

Article **k-Rainbow Domination Number of** $P_3 \Box P_n$

Ying Wang ^{1,2}, Xinling Wu ³, Nasrin Dehgardi ⁴, Jafar Amjadi ⁵, Rana Khoeilar ⁵ and Jia-Bao Liu ^{6,*}

- ¹ Department of network technology, South China Institute of Software Engineering, Guangzhou 510990, China; wying@sise.com.cn
- ² Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
- ³ South China Business College, Guang Dong University of Foreign Studies, Guangzhou 510545, China; xinlingwu.guangzhou@gmail.com
- ⁴ Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan 7813733385, Iran; n.dehgardi@sirjantech.ac.ir
- ⁵ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran; j-amjadi@azaruniv.ac.ir (J.A.); khoeilar@azaruniv.ac.ir (R.K.)
- ⁶ School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
- * Correspondence: liujiabaoad@163.com

Received: 12 January 2019; Accepted: 19 February 2019; Published: 21 February 2019

Abstract: Let *k* be a positive integer, and set $[k] := \{1, 2, ..., k\}$. For a graph *G*, a *k*-rainbow dominating function (or *kRDF*) of *G* is a mapping $f : V(G) \rightarrow 2^{[k]}$ in such a way that, for any vertex $v \in V(G)$ with the empty set under *f*, the condition $\bigcup_{u \in N_G(v)} f(u) = [k]$ always holds, where $N_G(v)$ is the open neighborhood of *v*. The weight of *kRDF f* of *G* is the summation of values of all vertices under *f*. The *k*-rainbow domination number of *G*, denoted by $\gamma_{rk}(G)$, is the minimum weight of a *kRDF* of *G*. In this paper, we obtain the *k*-rainbow domination number of grid $P_3 \Box P_n$ for $k \in \{2, 3, 4\}$.

Keywords: k-rainbow dominating function; k-rainbow domination number; grids

1. Introduction

For a graph *G*, we denote by V(G) and E(G) the vertex set and the edge set of *G*, respectively. For a vertex $v \in V(G)$, the open neighborhood of *v*, denoted by $N_G(v)$, is the set $\{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of *v*, denoted by $N_G[v]$, is the set $N_G(v) \cup \{v\}$. The degree of a vertex $v \in V(G)$, denoted by $d_G(v)$, is defined by $d_G(v) = |N_G(v)|$. We let $\delta(G)$ and $\Delta(G)$ denote the minimum degree and maximum degree of a graph *G*, respectively.

Let *k* be a positive integer, and $[k] := \{1, 2, ..., k\}$. For a graph *G*, a *k*-rainbow dominating function (or *kRDF*) of *G* is a mapping $f : V(G) \to 2^{[k]}$ in such a way that for any vertex $v \in V(G)$ with the empty set under *f*, the condition $\bigcup_{u \in N_G(v)} f(u) = [k]$ always holds. The weight of a *kRDF f* of *G* is the value $\omega(f) := \sum_{v \in V(G)} |f(v)|$. The *k*-rainbow domination number of *G*, denoted by $\gamma_{rk}(G)$, is the minimum weight of a *kRDF* of *G*. A *kRDF f* of *G* is a γ_{rk} -function if $\omega(f) = \gamma_{rk}(G)$. The *k*-rainbow domination number was introduced by Brešar, Henning, and Rall [1] was studied by several authors (see, for example [2–15]).

For graphs *F* and *G*, we let $F \Box G$ denote the Cartesian product of *F* and *G*. Vizing [16] conjectured that for arbitrary graphs *F* and *G*, $\gamma(F \Box G) \geq \gamma(F)\gamma(G)$. This conjecture is still open, and the domination number or its related invariants of $F \Box G$ are extensively studied with the motivation from Vizing's conjecture.

Concerning the *k*-rainbow domination number of $F \Box G$, one problem naturally arises: Given two graphs *F* and *G* under some conditions, determine $\gamma_{rk}(F \Box G)$ for all *k*. In [3], the authors determined $\gamma_{rk}(P_2 \Box P_n)$ for k = 3, 4, 5.

In this paper, we examine grid graphs $P_3 \Box P_n$, and determine the value $\gamma_{rk}(P_3 \Box P_n)$ for $k \in \{2, 3, 4\}$ and all n, where P_m is the path of order m.

