Article

k-Rainbow Domination Number of $P_{3} \square P_{n}$

Ying Wang ${ }^{1,2}$, Xinling Wu ${ }^{3}$, Nasrin Dehgardi ${ }^{4}$, Jafar Amjadi ${ }^{5}$, Rana Khoeilar ${ }^{5}$
and Jia-Bao Liu ${ }^{6, *(D)}$
1 Department of network technology, South China Institute of Software Engineering, Guangzhou 510990, China; wying@sise.com.cn
2 Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
3 South China Business College, Guang Dong University of Foreign Studies, Guangzhou 510545, China; xinlingwu.guangzhou@gmail.com
4 Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan 7813733385, Iran; n.dehgardi@sirjantech.ac.ir
5 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran; j-amjadi@azaruniv.ac.ir (J.A.); khoeilar@azaruniv.ac.ir (R.K.)
6 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
* Correspondence: liujiabaoad@163.com

Received: 12 January 2019; Accepted: 19 February 2019; Published: 21 February 2019

Abstract

Let k be a positive integer, and set $[k]:=\{1,2, \ldots, k\}$. For a graph G, a k-rainbow dominating function (or $k R D F$) of G is a mapping $f: V(G) \rightarrow 2^{[k]}$ in such a way that, for any vertex $v \in V(G)$ with the empty set under f, the condition $\bigcup_{u \in N_{G}(v)} f(u)=[k]$ always holds, where $N_{G}(v)$ is the open neighborhood of v. The weight of $k R D F f$ of G is the summation of values of all vertices under f. The k-rainbow domination number of G, denoted by $\gamma_{r k}(G)$, is the minimum weight of a $k R D F$ of G. In this paper, we obtain the k-rainbow domination number of grid $P_{3} \square P_{n}$ for $k \in\{2,3,4\}$.

Keywords: k-rainbow dominating function; k-rainbow domination number; grids

1. Introduction

For a graph G, we denote by $V(G)$ and $E(G)$ the vertex set and the edge set of G, respectively. For a vertex $v \in V(G)$, the open neighborhood of v, denoted by $N_{G}(v)$, is the set $\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood of v, denoted by $N_{G}[v]$, is the set $N_{G}(v) \cup\{v\}$. The degree of a vertex $v \in V(G)$, denoted by $d_{G}(v)$, is defined by $d_{G}(v)=\left|N_{G}(v)\right|$. We let $\delta(G)$ and $\Delta(G)$ denote the minimum degree and maximum degree of a graph G, respectively.

Let k be a positive integer, and $[k]:=\{1,2, \ldots, k\}$. For a graph G, a k-rainbow dominating function (or $k R D F$) of G is a mapping $f: V(G) \rightarrow 2^{[k]}$ in such a way that for any vertex $v \in V(G)$ with the empty set under f, the condition $\bigcup_{u \in N_{G}(v)} f(u)=[k]$ always holds. The weight of a $k R D F f$ of G is the value $\omega(f):=\sum_{v \in V(G)}|f(v)|$. The k-rainbow domination number of G, denoted by $\gamma_{r k}(G)$, is the minimum weight of a $k R D F$ of G. A $k R D F f$ of G is a $\gamma_{r k}-f u n c t i o n$ if $\omega(f)=\gamma_{r k}(G)$. The k-rainbow domination number was introduced by Brešar, Henning, and Rall [1] was studied by several authors (see, for example [2-15]).

For graphs F and G, we let $F \square G$ denote the Cartesian product of F and G. Vizing [16] conjectured that for arbitrary graphs F and $G, \gamma(F \square G) \geq \gamma(F) \gamma(G)$. This conjecture is still open, and the domination number or its related invariants of $F \square G$ are extensively studied with the motivation from Vizing's conjecture.

Concerning the k-rainbow domination number of $F \square G$, one problem naturally arises: Given two graphs F and G under some conditions, determine $\gamma_{r k}(F \square G)$ for all k. In [3], the authors determined $\gamma_{r k}\left(P_{2} \square P_{n}\right)$ for $k=3,4,5$.

In this paper, we examine grid graphs $P_{3} \square P_{n}$, and determine the value $\gamma_{r k}\left(P_{3} \square P_{n}\right)$ for $k \in\{2,3,4\}$ and all n, where P_{m} is the path of order m.

