. mathematics ﬁw\o\w

Article
k-Rainbow Domination Number of P;L1P,

Ying Wang 12, Xinling Wu 3, Nasrin Dehgardi 4, Jafar Amjadi °, Rana Khoeilar °
and Jia-Bao Liu &*

1 Department of network technology, South China Institute of Software Engineering, Guangzhou 510990,

China; wying@sise.com.cn

Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China

South China Business College, Guang Dong University of Foreign Studies, Guangzhou 510545, China;

xinlingwu.guangzhou@gmail.com

Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan 7813733385, Iran;

n.dehgardi@sirjantech.ac.ir

5 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran;
jramjadi@azaruniv.ac.ir (J.A.); khoeilar@azaruniv.ac.ir (R.K.)

6 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

*  Correspondence: liujiabaoad@163.com

check for

Received: 12 January 2019; Accepted: 19 February 2019; Published: 21 February 2019 updates

Abstract: Let k be a positive integer, and set [k] := {1,2,...,k}. For a graph G, a k-rainbow dominating
function (or kRDF) of G is a mapping f : V(G) — 2l in such a way that, for any vertex v € V(G)
with the empty set under f, the condition U,en, (o) f(#) = [k] always holds, where Ng(v) is the open
neighborhood of v. The weight of kRDF f of G is the summation of values of all vertices under f.
The k-rainbow domination number of G, denoted by ,4(G), is the minimum weight of a kRDF of G.
In this paper, we obtain the k-rainbow domination number of grid P;UP, for k € {2,3,4}.

Keywords: k-rainbow dominating function; k-rainbow domination number; grids

1. Introduction

For a graph G, we denote by V(G) and E(G) the vertex set and the edge set of G, respectively. For a
vertex v € V(G), the open neighborhood of v, denoted by Ng(v), is the set {u € V(G) : uv € E(G)}
and the closed neighborhood of v, denoted by Ng[v], is the set Ng(v) U {v}. The degree of a vertex
v € V(G), denoted by dg(v), is defined by dg(v) = |Ng(v)|. We let 6(G) and A(G) denote the
minimum degree and maximum degree of a graph G, respectively.

Let k be a positive integer, and [k] := {1,2,...,k}. For a graph G, a k-rainbow dominating function
(or kRDF) of G is a mapping f : V(G) — 2/ in such a way that for any vertex v € V(G) with the
empty set under f, the condition U,en (o) f(#) = [k] always holds. The weight of a kRDF f of G is
the value w(f) := Yoey(c) [f(0)|- The k-rainbow domination number of G, denoted by 7,(G), is the
minimum weight of a kRDF of G. A kRDF f of G is a yu-function if w(f) = ¥ (G). The k-rainbow
domination number was introduced by BreSar, Henning, and Rall [1] was studied by several authors
(see, for example [2-15]).

For graphs F and G, we let FUG denote the Cartesian product of F and G. Vizing [16] conjectured
that for arbitrary graphs F and G, 7(FOG) > 7(F)y(G). This conjecture is still open, and the
domination number or its related invariants of FUG are extensively studied with the motivation from
Vizing’s conjecture.

Concerning the k-rainbow domination number of FUG, one problem naturally arises: Given two
graphs F and G under some conditions, determine <y, (FOG) for all k. In [3], the authors determined
Y (P0OP,) for k = 3,4, 5.
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In this paper, we examine grid graphs P;01P,,, and determine the value 7, (Ps0P,) for k € {2,3,4}
and all n, where Py, is the path of order m.

2. 2-Rainbow Domination Number of P;[P,

We write V(P;0P,) = {v;,u;,w; | 0 < i < n—1} and let E(P0P,) = {vju;, u;w; | 0 < i <
n— 1} U{vviq, uiuipq, wiwiq | 0 < i < n—1} (see Figure 1). A 2RDF f is given in three lines,
where in the first line there are values of the function f for vertices {vg, vy, ..., v,_1}, in the second line
of the vertices {u,u1,...,1,_1}, and in the third line of the vertices {wo, w1, ..., w,_1} (see Figure 2).
Furthermore, we use 0,1, 2, 3 to encode the sets @, {1}, {2}, {1,2}.

Vo (%] U3 U4 Us V¢ U7 Us U9 U0 U11 V12 V13 V4 015

Lo uy  |uz U3 Uy us |ue uz us (uo |U10 1 12 13 14 |U15

Wwo Wi Jwo Jws Jwg W5 |we Jwy Jws (W9 Wi Wi Wiz Wiz Wig W15

Figure 1. The grid graph P;[0Pyg.