2. 2-Rainbow Domination Number of $P_3 \Box P_n$

We write $V(P_3 \Box P_n) = \{v_i, u_i, w_i \mid 0 \le i \le n-1\}$ and let $E(P_3 \Box P_n) = \{v_i, u_i, u_i, w_i \mid 0 \le i \le n-1\}$ n-1 \cup { $v_iv_{i+1}, u_iu_{i+1}, w_iw_{i+1} \mid 0 \le i \le n-1$ } (see Figure 1). A 2RDF f is given in three lines, where in the first line there are values of the function *f* for vertices $\{v_0, v_1, \ldots, v_{n-1}\}$, in the second line of the vertices $\{u_0, u_1, \ldots, u_{n-1}\}$, and in the third line of the vertices $\{w_0, w_1, \ldots, w_{n-1}\}$ (see Figure 2). Furthermore, we use 0, 1, 2, 3 to encode the sets $\emptyset, \{1\}, \{2\}, \{1, 2\}$.

τ	20	v_1	v_2	v_3 v_3	04	05	<i>v</i> ₆ 1	<i>v</i> ₇	v_8	V9 1	v ₁₀ v	v ₁₁ v	12 V	$13 v_1$	4	v_{15}
	<i>u</i> 0	u_1	<i>u</i> ₂	и3	u_4	<i>u</i> 5	<i>u</i> ₆	u ₇	<i>u</i> ₈	<i>u</i> 9	<i>u</i> ₁₀	u_{11}	u ₁₂	<i>u</i> ₁₃	<i>u</i> ₁₄	u_{15}
	w_0	w_1	w2	w_3	w_4	w_5	w_6	w ₇	w_8	w9	w_{10}	w_{11}	w_{12}	w ₁₃	w_{14}	w_{15}

0	2	0	0	3	0	0	1	0	2	0 0	0 3	3 () ()	1
1	0	1	0	0	0	2	0	0	0	1	0	0	0	2	0
0	2	0	2	0	1	0	0	3	0	0	2	0	1	0	1

Figure 1. The grid graph $P_3 \Box P_{16}$.

Figure 2. A 2RDF of $P_3 \Box P_n$.

To provide a complete answer, we need the following fact that can easily be proved as an exercise.

Fact 1. $\gamma_{r2}(P_3 \Box P_3) = 4$, $\gamma_{r2}(P_3 \Box P_4) = 6$, $\gamma_{r2}(P_3 \Box P_5) = 7$, $\gamma_{r2}(P_3 \Box P_6) = 8$, $\gamma_{r2}(P_3 \Box P_7) = 10$.

Theorem 1. *For* $n \ge 8$, $\gamma_{r2}(P_3 \Box P_n) = \left[\frac{5n+3}{4}\right]$.

Proof. First, we present constructions of a 2RDF of $P_3 \Box P_n$ of the desired weight.

1. $n \equiv 0 \pmod{8}$: 0200 30010200...30010200 3001 1010 00200010...00200010 0020 0202 01003002...01003002 0101 2. $n \equiv 1 \pmod{8}$: 0200 30010200...30010200 30010 1010 00200010...00200010 00202 0202 01003002...01003002 01010 3. $n \equiv 2 \pmod{8}$: 0200 30010200...30010200 300101 1010 00200010...00200010 002020 0202 01003002...01003002 010101 4. $n \equiv 3 \pmod{8}$: 0200 30010200...30010200 3001001 1010 00200010...00200010 0020220 0202 01003002...01003002 0101001

```
5. n \equiv 4 \pmod{8}:
  0200 30010200...30010200 30010010
  1010 00200010...00200010 00202202
  0202 01003002...01003002 01010010
6. n \equiv 5 \pmod{8}:
  0200 30010200...30010200 300102020
  1010 00200010...00200010 002000101
  0202 01003002...01003002 010030020
7. n \equiv 6 \pmod{8}:
  0200 30010200...30010200 30
  1010 00200010...00200010 01
  0202 01003002...01003002 01
8. n \equiv 7 \pmod{8}:
  0200 30010200...30010200 301
  1010 00200010...00200010 002
  0202 01003002...01003002 010
```

To show that these are also lower bounds, we prove there is a $\gamma_{r2}(P_3 \Box P_n)$ -function, f such that for every $0 \le i \le n-1$, $\omega(f_i) = |f(v_i)| + |f(u_i)| + |f(w_i)| \ge 1$. Let $n \ge 8$ and f be a $\gamma_{r2}(P_3 \Box P_n)$ -function such that the cardinality of $S = \{i \mid 0 \le i \le n-1 \text{ and } \omega(f_i) = 0\}$ is as small as possible. We claim that |S| = 0. Suppose, to the contrary, that $|S| \ge 1$ and let s be the smallest positive integer for which $\omega(f_s) = 0$. Then, $\omega(f_{s-1}) + \omega(f_{s+1}) \ge 6$. Then, we consider the following cases.