2. 2-Rainbow Domination Number of $P_{3} \square P_{n}$

We write $V\left(P_{3} \square P_{n}\right)=\left\{v_{i}, u_{i}, w_{i} \mid 0 \leq i \leq n-1\right\}$ and let $E\left(P_{3} \square P_{n}\right)=\left\{v_{i} u_{i}, u_{i} w_{i} \mid 0 \leq i \leq\right.$ $n-1\} \cup\left\{v_{i} v_{i+1}, u_{i} u_{i+1}, w_{i} w_{i+1} \mid 0 \leq i \leq n-1\right\}$ (see Figure 1). A 2RDF f is given in three lines, where in the first line there are values of the function f for vertices $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$, in the second line of the vertices $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$, and in the third line of the vertices $\left\{w_{0}, w_{1}, \ldots, w_{n-1}\right\}$ (see Figure 2). Furthermore, we use $0,1,2,3$ to encode the sets $\varnothing,\{1\},\{2\},\{1,2\}$.

Figure 1. The grid graph $P_{3} \square P_{16}$.

Figure 2. A 2 RDF of $P_{3} \square P_{n}$.

To provide a complete answer, we need the following fact that can easily be proved as an exercise.
Fact 1. $\gamma_{r 2}\left(P_{3} \square P_{3}\right)=4, \gamma_{r 2}\left(P_{3} \square P_{4}\right)=6, \gamma_{r 2}\left(P_{3} \square P_{5}\right)=7, \gamma_{r 2}\left(P_{3} \square P_{6}\right)=8, \gamma_{r 2}\left(P_{3} \square P_{7}\right)=10$.
Theorem 1. For $n \geq 8, \gamma_{r 2}\left(P_{3} \square P_{n}\right)=\left\lceil\frac{5 n+3}{4}\right\rceil$.
Proof. First, we present constructions of a 2RDF of $P_{3} \square P_{n}$ of the desired weight.

1. $n \equiv 0(\bmod 8)$:
$020030010200 \ldots 300102003001$
1010 00200010... 002000100020
0202 01003002... 010030020101
2. $n \equiv 1(\bmod 8)$:

0200 30010200... 3001020030010
1010 00200010... 0020001000202
$020201003002 \ldots 0100300201010$
3. $n \equiv 2(\bmod 8)$:

0200 30010200... 30010200300101
1010 00200010... 00200010002020
$020201003002 \ldots 01003002010101$
4. $n \equiv 3(\bmod 8)$:

0200 30010200... 300102003001001
1010 00200010... 002000100020220
0202 01003002... 010030020101001
5. $n \equiv 4(\bmod 8)$:

0200 30010200... 3001020030010010
1010 00200010... 0020001000202202
0202 01003002... 0100300201010010
6. $n \equiv 5(\bmod 8)$:

0200 30010200... 30010200300102020
1010 00200010... 00200010002000101
0202 01003002... 01003002010030020
7. $n \equiv 6(\bmod 8)$:

0200 30010200... 3001020030
1010 00200010... 0020001001
0202 01003002... 0100300201
8. $n \equiv 7(\bmod 8)$:

0200 30010200... 30010200301
1010 00200010... 00200010002
0202 01003002... 01003002010
To show that these are also lower bounds, we prove there is a $\gamma_{r 2}\left(P_{3} \square P_{n}\right)$-function, f such that for every $0 \leq i \leq n-1, \omega\left(f_{i}\right)=\left|f\left(v_{i}\right)\right|+\left|f\left(u_{i}\right)\right|+\left|f\left(w_{i}\right)\right| \geq 1$. Let $n \geq 8$ and f be a $\gamma_{r 2}\left(P_{3} \square P_{n}\right)$-function such that the cardinality of $S=\left\{i \mid 0 \leq i \leq n-1\right.$ and $\left.\omega\left(f_{i}\right)=0\right\}$ is as small as possible. We claim that $|S|=0$. Suppose, to the contrary, that $|S| \geq 1$ and let s be the smallest positive integer for which $\omega\left(f_{s}\right)=0$. Then, $\omega\left(f_{s-1}\right)+\omega\left(f_{s+1}\right) \geq 6$. Then, we consider the following cases.

Case 1. $s=1$ (the case $s=n-1$ is similar).
Then, we have $f\left(v_{1}\right)=f\left(u_{1}\right)=f\left(w_{1}\right)=\{1,2\}$ and the function g defined by $g\left(u_{0}\right)=\{1\}$, $g\left(v_{1}\right)=g\left(w_{1}\right)=\{2\}, g\left(u_{2}\right)=f\left(u_{2}\right) \cup\{1\}, g\left(v_{0}\right)=g\left(w_{0}\right)=g\left(u_{1}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is a 2 RDF of $P_{3} \square P_{n}$ of weight at most $\omega(f)$, which contradicts the choice of f.