Figure 2. A 2RDF of P;0IP,,.

To provide a complete answer, we need the following fact that can easily be proved as an exercise.

Fact 1. ’772(P3|:|P3) =4, ’)’,Q(P?,DP;;) =6, ’)/rz(P3|:|P5) =7, ’yrz(PgDPé) =38, 772(P3|:|P7) =10.

5 3
Theorem 1. Forn > 8, y,2(P30P,) = {nzjl

Proof. First, we present constructions of a 2RDF of P;LP, of the desired weight.

1. n =0 (mod 8):
0200 30010200...30010200 3001
1010 00200010...00200010 0020

0202 01003002...01003002 0101
2. n=1 (mod 8):

0200 30010200...30010200 30010
1010 00200010...00200010 00202

0202 01003002...01003002 01010
3. n =2 (mod 8):

0200 30010200...30010200 300101
1010 00200010...00200010 002020

0202 01003002...01003002 010101
4. n =3 (mod 8):

0200 30010200...30010200 3001001
1010 00200010...00200010 0020220
0202 01003002...01003002 0101001



Mathematics 2019, 7, 203

5. n =4 (mod 8):

0200 30010200...30010200 30010010
1010 00200010...00200010 00202202
0202 01003002...01003002 01010010
. n=5 (mod 8):
0200 30010200...30010200 300102020
1010 00200010...00200010 002000101
0202 01003002 ...01003002 010030020
. n=6 (mod 8):
0200 30010200...30010200 30
1010 00200010...00200010 01
0202 01003002...01003002 01
. n=7 (mod 8):
0200 30010200...30010200 301
1010 00200010...00200010 002
0202 01003002...01003002 010

30f9

To show that these are also lower bounds, we prove there is a v, (P3P, )-function, f such that for
every 0 <i<n—1w(f;) = |f(v;)|+ |f(u;)| +|f(w;)| > 1. Letn > 8 and f be a 2 (P300P,)-function
such that the cardinality of S = {i | 0 <i < n — 1 and w(f;) = 0} is as small as possible. We claim
that |S| = 0. Suppose, to the contrary, that |S| > 1 and let s be the smallest positive integer for which
w(fs) = 0. Then, w(fs_1) + w(fs+1) > 6. Then, we consider the following cases.

Case 1.

Case 2.

Case 3.

s = 1 (the case s = n — 1 is similar).
Then, we have f(v1) = f(u1) = f(w1) = {1,2} and the function g defined by g(up) = {1},

g(v1) = g(wr) = {2}, g(uz) = f(uz) U{1}, g(vo) = g(wo) = g(u1) = @ and g(x) = f(x)
otherwise, is a 2RDF of P;[1P, of weight at most w( f), which contradicts the choice of f.

s =1(s = n — 2is similar).
Then, w(fy) + w(f2) > 6 and the function g defined by g(up) = g(u2) = {1}, g(v1) =
g(w1) = {2}, g(03) = f(va) U {2}, glws) = F(ws) U{2}, g(v0) = glwo) = glur) = g(v2) =
g(wy) = @ and g(x) = f(x) otherwise, is an 2RDF of Ps[JP, of weight at most w(f), which
contradicts the choice of f.

2<s<n-3.

Since w(fs—2) > 1, then |f(vs_2)| 4 |f(us—2)| + [f(ws—2)| > 1. First, let |f(us_p)| > 1. We
may assume that {1} C f(us_p). It is easy to see that the function g defined by g(vs_1) =
§(vst1) = g(ws—1) = glws1) = {2}, g(us) = {1}, g(usy2) = fluss2) U {1}, g(us—1) =
g(vs) = g(ws) = g(us11) = @ and g(x) = f(x) otherwise, is an 2RDF of P3P, of weight
at most w(f), which contradicts the choice of f. Now, let |f(ws_2)| > 1 (|f(vs—2)] > 11is
similar). We may assume that {1} C f(ws_»). Hence, the function g defined by g(vs_2) =
F(002) U{1}, g(oser) = glus 1) = glwss1) = {2}, 8(us) = {1}, gera) = fluera) U1},
(us—1) = g(vs) = g(ws) = g(ws—1) = g(us41) = @ and g(x) = f(x) otherwise, is an 2RDF
of P3[JP, of weight w(f), which is contradicting the choice of f. Therefore, |S| = 0.