Case 1. s = 1 (the case s = n - 1 is similar).

Then, we have $f(v_1) = f(u_1) = f(w_1) = \{1, 2\}$ and the function *g* defined by $g(u_0) = \{1\}$, $g(v_1) = g(w_1) = \{2\}$, $g(u_2) = f(u_2) \cup \{1\}$, $g(v_0) = g(w_0) = g(u_1) = \emptyset$ and g(x) = f(x) otherwise, is a 2RDF of $P_3 \Box P_n$ of weight at most $\omega(f)$, which contradicts the choice of *f*.

```
Case 2. s = 1 (s = n - 2 is similar).
```

Then, $\omega(f_0) + \omega(f_2) \ge 6$ and the function *g* defined by $g(u_0) = g(u_2) = \{1\}$, $g(v_1) = g(w_1) = \{2\}$, $g(v_3) = f(v_3) \cup \{2\}$, $g(w_3) = f(w_3) \cup \{2\}$, $g(v_0) = g(w_0) = g(u_1) = g(v_2) = g(w_2) = \emptyset$ and g(x) = f(x) otherwise, is an 2RDF of $P_3 \Box P_n$ of weight at most $\omega(f)$, which contradicts the choice of *f*.

Case 3. $2 \le s \le n - 3$.

Since $\omega(f_{s-2}) \ge 1$, then $|f(v_{s-2})| + |f(u_{s-2})| \ge 1$. First, let $|f(u_{s-2})| \ge 1$. We may assume that $\{1\} \subseteq f(u_{s-2})$. It is easy to see that the function g defined by $g(v_{s-1}) = g(v_{s+1}) = g(w_{s-1}) = g(w_{s+1}) = \{2\}$, $g(u_s) = \{1\}$, $g(u_{s+2}) = f(u_{s+2}) \cup \{1\}$, $g(u_{s-1}) = g(v_s) = g(w_s) = g(u_{s+1}) = \emptyset$ and g(x) = f(x) otherwise, is an 2RDF of $P_3 \Box P_n$ of weight at most $\omega(f)$, which contradicts the choice of f. Now, let $|f(w_{s-2})| \ge 1$ ($|f(v_{s-2})| \ge 1$ is similar). We may assume that $\{1\} \subseteq f(w_{s-2})$. Hence, the function g defined by $g(v_{s-2}) = f(v_{s-2}) \cup \{1\}$, $g(v_{s+1}) = g(u_{s-1}) = g(w_{s+1}) = \{2\}$, $g(u_s) = \{1\}$, $g(u_{s+2}) = f(u_{s+2}) \cup \{1\}$, $g(u_{s-2}) = g(w_s) = g(w_s) = g(w_{s-1}) = g(u_{s+1}) = \emptyset$ and g(x) = f(x) otherwise, is an 2RDF of $P_3 \Box P_n$ of weight $\omega(f)$, which is contradicting the choice of f. Therefore, |S| = 0.

We can see that for every $0 \le i \le n-2$, if $\omega(f_i) = \omega(f_{i+1}) = \omega(f_{i+2}) = 1$, then $\omega(f_{i-1}), \omega(f_{i+3}) > 1$. In addition, there is the function f such that, if $\omega(f_0) = 1$ ($\omega(f_{n-1}) = 1$ is similar), then $\omega(f_1) > 1$ and $\omega(f_1) + \omega(f_2) + \omega(f_3) + \omega(f_4) \ge 6$ and if $\omega(f_0) = 2$ ($\omega(f_{n-1}) = 2$ is similar), then $\omega(f_0) + \omega(f_1) + \omega(f_2) + \omega(f_3) \ge 6$. If $\omega(f_0) = 1$ and $\omega(f_{n-1}) = 1$, then

$$\begin{aligned} 4\omega(f) &= 4\sum_{0 \le i \le n-1} \omega(f_i) \\ &= [3\omega(f_0) + 2\omega(f_1) + \omega(f_2)] + [3\omega(f_{n-1}) + 2\omega(f_{n-2}) + \omega(f_{n-3})] \\ &+ \sum_{i \in \{0, \dots, n-4\} - \{1, n-5\}} (\omega(f_i) + \omega(f_{i+1}) + \omega(f_{i+2}) + \omega(f_{i+3})) \\ &+ [\omega(f_1) + \omega(f_2) + \omega(f_3) + \omega(f_4)] + [\omega(f_{n-5}) + \omega(f_{n-4}) + \omega(f_{n-3}) + \omega(f_{n-2})] \\ &\ge 8 + 8 + 5(n-5) + 12 \\ &= 5(n-3) + 18. \end{aligned}$$