Case 2. $s=1$ ($s=n-2$ is similar).
Then, $\omega\left(f_{0}\right)+\omega\left(f_{2}\right) \geq 6$ and the function g defined by $g\left(u_{0}\right)=g\left(u_{2}\right)=\{1\}, g\left(v_{1}\right)=$ $g\left(w_{1}\right)=\{2\}, g\left(v_{3}\right)=f\left(v_{3}\right) \cup\{2\}, g\left(w_{3}\right)=f\left(w_{3}\right) \cup\{2\}, g\left(v_{0}\right)=g\left(w_{0}\right)=g\left(u_{1}\right)=g\left(v_{2}\right)=$ $g\left(w_{2}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 2 RDF of $P_{3} \square P_{n}$ of weight at most $\omega(f)$, which contradicts the choice of f.

Case 3. $2 \leq s \leq n-3$.
Since $\omega\left(f_{s-2}\right) \geq 1$, then $\left|f\left(v_{s-2}\right)\right|+\left|f\left(u_{s-2}\right)\right|+\left|f\left(w_{s-2}\right)\right| \geq 1$. First, let $\left|f\left(u_{s-2}\right)\right| \geq 1$. We may assume that $\{1\} \subseteq f\left(u_{s-2}\right)$. It is easy to see that the function g defined by $g\left(v_{s-1}\right)=$ $g\left(v_{s+1}\right)=g\left(w_{s-1}\right)=g\left(w_{s+1}\right)=\{2\}, g\left(u_{s}\right)=\{1\}, g\left(u_{s+2}\right)=f\left(u_{s+2}\right) \cup\{1\}, g\left(u_{s-1}\right)=$ $g\left(v_{s}\right)=g\left(w_{s}\right)=g\left(u_{s+1}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 2RDF of $P_{3} \square P_{n}$ of weight at most $\omega(f)$, which contradicts the choice of f. Now, let $\left|f\left(w_{s-2}\right)\right| \geq 1\left(\left|f\left(v_{s-2}\right)\right| \geq 1\right.$ is similar). We may assume that $\{1\} \subseteq f\left(w_{s-2}\right)$. Hence, the function g defined by $g\left(v_{s-2}\right)=$ $f\left(v_{s-2}\right) \cup\{1\}, g\left(v_{s+1}\right)=g\left(u_{s-1}\right)=g\left(w_{s+1}\right)=\{2\}, g\left(u_{s}\right)=\{1\}, g\left(u_{s+2}\right)=f\left(u_{s+2}\right) \cup\{1\}$, $g\left(u_{s-1}\right)=g\left(v_{s}\right)=g\left(w_{s}\right)=g\left(w_{s-1}\right)=g\left(u_{s+1}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 2RDF of $P_{3} \square P_{n}$ of weight $\omega(f)$, which is contradicting the choice of f. Therefore, $|S|=0$.

We can see that for every $0 \leq i \leq n-2$, if $\omega\left(f_{i}\right)=\omega\left(f_{i+1}\right)=\omega\left(f_{i+2}\right)=1$, then $\omega\left(f_{i-1}\right), \omega\left(f_{i+3}\right)>1$. In addition, there is the function f such that, if $\omega\left(f_{0}\right)=1\left(\omega\left(f_{n-1}\right)=1\right.$ is similar), then $\omega\left(f_{1}\right)>1$ and $\omega\left(f_{1}\right)+\omega\left(f_{2}\right)+\omega\left(f_{3}\right)+\omega\left(f_{4}\right) \geq 6$ and if $\omega\left(f_{0}\right)=2\left(\omega\left(f_{n-1}\right)=2\right.$ is similar), then $\omega\left(f_{0}\right)+\omega\left(f_{1}\right)+\omega\left(f_{2}\right)+\omega\left(f_{3}\right) \geq 6$.

If $\omega\left(f_{0}\right)=1$ and $\omega\left(f_{n-1}\right)=1$, then

$$
\begin{aligned}
4 \omega(f)= & 4 \sum_{0 \leq i \leq n-1} \omega\left(f_{i}\right) \\
= & {\left[3 \omega\left(f_{0}\right)+2 \omega\left(f_{1}\right)+\omega\left(f_{2}\right)\right]+\left[3 \omega\left(f_{n-1}\right)+2 \omega\left(f_{n-2}\right)+\omega\left(f_{n-3}\right)\right] } \\
& +\sum_{i \in\{0, \ldots, n-4\}-\{1, n-5\}}\left(\omega\left(f_{i}\right)+\omega\left(f_{i+1}\right)+\omega\left(f_{i+2}\right)+\omega\left(f_{i+3}\right)\right) \\
& +\left[\omega\left(f_{1}\right)+\omega\left(f_{2}\right)+\omega\left(f_{3}\right)+\omega\left(f_{4}\right)\right]+\left[\omega\left(f_{n-5}\right)+\omega\left(f_{n-4}\right)+\omega\left(f_{n-3}\right)+\omega\left(f_{n-2}\right)\right] \\
\geq & 8+8+5(n-5)+12 \\
= & 5(n-3)+18 .
\end{aligned}
$$

