn−1) ≥ 2 is similar).
Let f be a γr3(P3�Pn)-function such that ω( f0) = 1. If | f (v0)| = 1 (| f (w0)| = 1 is similar), then
| f (w0)| = | f (u0)| = 0, | f (u1)| ≥ 2 and | f (w1)| = 3. We may assume that {1, 2} ⊆ f (u1). It is easy to
see that the function g defined by g(w0) = {3}, g(w2) = {3}, g(w1) = ∅ and g(x) = f (x) otherwise,
is an 3RDF of P3�Pn of weight less than ω( f ), which is a contradiction. Now, let | f (u0)| = 1.
Then, | f (w0)| = | f (v0)| = 0, | f (v1)| ≥ 2 and | f (w1)| ≥ 2. It is easy to see that the function g
defined by g(w0) = {1}, g(w2) = {2}, g(u1) = {3}, g(v2) = f (v2) ∪ {1}, g(w2) = f (w2) ∪ {2},
g(u1) = g(u2) = ∅ and g(x) = f (x) otherwise, is an 3RDF of P3�Pn of weight ω( f ).

Hence, there is a γr3(P3�Pn)-function, f that satisfies the following conditions:

1. For every 0 ≤ i ≤ n− 1, ω( fi) ≥ 1;
2. For every 1 ≤ i ≤ n− 2, if ω( fi) = 1, then ω( fi−1) + ω( fi+1) ≥ 4; and
3. ω( f0) ≥ 2 and ω( fn−1) ≥ 2.

If n is odd, then

2ω( f ) = 2 ∑
0≤i≤n−1

ω( fi)

= ω( f0) + ω( fn−1) + ∑
0≤i≤n−2

(ω( fi) + ω( fi+1))

≥ 4 + 3(n− 1).

Then, ω( f ) = 3n+1
2 when n is odd. Now, let n is even. Then, there is s 6= n − 1 such that

ω( fs) + ω( fs+1) ≥ 4. Hence,

2ω( f ) = 2 ∑
0≤i≤n−1

ω( fi)

= ω( fs) + ω( fs+1) + ω( f0) + ω( fn−1) + ∑
0≤i≤n−2,i 6=s

(ω( fi) + ω( fi+1))

≥ 8 + 3(n− 2).

Therefore, ω( f ) = 3n+2
2 when n is even.

4. 4-Rainbow Domination Number of P3�Pn

As above, a 4RDF is given in three lines and we use 0, 1, 2, 5 to encode the sets ∅, {1}, {2}, {3, 4}.
To provide a complete answer, we need the following fact.

Fact 3. γr4(P3�P3) = 6, γr4(P3�P4) = 9.

Theorem 3. For n ≥ 5, γr4(P3�Pn) = 2n.

Proof. First, we show that γr4(P3�Pn) ≤ 2n. To do this, we present constructions of a 4RDF of P3�Pn

of the desired weight.

1. n ≡ 0 (mod 4):

2010 . . . 2010 2201

0505 . . . 0505 0050

1020 . . . 1020 1102
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2. n ≡ 1 (mod 4):

2010 . . . 2010 2

0505 . . . 0505 0

1020 . . . 1020 1
3. n ≡ 2 (mod 4):

2010 . . . 2010 201201

0505 . . . 0505 050050

1020 . . . 1020 102102
4. n ≡ 3 (mod 4):

2010 . . . 2010 201

0505 . . . 0505 050

1020 . . . 1020 102

To prove the inverse inequality, we show that every γr4(P3�Pn)-function f satisfies the following
conditions:

1. For every 0 ≤ i ≤ n− 1, ω( fi) = | f (vi)|+ | f (ui)|+ | f (wi)| ≥ 1;
2. For every 1 ≤ i ≤ n− 2, if ω( fi) = 1, then ω( fi−1) + ω( fi+1) ≥ 6; and
3. ω( f0) ≥ 2 and ω( fn−1) ≥ 2.

First, we show that for every γr4(P3�Pn)-function f , ω( fi) = | f (vi)|+ | f (ui)|+ | f (wi)| ≥ 1 when
0 ≤ i ≤ n− 1. Let n ≥ 5 and f be a γr4(P3�Pn)-function and S = {i | 0 ≤ i ≤ n− 1 and ω( fi) = 0}.
We claim that |S| = 0. Assume to the contrary that |S| ≥ 1. Then, we consider the following cases.

Case 1. 0 ∈ S (the case n− 1 ∈ S is similar).
Then, we have f (v1) = f (u1) = f (w1) = {1, 2, 3, 4} and the function g defined by g(v0) =

{1}, g(u1) = {3, 4}, g(w0) = {2}, g(v2) = f (v2) ∪ {2}, g(w2) = f (w2) ∪ {1}, g(u0) =

g(v1) = g(w1) = ∅ and g(x) = f (x) otherwise, is an 4RDF of P3�Pn of weight less than ω( f ),
which is a contradiction.

Let ω( fs) = 0. Then, s ≥ 1 and ω( fs−1) + ω( fs+1) ≥ 12.