If $\omega(f_0) = 1$ and $\omega(f_{n-1}) = 2$, then

$$\begin{aligned} 4\omega(f) &= 4\sum_{0 \le i \le n-1} \omega(f_i) \\ &= [3\omega(f_0) + 2\omega(f_1) + \omega(f_2)] + [3\omega(f_{n-1}) + 2\omega(f_{n-2}) + \omega(f_{n-3})] \\ &+ \sum_{i \in \{0, \dots, n-4\} - \{1\}} (\omega(f_i) + \omega(f_{i+1}) + \omega(f_{i+2}) + \omega(f_{i+3})) \\ &+ [\omega(f_1) + \omega(f_2) + \omega(f_3) + \omega(f_4)] \\ &\ge 8 + 9 + 5(n-4) + 6 \\ &= 5(n-3) + 18. \end{aligned}$$

If $\omega(f_0) = 2$ and $\omega(f_{n-1}) = 2$, then

$$\begin{aligned} 4\omega(f) &= 4\sum_{0 \le i \le n-1} \omega(f_i) \\ &= [3\omega(f_0) + 2\omega(f_1) + \omega(f_2)] + [3\omega(f_{n-1}) + 2\omega(f_{n-2}) + \omega(f_{n-3})] \\ &+ \sum_{i \in \{0, \dots, n-4\} - \{1\}} [\omega(f_i) + \omega(f_{i+1}) + \omega(f_{i+2}) + \omega(f_{i+3})] \\ &+ [\omega(f_1) + \omega(f_2) + \omega(f_3) + \omega(f_4)] \\ &\ge 9 + 9 + 5(n-3) \\ &= 5(n-3) + 18. \end{aligned}$$

Thus, $\omega(f) = \left\lceil \frac{5n+3}{4} \right\rceil$. \Box

3. 3-Rainbow Domination Number of $P_3 \Box P_n$

As in the previous section, a 3RDF is given in three lines and we use 0, 1, 2, 3 to encode the sets \emptyset , {1}, {2}, {3}.

To provide a complete answer, we need the following fact.

Fact 2.
$$\gamma_{r3}(P_3 \Box P_3) = 5$$
, $\gamma_{r3}(P_3 \Box P_4) = 8$.

Theorem 2. For $n \ge 5$,

$$\gamma_{r3}(P_3 \Box P_n) = \begin{cases} (3n+1)/2 & \text{if } n \equiv 1 \pmod{2}, \\ (3n+2)/2 & \text{if } n \equiv 0 \pmod{2}, \end{cases}$$

Proof. First, we present constructions of a 3RDF of $P_3 \Box P_n$ of the desired weight.

1. $n \equiv 0 \pmod{4}$: 2010...2010 2201 0303...0303 0030 1020...1020 1102 2. $n \equiv 1 \pmod{4}$: 2010...2010 2 0303...0303 0 1020...1020 1 3. $n \equiv 2 \pmod{4}$: 2010...2010 201201 0303...0303 030030 1020...1020 102102 4. $n \equiv 3 \pmod{4}$: 2010...2010 201 0303...0303 030 1020...1020 102

To show that these are also lower bounds, we prove there is a $\gamma_{r3}(P_3 \Box P_n)$ -function, *f* that satisfies the following conditions:

- 1. For every $0 \le i \le n 1$, $\omega(f_i) = |f(v_i)| + |f(u_i)| + |f(w_i)| \ge 1$,
- 2. For every $1 \le i \le n-2$, if $\omega(f_i) = 1$, then $\omega(f_{i-1}) + \omega(f_{i+1}) \ge 4$. In particular, if $\omega(f_i) = 1$, then $(\omega(f_{i-1}) + \omega(f_i)) + (\omega(f_i) + \omega(f_{i+1})) \ge 6$,

3.
$$\omega(f_0) \ge 2$$
 and $\omega(f_{n-1}) \ge 2$.

First, we show that for every $\gamma_{r3}(P_3 \Box P_n)$ -function f, $\omega(f_i) = |f(v_i)| + |f(u_i)| + |f(w_i)| \ge 1$ when $0 \le i \le n-1$. Let $n \ge 5$ and f be a $\gamma_{r3}(P_3 \Box P_n)$ -function and $S = \{i \mid 0 \le i \le n-1 \text{ and } \omega(f_i) = 0\}$. We claim that |S| = 0. Assume to the contrary that $|S| \ge 1$. Then, we consider the following cases.