If $\omega\left(f_{0}\right)=1$ and $\omega\left(f_{n-1}\right)=2$, then

$$
\begin{aligned}
4 \omega(f)= & 4 \sum_{0 \leq i \leq n-1} \omega\left(f_{i}\right) \\
= & {\left[3 \omega\left(f_{0}\right)+2 \omega\left(f_{1}\right)+\omega\left(f_{2}\right)\right]+\left[3 \omega\left(f_{n-1}\right)+2 \omega\left(f_{n-2}\right)+\omega\left(f_{n-3}\right)\right] } \\
& +\sum_{i \in\{0, \ldots, n-4\}-\{1\}}\left(\omega\left(f_{i}\right)+\omega\left(f_{i+1}\right)+\omega\left(f_{i+2}\right)+\omega\left(f_{i+3}\right)\right) \\
& +\left[\omega\left(f_{1}\right)+\omega\left(f_{2}\right)+\omega\left(f_{3}\right)+\omega\left(f_{4}\right)\right] \\
\geq & 8+9+5(n-4)+6 \\
= & 5(n-3)+18 .
\end{aligned}
$$

If $\omega\left(f_{0}\right)=2$ and $\omega\left(f_{n-1}\right)=2$, then

$$
\begin{aligned}
4 \omega(f)= & 4 \sum_{0 \leq i \leq n-1} \omega\left(f_{i}\right) \\
= & {\left[3 \omega\left(f_{0}\right)+2 \omega\left(f_{1}\right)+\omega\left(f_{2}\right)\right]+\left[3 \omega\left(f_{n-1}\right)+2 \omega\left(f_{n-2}\right)+\omega\left(f_{n-3}\right)\right] } \\
& +\sum_{i \in\{0, \ldots, n-4\}-\{1\}}\left[\omega\left(f_{i}\right)+\omega\left(f_{i+1}\right)+\omega\left(f_{i+2}\right)+\omega\left(f_{i+3}\right)\right] \\
& +\left[\omega\left(f_{1}\right)+\omega\left(f_{2}\right)+\omega\left(f_{3}\right)+\omega\left(f_{4}\right)\right] \\
\geq & 9+9+5(n-3) \\
= & 5(n-3)+18 .
\end{aligned}
$$

Thus, $\omega(f)=\left\lceil\frac{5 n+3}{4}\right\rceil$.

3. 3-Rainbow Domination Number of $P_{3} \square P_{n}$

As in the previous section, a 3RDF is given in three lines and we use $0,1,2,3$ to encode the sets $\varnothing,\{1\},\{2\},\{3\}$.

To provide a complete answer, we need the following fact.
Fact 2. $\gamma_{r 3}\left(P_{3} \square P_{3}\right)=5, \gamma_{r 3}\left(P_{3} \square P_{4}\right)=8$.
Theorem 2. For $n \geq 5$,

$$
\gamma_{r 3}\left(P_{3} \square P_{n}\right)=\left\{\begin{array}{lll}
(3 n+1) / 2 & \text { if } \quad n \equiv 1(\operatorname{mode} 2), \\
(3 n+2) / 2 & \text { if } n \equiv 0(\operatorname{mode} 2),
\end{array}\right.
$$

Proof. First, we present constructions of a 3RDF of $P_{3} \square P_{n}$ of the desired weight.

1. $n \equiv 0(\bmod 4)$:
2010... 20102201
0303... 03030030
1020... 10201102
2. $n \equiv 1(\bmod 4)$:
2010... 20102
0303... 03030
1020... 10201
3. $n \equiv 2(\bmod 4)$:
2010... 2010201201
0303... 0303030030
1020... 1020102102
4. $n \equiv 3(\bmod 4)$:
2010... 2010201
0303... 0303030
1020... 1020102

To show that these are also lower bounds, we prove there is a $\gamma_{r 3}\left(P_{3} \square P_{n}\right)$-function, f that satisfies the following conditions:

1. For every $0 \leq i \leq n-1, \omega\left(f_{i}\right)=\left|f\left(v_{i}\right)\right|+\left|f\left(u_{i}\right)\right|+\left|f\left(w_{i}\right)\right| \geq 1$,
2. For every $1 \leq i \leq n-2$, if $\omega\left(f_{i}\right)=1$, then $\omega\left(f_{i-1}\right)+\omega\left(f_{i+1}\right) \geq 4$. In particular, if $\omega\left(f_{i}\right)=1$, then $\left(\omega\left(f_{i-1}\right)+\omega\left(f_{i}\right)\right)+\left(\omega\left(f_{i}\right)+\omega\left(f_{i+1}\right)\right) \geq 6$,
3. $\omega\left(f_{0}\right) \geq 2$ and $\omega\left(f_{n-1}\right) \geq 2$.