We can see that for every 0 < i < n—2, if w(f;) = w(fis1) = w(fizz) = 1,
then w(fi_1), w(fi13) > 1. In addition, there is the function f such that, if w(fy) = 1 (w(f,—1) =1
is similar), then w(f1) > 1 and w(f1) + w(f2) + w(f3) + w(fs) > 6 and if w(fy) =2 (w(fy—1) =21is

similar), then w(fy) + w(f1) + w(f2) + w(fz) > 6.
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If w(fo) =1and w(f,_1) =1, then

do(f) = 4 ), w(fi)

0<i<n—1
= Bw(fo) +2w(f1) + w(f2)] + Bw(fu-1) + 2w(fu—2) + w(fu-3)]

+ Y. (w(fi) + w(fix1) + w(firz) + w(fir3))

i€{0,..,n—4}—{1,n—5}
Flw(fi) + w(f2) + w(fs) + w(fa)] + [w(fu-5) + W(fus) + @(fu-3) + @ (fu-2)]
8+8+5n—5)+12

5(n—23)+18.

v

If w(fo) =1and w(f,—1) = 2, then

do(f) = 4 ) w(fi)

0<i<n-—1

= [Bw(fo) +2w(f1) +w(f2)] + Bw(fu-1) +2w(fu—2) + w(fu-3)]
+ Y. (w(fi) + w(fir1) + w(fiy2) + w(firs))

i€{0,...n—4}—{1}
+w(f) +w(f2) +w(fs) + w(fi)]
84+9+5(n—4)+6
5(n—3)+18.

v

If w(fo) =2and w(f,—1) = 2, then

do(f) = 4 ) w(fi)

0<i<n-—1
= [Bw(fo) +2w(f1) + w(f2)l + Bw(fu-1) +2w0(fu—2) + w(fu-3)]

+ Y. [w(fi) + w(fir1) + w(fiy2) + w(firs)]
ic{0,..,n—4)— {1}

+w(fi) +w(f2) + w(fs) + w(fs)]
9+9+5(n—3)
5(n—3)+18.

v

Thus, w(f) = [242]. O

3. 3-Rainbow Domination Number of P;[1P,

As in the previous section, a 3RDF is given in three lines and we use 0, 1, 2,3 to encode the sets

@,{1},{2},{3}.

To provide a complete answer, we need the following fact.
Fact 2. 7,5(P300P3) = 5, 7,3(Ps0IPy) = 8.
Theorem 2. Forn > 5,

) Bn+1)/2 if n=1(mode?2),
vr3(Ps0IPn) = { (3n+2)/2 if n=0(mode2),
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Proof. First, we present constructions of a 3RDF of P;LP, of the desired weight.

1. n=0 (mod 4):
2010...2010 2201
0303...0303 0030

1020...1020 1102
2. n=1 (mod 4):

2010...2010 2
0303...0303 0
1020...1020 1

3. n =2 (mod 4):
2010...2010 201201
0303...0303 030030

1020...1020 102102
4. n =3 (mod 4):

2010...2010 201

0303...0303 030

1020...1020 102

To show that these are also lower bounds, we prove there is a 7,3 (P;[JP, )-function, f that satisfies
the following conditions:

1. Forevery 0 <i<n—1,w(fi) = |f(v)] + [f(ui)| + |f(wi)| > 1,
2. Forevery 1 <i<n-—2,ifw(f;) =1, then w(f;_1) + w(fir1) > 4. In particular, if w(f;) = 1,

then (w(fi—1) + w(fi)) + (w(fi) + w(fiy1)) > 6,
3. w(fo) >2and w(fy,—1) > 2.

First, we show that for every 7,3 (PP, )-function f, w(f;) = |f(v;)| + |f(u;)| + |f(w;)| > 1 when
0<i<n-—1.Letn >5and f be a v,3(Ps0P,;)-functionand S = {i | 0 <i < n —1and w(f;) = 0}.
We claim that |S| = 0. Assume to the contrary that |S| > 1. Then, we consider the following cases.