Case 1. $0 \in S$ (the case $n - 1 \in S$ is similar).

Then, we have $f(v_1) = f(u_1) = f(w_1) = \{1, 2, 3\}$ and it is easy to see that the function g defined by $g(v_0) = \{1\}$, $g(u_1) = \{3\}$, $g(w_0) = \{2\}$, $g(v_2) = f(v_2) \cup \{2\}$, $g(w_2) = f(w_2) \cup \{1\}$, $g(u_0) = g(v_1) = g(w_1) = \emptyset$ and g(x) = f(x) otherwise, is an 3RDF of $P_3 \Box P_n$ of weight less than $\omega(f)$, which is a contradiction.

Let *s* be the smallest positive integer for which $\omega(f_s) = 0$. Then, $s \ge 1$ and $\omega(f_{s-1}) + \omega(f_{s+1}) \ge 9$.

Case 2. s = 1 (s = n - 2 is similar).

Then, the function *g* defined by $g(v_0) = g(u_0) = g(w_0) = \{1\}$, $g(v_1) = \{2\}$, $g(w_1) = \{1\}$, $g(u_2) = \{3\}$, $g(v_3) = f(v_3) \cup \{1\}$, $g(w_3) = f(w_3) \cup \{2\}$, $g(u_1) = g(v_2) = g(w_2) = \emptyset$ and g(x) = f(x) otherwise, is an 3RDF of $P_3 \Box P_n$ of weight less than $\omega(f)$, which is a contradiction.

Case 3. $2 \le s \le n - 3$.

The function *g* defined by $g(u_{s-1}) = g(u_{s+1}) = \{3\}$, $g(v_s) = \{2\}$, $g(w_s) = \{1\}$, $g(v_{s-2}) = f(v_{s-2}) \cup \{1\}$, $g(w_{s-2}) = f(w_{s-2}) \cup \{2\}$, $g(v_{s+2}) = f(v_{s+2}) \cup \{1\}$, $g(w_{s+2}) = f(w_{s+2}) \cup \{2\}$, $g(v_{s-1}) = g(v_{s+1}) = g(u_s) = g(w_{s-1}) = g(w_{s+1}) = \emptyset$ and g(x) = f(x) otherwise, is an 3RDF of $P_3 \Box P_n$ of weight less than $\omega(f)$, which is a contradiction. Therefore, |S| = 0.

Now, let *f* be a $\gamma_{r3}(P_3 \Box P_n)$ -function. It is easy to see that, if $\omega(f_i) = 1$, then $\omega(f_{i-1}) + \omega(f_{i+1}) \ge 4$ when $1 \le i \le n-2$.

Finally, we show that there is $\gamma_{r3}(P_3 \Box P_n)$ -function f such that $\omega(f_0) \ge 2$ ($\omega(f_{n-1}) \ge 2$ is similar). Let f be a $\gamma_{r3}(P_3 \Box P_n)$ -function such that $\omega(f_0) = 1$. If $|f(v_0)| = 1$ ($|f(w_0)| = 1$ is similar), then $|f(w_0)| = |f(u_0)| = 0$, $|f(u_1)| \ge 2$ and $|f(w_1)| = 3$. We may assume that $\{1,2\} \subseteq f(u_1)$. It is easy to see that the function g defined by $g(w_0) = \{3\}$, $g(w_2) = \{3\}$, $g(w_1) = \emptyset$ and g(x) = f(x) otherwise, is an 3RDF of $P_3 \Box P_n$ of weight less than $\omega(f)$, which is a contradiction. Now, let $|f(u_0)| = 1$. Then, $|f(w_0)| = |f(v_0)| = 0$, $|f(v_1)| \ge 2$ and $|f(w_1)| \ge 2$. It is easy to see that the function g defined by $g(w_0) = \{1\}$, $g(w_2) = \{2\}$, $g(u_1) = \{3\}$, $g(v_2) = f(v_2) \cup \{1\}$, $g(w_2) = f(w_2) \cup \{2\}$, $g(u_1) = g(u_2) = \emptyset$ and g(x) = f(x) otherwise, is an 3RDF of $P_3 \Box P_n$ of weight with $f(x) = \{2\}$.