Case 2. s = 1 (s = n− 2 is similar).
The function g defined by g(v0) = g(u0) = g(w0) = {1}, g(v1) = {2}, g(w1) = {1},
g(u2) = {3, 4}, g(v3) = f (v3) ∪ {1}, g(w3) = f (w3) ∪ {2}, g(u1) = g(v2) = g(w2) = ∅ and
g(x) = f (x) otherwise, is an 4RDF of P3�Pn of weight less than ω( f ), which is a contradiction.

Case 3. 2 ≤ s ≤ n− 3.
Then, it is easy to see that the function g defined by g(us−1) = g(us+1) = {3, 4}, g(vs) = {2},
g(ws) = {1}, g(vs−2) = f (vs−2) ∪ {1}, g(ws−2) = f (ws−2) ∪ {2}, g(vs+2) = f (vs+2) ∪ {1},
g(ws+2) = f (ws+2) ∪ {2}, g(vs−1) = g(vs+1) = g(us) = g(ws−1) = g(ws+1) = ∅ and
g(x) = f (x) otherwise, is an 4RDF of P3�Pn of weight less than ω( f ), which is a contradiction.
Therefore, |S| = 0.

Now, let f be a γr4(P3�Pn)-function. It is easy to see that, if ω( fi) = 1, then ω( fi−1)+ω( fi+1) ≥ 6
when 1 ≤ i ≤ n− 2.

We show that for every γr4(P3�Pn)-function f ω( f0) ≥ 2 (ω( fn−1) ≥ 2 is similar). Let f be
a γr4(P3�Pn)-function such that ω( f0) = 1. If | f (v0)| = 1 (| f (w0)| = 1 is similar), then | f (w0)| =
| f (u0)| = 0, | f (u1)| ≥ 3 and | f (w1)| = 4. We may assume that {1, 2, 3} ⊆ f (u1). The function g
defined by g(w0) = {4}, g(w2) = {4}, g(w1) = ∅ and g(x) = f (x) otherwise, is an 4RDF of P3�Pn

of weight less than ω( f ), which is a contradiction. Now, let | f (u0)| = 1. Then, | f (w0)| = | f (v0)| = 0,
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| f (v1)| ≥ 3 and | f (w1)| ≥ 3. The function g defined by g(w0) = {1}, g(w2) = {2}, g(u1) = {3, 4},
g(v2) = f (v2)∪ {1}, g(w2) = f (w2)∪ {2}, g(u1) = g(u2) = ∅ and g(x) = f (x) otherwise, is an 4RDF
of P3�Pn of weight less than ω( f ), which is a contradiction.

Hence, every γr4(P3�Pn)-function f satisfies the following conditions:

1. For every 0 ≤ i ≤ n− 1, ω( fi) ≥ 1;
2. For every 1 ≤ i ≤ n − 2, if ω( fi) = 1, then ω( fi−1) + ω( fi+1) ≥ 6. In particular (ω( fi−1) +

ω( fi)) + (ω( fi) + ω( fi+1)) ≥ 8; and
3. ω( f0) ≥ 2 and ω( fn−1) ≥ 2.

Hence,

2ω( f ) = 2 ∑
0≤i≤n−1

ω( fi)

= ∑
0≤i≤n−2

(ω( fi) + ω( fi+1)) + ω( f0) + ω( fn−1)

≥ 4(n− 1) + 4.

Hence, ω( f ) = 2n.
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4. Brešar, B.; Šumenjak, T.K. On the 2-rainbow domination in graphs. Discrete Appl. Math. 2007, 155, 2394–2400.
[CrossRef]

5. Chang, G.J.; Wu, J.; Zhu, X. Rainbow domination on trees. Discrete Appl. Math. 2010, 158, 8–12. [CrossRef]
6. Chunling, T.; Xiaohui, L.; Yuansheng, Y.; Meiqin, L. 2-rainbow domination of generalized Petersen graphs

P(n, 2). Discrete Appl. Math. 2009, 157, 1932–1937.
7. Dehgardi, N.; Sheikholeslami, S.M.; Volkmann, L. The rainbow domination subdivision number of a graph.

Mat. Vesnik 2015, 67, 102–114. [CrossRef]
8. Dehgardi, N.; Sheikholeslami, S.M.; Volkmann, L. The k-rainbow bondage number of a graph.

Discrete Appl. Math. 2014, 174, 133–139. [CrossRef]
9. Meierling, D.; Sheikholeslami, S.M.; Volkmann, L. Nordhaus-Gaddum bounds on the k-rainbow domatic

number of a graph. Appl. Math. Lett. 2011, 24, 1758–1761. [CrossRef]

http://dx.doi.org/10.11650/twjm/1500602498
http://dx.doi.org/10.1016/j.dam.2016.09.043
http://dx.doi.org/10.1080/23799927.2017.1330282
http://dx.doi.org/10.1016/j.dam.2007.07.018
http://dx.doi.org/10.1016/j.dam.2009.08.010
http://dx.doi.org/10.1142/S1793557116500182
http://dx.doi.org/10.1016/j.dam.2014.05.006
http://dx.doi.org/10.1016/j.aml.2011.04.046


Mathematics 2019, 7, 203 9 of 9

10. Shao, Z.; Jiang, H.; Wu, P.; Wang, S.; Žerovnik, J.; Zhang, X.; Liu, J.B. On 2-rainbow domination of generalized
Petersen graphs. Discrete Appl. Math. 2018. [CrossRef]
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