Case1l. 0 € S (thecasen —1 € Sissimilar).
Then, we have f(v1) = f(u1) = f(w1) = {1,2,3} and it is easy to see that the function g
defined by g(vo) = {1}, g(u1) = {3}, g(wo) = {2}, g(va2) = f(v2) U{2}, g(w2) = f(wz) U
{1}, g(up) = g(v1) = g(wy) = @ and g(x) = f(x) otherwise, is an 3RDF of P3P, of weight
less than w( f), which is a contradiction.
Let s be the smallest positive integer for which w(fs) = 0. Then, s > 1 and w(f;_1) +

w(fs41) =9

Case2. s=1(s=n—2issimilar).
Then, the function g defined by g(vo) = g(uo) = g(wo) = {1}, g(v1) = {2}, g(w1) = {1},

g(uz) = {3}, 8(v3) = f(vs) U {1}, g(ws) = f(ws) U {2}, g(u1) = g(v2) = g(w2) = @ and
g(x) = f(x) otherwise, is an 3RDF of Ps[JP,, of weight less than w( f), which is a contradiction.

Case3. 2<s<mn-—3.
The function g defined by g¢(us—1) = g(us+1) = {3}, g(vs) = {2}, g(ws) = {1}, g(vs—2) =
F(052) U {1}, g(w5 ) = F(10,2) U {2}, 8(0s12) = F(o312) U {1}, 8 ws12) = flawns2) U {2},
2(vs—1) = g(vs41) = g(us) = g(ws—1) = g(ws1+1) = @ and g(x) = f(x) otherwise, is an
3RDF of P30P, of weight less than w(f), which is a contradiction. Therefore, |S| = 0.
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Now, let f be a y,3(PsP, )-function. It is easy to see that, if w(f;) = 1, then w(f;_1) + w(fiy1) >4
whenl <i<n-—2.

Finally, we show that there is y,3(Ps0P, )-function f such that w(fy) > 2 (w(f,—1) > 2 is similar).
Let f be a ,3(P;00P,)-function such that w(fy) = 1. If |f(vg)| = 1 (|f(wp)| = 1 is similar), then
|f(wo)| = |f(uo)| =0, |f(u1)| > 2and |f(w1)| = 3. We may assume that {1,2} C f(uy). Itis easy to
see that the function g defined by g(wo) = {3}, g(w) = {3}, g(w1) = @ and g(x) = f(x) otherwise,
is an 3RDF of Ps(JP, of weight less than w(f), which is a contradiction. Now, let |f(ug)| = 1.
Then, |f(wo)| = |f(vo)] = 0, |[f(v1)] > 2 and |f(wq)| > 2. It is easy to see that the function g
defined by g(wo) = {1}, g(wz) = {2}, g(u1) = {3}, g(v2) = f(v2) U {1}, g(w2) = f(wz) U {2},
g(uy) = g(up) = @and g(x) = f(x) otherwise, is an 3RDF of P;LJP, of weight w(f).

Hence, there is a y,3(P;00P, )-function, f that satisfies the following conditions:

1. Forevery0<i<n—1,w(f;) > 1,
2. Forevery1 <i<n-2,ifw(f;) =
3. w(fo) >2and w(fy,—1) > 2.

1, then w(fi_1) + w(fiz1) > 4 and

If n is odd, then

2(f) = 2 ), w(fi)

0<i<n-—1
= w(fo) +w(fn,1)+0<; 2(w(fl) +w(fis1))
> 4+3(n—-1) o

Then, w(f) = 3737“ when 7 is odd. Now, let n is even. Then, there is s # n — 1 such that
w(fs) +w(fs41) > 4. Hence,

2(f) = 2 ) w(fi)

0<i<n-—1

= w(f)tw(fin) tolf) twlfi)+ ) (w(fi) +w(fin))

0<i<n—2,i#s
> 8+3(n—2).

Therefore, w(f) = 52 whennis even. [

4. 4-Rainbow Domination Number of P;L1P,
As above, a 4RDF is given in three lines and we use 0,1, 2,5 to encode the sets @, {1}, {2}, {3,4}.
To provide a complete answer, we need the following fact.

Fact 3. 7,4(P300P3) = 6, 7,4(P30IPy) = 9.

Theorem 3. Forn > 5, v,4(Ps0P,) = 2n.