Hence, there is a $\gamma_{r3}(P_3 \Box P_n)$ -function, *f* that satisfies the following conditions:

- 1. For every $0 \le i \le n 1$, $\omega(f_i) \ge 1$;
- 2. For every $1 \le i \le n-2$, if $\omega(f_i) = 1$, then $\omega(f_{i-1}) + \omega(f_{i+1}) \ge 4$; and
- 3. $\omega(f_0) \ge 2$ and $\omega(f_{n-1}) \ge 2$.

If *n* is odd, then

$$2\omega(f) = 2\sum_{0 \le i \le n-1} \omega(f_i)$$

= $\omega(f_0) + \omega(f_{n-1}) + \sum_{0 \le i \le n-2} (\omega(f_i) + \omega(f_{i+1}))$
 $\ge 4 + 3(n-1).$

Then, $\omega(f) = \frac{3n+1}{2}$ when *n* is odd. Now, let *n* is even. Then, there is $s \neq n-1$ such that $\omega(f_s) + \omega(f_{s+1}) \ge 4$. Hence,

$$2\omega(f) = 2\sum_{0 \le i \le n-1} \omega(f_i)$$

= $\omega(f_s) + \omega(f_{s+1}) + \omega(f_0) + \omega(f_{n-1}) + \sum_{0 \le i \le n-2, i \ne s} (\omega(f_i) + \omega(f_{i+1}))$
 $\ge 8 + 3(n-2).$

Therefore, $\omega(f) = \frac{3n+2}{2}$ when *n* is even. \Box

4. 4-Rainbow Domination Number of $P_3 \Box P_n$

As above, a 4RDF is given in three lines and we use 0, 1, 2, 5 to encode the sets \emptyset , {1}, {2}, {3,4}. To provide a complete answer, we need the following fact.

Fact 3. $\gamma_{r4}(P_3 \Box P_3) = 6$, $\gamma_{r4}(P_3 \Box P_4) = 9$.

Theorem 3. For $n \ge 5$, $\gamma_{r4}(P_3 \Box P_n) = 2n$.

Proof. First, we show that $\gamma_{r4}(P_3 \Box P_n) \leq 2n$. To do this, we present constructions of a 4RDF of $P_3 \Box P_n$ of the desired weight.

1. $n \equiv 0 \pmod{4}$: 2010...2010 2201 0505...0505 0050 1020...1020 1102 2. $n \equiv 1 \pmod{4}$: $2010 \dots 2010 \ 2$ $0505 \dots 0505 \ 0$ $1020 \dots 1020 \ 1$ 3. $n \equiv 2 \pmod{4}$: $2010 \dots 2010 \ 201201$ $0505 \dots 0505 \ 050050$ $1020 \dots 1020 \ 102102$ 4. $n \equiv 3 \pmod{4}$: $2010 \dots 2010 \ 201$ $0505 \dots 0505 \ 050$ $1020 \dots 1020 \ 102$

To prove the inverse inequality, we show that every $\gamma_{r4}(P_3 \Box P_n)$ -function f satisfies the following conditions:

- 1. For every $0 \le i \le n 1$, $\omega(f_i) = |f(v_i)| + |f(u_i)| + |f(w_i)| \ge 1$;
- 2. For every $1 \le i \le n-2$, if $\omega(f_i) = 1$, then $\omega(f_{i-1}) + \omega(f_{i+1}) \ge 6$; and
- 3. $\omega(f_0) \ge 2$ and $\omega(f_{n-1}) \ge 2$.

First, we show that for every $\gamma_{r4}(P_3 \Box P_n)$ -function f, $\omega(f_i) = |f(v_i)| + |f(u_i)| + |f(w_i)| \ge 1$ when $0 \le i \le n-1$. Let $n \ge 5$ and f be a $\gamma_{r4}(P_3 \Box P_n)$ -function and $S = \{i \mid 0 \le i \le n-1 \text{ and } \omega(f_i) = 0\}$. We claim that |S| = 0. Assume to the contrary that $|S| \ge 1$. Then, we consider the following cases.

Case 1. $0 \in S$ (the case $n - 1 \in S$ is similar).

Then, we have $f(v_1) = f(u_1) = f(w_1) = \{1, 2, 3, 4\}$ and the function g defined by $g(v_0) = \{1\}$, $g(u_1) = \{3, 4\}$, $g(w_0) = \{2\}$, $g(v_2) = f(v_2) \cup \{2\}$, $g(w_2) = f(w_2) \cup \{1\}$, $g(u_0) = g(v_1) = g(w_1) = \emptyset$ and g(x) = f(x) otherwise, is an 4RDF of $P_3 \Box P_n$ of weight less than $\omega(f)$, which is a contradiction.

Let $\omega(f_s) = 0$. Then, $s \ge 1$ and $\omega(f_{s-1}) + \omega(f_{s+1}) \ge 12$.

Case 2. s = 1 (s = n - 2 is similar).

The function *g* defined by $g(v_0) = g(u_0) = g(w_0) = \{1\}$, $g(v_1) = \{2\}$, $g(w_1) = \{1\}$, $g(u_2) = \{3,4\}$, $g(v_3) = f(v_3) \cup \{1\}$, $g(w_3) = f(w_3) \cup \{2\}$, $g(u_1) = g(v_2) = g(w_2) = \emptyset$ and g(x) = f(x) otherwise, is an 4RDF of $P_3 \Box P_n$ of weight less than $\omega(f)$, which is a contradiction.

Case 3. $2 \le s \le n - 3$.

Then, it is easy to see that the function *g* defined by $g(u_{s-1}) = g(u_{s+1}) = \{3,4\}, g(v_s) = \{2\}, g(w_s) = \{1\}, g(v_{s-2}) = f(v_{s-2}) \cup \{1\}, g(w_{s-2}) = f(w_{s-2}) \cup \{2\}, g(v_{s+2}) = f(v_{s+2}) \cup \{1\}, g(w_{s+2}) = f(w_{s+2}) \cup \{2\}, g(v_{s-1}) = g(v_{s+1}) = g(u_s) = g(w_{s-1}) = g(w_{s+1}) = \emptyset$ and g(x) = f(x) otherwise, is an 4RDF of $P_3 \Box P_n$ of weight less than $\omega(f)$, which is a contradiction. Therefore, |S| = 0.

Now, let *f* be a $\gamma_{r4}(P_3 \Box P_n)$ -function. It is easy to see that, if $\omega(f_i) = 1$, then $\omega(f_{i-1}) + \omega(f_{i+1}) \ge 6$ when $1 \le i \le n-2$.

We show that for every $\gamma_{r4}(P_3 \Box P_n)$ -function $f \omega(f_0) \ge 2$ ($\omega(f_{n-1}) \ge 2$ is similar). Let f be a $\gamma_{r4}(P_3 \Box P_n)$ -function such that $\omega(f_0) = 1$. If $|f(v_0)| = 1$ ($|f(w_0)| = 1$ is similar), then $|f(w_0)| =$ $|f(u_0)| = 0$, $|f(u_1)| \ge 3$ and $|f(w_1)| = 4$. We may assume that $\{1, 2, 3\} \subseteq f(u_1)$. The function gdefined by $g(w_0) = \{4\}$, $g(w_2) = \{4\}$, $g(w_1) = \emptyset$ and g(x) = f(x) otherwise, is an 4RDF of $P_3 \Box P_n$ of weight less than $\omega(f)$, which is a contradiction. Now, let $|f(u_0)| = 1$. Then, $|f(w_0)| = |f(v_0)| = 0$, $|f(v_1)| \ge 3$ and $|f(w_1)| \ge 3$. The function *g* defined by $g(w_0) = \{1\}$, $g(w_2) = \{2\}$, $g(u_1) = \{3,4\}$, $g(v_2) = f(v_2) \cup \{1\}$, $g(w_2) = f(w_2) \cup \{2\}$, $g(u_1) = g(u_2) = \emptyset$ and g(x) = f(x) otherwise, is an 4RDF of $P_3 \Box P_n$ of weight less than $\omega(f)$, which is a contradiction.

Hence, every $\gamma_{r4}(P_3 \Box P_n)$ -function *f* satisfies the following conditions:

- 1. For every $0 \le i \le n 1$, $\omega(f_i) \ge 1$;
- 2. For every $1 \le i \le n-2$, if $\omega(f_i) = 1$, then $\omega(f_{i-1}) + \omega(f_{i+1}) \ge 6$. In particular $(\omega(f_{i-1}) + \omega(f_i)) + (\omega(f_i) + \omega(f_{i+1})) \ge 8$; and
- 3. $\omega(f_0) \ge 2$ and $\omega(f_{n-1}) \ge 2$.