Proof. First, we show that y,4(P;0P,;) < 2n. To do this, we present constructions of a 4RDF of P3P,
of the desired weight.
1. n =0 (mod 4):
2010...2010 2201
0505...0505 0050
1020...1020 1102
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2. n=1 (mod 4):

2010...2010 2
0505...0505 0
1020...1020 1

3. n=2 (mod 4):
2010...2010 201201
0505...0505 050050
1020...1020 102102

4. n =3 (mod 4):
2010...2010 201
0505...0505 050
1020...1020 102

To prove the inverse inequality, we show that every <,4(P;0P; )-function f satisfies the following
conditions:

1. Forevery 0 <i<n—1,w(fi) = |f(v;)| + [f(ui)| + | f(wi)| = 1;
2. Forevery1 <i<n-—2,ifw(f;) =1,thenw(fi_1) +w(fir1) > 6; and
3. w(fp) >2and w(fy,-1) > 2.

First, we show that for every 7,4 (P3P, )-function f, w(f;) = |f(v;)| + |f(u;)| + |f(w;)| > 1 when
0<i<n-—1. Letn >5and f be a vy,4(Ps0P,)-functionand S = {i | 0 <i <n —1and w(f;) = 0}.
We claim that |S| = 0. Assume to the contrary that |S| > 1. Then, we consider the following cases.

Case1. 0 € S (thecasen — 1 € Sis similar).
Then, we have f(v1) = f(u1) = f(w1) = {1,2,3,4} and the function g defined by g(vy) =
{1}, g(m) = 3,4}, g(wy) = {2}, gle2) = f(02) U {2}, glwa) = Flwa) U {1}, gluo) —
g(v1) = g(wq1) = @and g(x) = f(x) otherwise, is an 4RDF of Ps[JP, of weight less than w(f),
which is a contradiction.

Let w(fs) =0. Then,s > 1and w(fs—1) + w(fs11) > 12.

Case2. s =1 (s =n —2issimilar).
The function g defined by g(vg) = g(ug) = g(wo) = {1}, g(v1) = {2}, g(w1) = {1},
g(u2) = (3,4}, g(03) = f(03) U {1}, g(ws) = f(ws) U {2}, glur) = g(e2) — g(ws) = D and
g(x) = f(x) otherwise, is an 4RDF of P;[1P;, of weight less than w( f), which is a contradiction.

Case3. 2<s<n-3.
Then, it is easy to see that the function g defined by g(u;_1) = g(us+1) = {3,4}, g(vs) = {2},
g(ws) = {1}, g(0,-2) = F(vs-2) U{1}, g(we—) = f(w,2) U {2}, gl0s12) = Flov2) U {1},
§we2) = f(wer2) U {2}, g0, 1) = g(oss1) = g(us) = g(we 1) = glwes1) — @ and
g(x) = f(x) otherwise, is an 4RDF of P;LP, of weight less than w( f), which is a contradiction.
Therefore, |S| = 0.

Now, let f be a 7y,4(PsP, )-function. It is easy to see that, if w(f;) = 1, then w(f;_1) + w(fiy1) > 6
whenl <i<n-—2.

We show that for every 7,4(P30P,)-function f w(fy) > 2 (w(f,—1) > 2 is similar). Let f be
a 4 (P30P,)-function such that w(fy) = 1. If [f(vg)| = 1 (|f(wp)| = 1 is similar), then |f(wp)| =
|f(uo)| =0, |f(u1)| > 3 and |f(w1)| = 4. We may assume that {1,2,3} C f(uq). The function g
defined by g(wp) = {4}, g(wz) = {4}, g(w1) = @ and g(x) = f(x) otherwise, is an 4RDF of P;[1P,
of weight less than w( f), which is a contradiction. Now, let |f(u)| = 1. Then, |f(wo)| = |f(vo)| = 0,
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|f(v1)] > 3 and |f(w1)| > 3. The function g defined by g(wg) = {1}, g(wz) = {2}, g(u1) = {3,4},
g(v2) = f(v2) U{1}, g(wa) = f(wa) U{2}, g(u1) = g(up) = @ and g(x) = f(x) otherwise, is an 4RDF
of P3[JP, of weight less than w( f), which is a contradiction.

Hence, every 7,4 (P;00P, )-function f satisfies the following conditions:

1. Forevery0<i<n—1,w(f;) > 1,

2. Forevery1 <i < n-—2,ifw(f;) =1, then w(fi_1) + w(fiz1) > 6. In particular (w(f;_1) +
w(fi)) + (w(fi) + w(fiy1)) = 8 and

3. w(fo) >2and w(fy,—1) > 2.

Hence,

2(f) = 2 ), w(fi)

0<i<n—1
= 0<; z(w(fi) + w(fiy1)) + w(fo) + w(fu-1)

> 4(n—1)+4.

Hence, w(f) =2n. O
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