Hence,

$$\begin{aligned} 2\omega(f) &= 2\sum_{0 \leq i \leq n-1} \omega(f_i) \\ &= \sum_{0 \leq i \leq n-2} (\omega(f_i) + \omega(f_{i+1})) + \omega(f_0) + \omega(f_{n-1}) \\ &\geq 4(n-1) + 4. \end{aligned}$$

Hence, $\omega(f) = 2n$. \Box

Author Contributions: R.K. contributes for supervision, methodology, validation, project administration and formal analysing. N.D., J.A., Y.W., J.-B.L. contribute for resources, some computations and wrote the initial draft of the paper which were investigated and approved by Y.W., X.W., J.-B.L., and J.A. wrote the final draft.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 11701118), Guangdong Provincial Engineering and Technology Research Center ([2015]1487), Guangdong Provincial Key Platform and Major Scientific Research Projects (Grant No. 2016KQNCX238), Key Supported Disciplines of Guizhou Province - Computer Application Technology (Grant No. QianXueWeiHeZi ZDXK [2016]20), and the Specialized Fund for Science and Technology Platform and Talent Team Project of Guizhou Province (Grant No. QianKeHePingTaiRenCai [2016]5609), the China Postdoctoral Science Foundation under Grant 2017M621579; the Postdoctoral Science Foundation of Jiangsu Province under Grant 1701081B; Project of Anhui Jianzhu University under Grant no. 2016QD116 and 2017dc03.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Brešar, B.; Henning, M.A.; Rall, D.F. Rainbow domination in graphs. *Taiwan. J. Math.* 2008, 12, 213–225. [CrossRef]
- 2. Amjadi, J.; Asgharshrghi, L.; Dehgardi, N.; Furuyai, M.; Sheikholeslami, S.M.; Volkmann, L. The *k*-rainbow reinforcement numbers in graphs. *Discrete Appl. Math.* **2017**, 217, 394–404. [CrossRef]
- 3. Amjadi, J.; Dehgardi, N.; Furuya, M.; Sheikholeslami, S.M. A sufficient condition for large rainbow domination number. *Int. J. Comp. Math. Comp. Syst. Theory* **2017**, *2*, 53–65. [CrossRef]
- 4. Brešar, B.; Šumenjak, T.K. On the 2-rainbow domination in graphs. *Discrete Appl. Math.* **2007**, *155*, 2394–2400. [CrossRef]
- 5. Chang, G.J.; Wu, J.; Zhu, X. Rainbow domination on trees. Discrete Appl. Math. 2010, 158, 8–12. [CrossRef]
- 6. Chunling, T.; Xiaohui, L.; Yuansheng, Y.; Meiqin, L. 2-rainbow domination of generalized Petersen graphs *P*(*n*, 2). *Discrete Appl. Math.* **2009**, *157*, 1932–1937.
- Dehgardi, N.; Sheikholeslami, S.M.; Volkmann, L. The rainbow domination subdivision number of a graph. *Mat. Vesnik* 2015, 67, 102–114. [CrossRef]
- 8. Dehgardi, N.; Sheikholeslami, S.M.; Volkmann, L. The *k*-rainbow bondage number of a graph. *Discrete Appl. Math.* **2014**, 174, 133–139. [CrossRef]
- 9. Meierling, D.; Sheikholeslami, S.M.; Volkmann, L. Nordhaus-Gaddum bounds on the *k*-rainbow domatic number of a graph. *Appl. Math. Lett.* **2011**, *24*, 1758–1761. [CrossRef]

- 10. Shao, Z.; Jiang, H.; Wu, P.; Wang, S.; Žerovnik, J.; Zhang, X.; Liu, J.B. On 2-rainbow domination of generalized Petersen graphs. *Discrete Appl. Math.* **2018**. [CrossRef]
- 11. Shao, Z.; Liang, M.; Yin, C.; Xu, X.; Pavlič, P.; Žerovnik, J. On rainbow domination numbers of graphs. *Inform. Sci.* **2014**, *254*, 225–234. [CrossRef]
- 12. Shao, Z.; Sheikholeslami, S.M.; Wang, B.; Wu, P.; Zhang, X. Trees with equal total domination and 2-rainbow domination numbers. *Filomat* **2018**, *32*, 599–607. [CrossRef]
- 13. Sheikholeslami, S.M.; Volkmann, L. The *k*-rainbow domatic number of a graph. *Discuss. Math. Graph Theory* **2012**, *32*, 129–140. [CrossRef]
- 14. Wu, Y.; Jafari Rad, N. Bounds on the 2-rainbow domination number of graphs. *Graphs Combin.* **2013**, *29*, 1125–1133. [CrossRef]
- 15. Xu, G. 2-rainbow domination of generalized Petersen graphs *P*(*n*,3). *Discrete Appl. Math.* **2009**, 157, 2570–2573. [CrossRef]
- 16. Vizing, V.G. Some unsolved problems in graph theory. Uspehi Mater. Nauk 1968, 23, 117–134. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).