First, we show that for every $\gamma_{r 3}\left(P_{3} \square P_{n}\right)$-function $f, \omega\left(f_{i}\right)=\left|f\left(v_{i}\right)\right|+\left|f\left(u_{i}\right)\right|+\left|f\left(w_{i}\right)\right| \geq 1$ when $0 \leq i \leq n-1$. Let $n \geq 5$ and f be a $\gamma_{r 3}\left(P_{3} \square P_{n}\right)$-function and $S=\left\{i \mid 0 \leq i \leq n-1\right.$ and $\left.\omega\left(f_{i}\right)=0\right\}$. We claim that $|S|=0$. Assume to the contrary that $|S| \geq 1$. Then, we consider the following cases.

Case 1. $0 \in S$ (the case $n-1 \in S$ is similar).
Then, we have $f\left(v_{1}\right)=f\left(u_{1}\right)=f\left(w_{1}\right)=\{1,2,3\}$ and it is easy to see that the function g defined by $g\left(v_{0}\right)=\{1\}, g\left(u_{1}\right)=\{3\}, g\left(w_{0}\right)=\{2\}, g\left(v_{2}\right)=f\left(v_{2}\right) \cup\{2\}, g\left(w_{2}\right)=f\left(w_{2}\right) \cup$ $\{1\}, g\left(u_{0}\right)=g\left(v_{1}\right)=g\left(w_{1}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 3RDF of $P_{3} \square P_{n}$ of weight less than $\omega(f)$, which is a contradiction.
Let s be the smallest positive integer for which $\omega\left(f_{s}\right)=0$. Then, $s \geq 1$ and $\omega\left(f_{s-1}\right)+$ $\omega\left(f_{s+1}\right) \geq 9$.

Case 2. $s=1$ ($s=n-2$ is similar).
Then, the function g defined by $g\left(v_{0}\right)=g\left(u_{0}\right)=g\left(w_{0}\right)=\{1\}, g\left(v_{1}\right)=\{2\}, g\left(w_{1}\right)=\{1\}$, $g\left(u_{2}\right)=\{3\}, g\left(v_{3}\right)=f\left(v_{3}\right) \cup\{1\}, g\left(w_{3}\right)=f\left(w_{3}\right) \cup\{2\}, g\left(u_{1}\right)=g\left(v_{2}\right)=g\left(w_{2}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 3RDF of $P_{3} \square P_{n}$ of weight less than $\omega(f)$, which is a contradiction.

Case 3. $2 \leq s \leq n-3$.
The function g defined by $g\left(u_{s-1}\right)=g\left(u_{s+1}\right)=\{3\}, g\left(v_{s}\right)=\{2\}, g\left(w_{s}\right)=\{1\}, g\left(v_{s-2}\right)=$ $f\left(v_{s-2}\right) \cup\{1\}, g\left(w_{s-2}\right)=f\left(w_{s-2}\right) \cup\{2\}, g\left(v_{s+2}\right)=f\left(v_{s+2}\right) \cup\{1\}, g\left(w_{s+2}\right)=f\left(w_{s+2}\right) \cup\{2\}$, $g\left(v_{s-1}\right)=g\left(v_{s+1}\right)=g\left(u_{s}\right)=g\left(w_{s-1}\right)=g\left(w_{s+1}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 3RDF of $P_{3} \square P_{n}$ of weight less than $\omega(f)$, which is a contradiction. Therefore, $|S|=0$.

Now, let f be a $\gamma_{r 3}\left(P_{3} \square P_{n}\right)$-function. It is easy to see that, if $\omega\left(f_{i}\right)=1$, then $\omega\left(f_{i-1}\right)+\omega\left(f_{i+1}\right) \geq 4$ when $1 \leq i \leq n-2$.

Finally, we show that there is $\gamma_{r 3}\left(P_{3} \square P_{n}\right)$-function f such that $\omega\left(f_{0}\right) \geq 2\left(\omega\left(f_{n-1}\right) \geq 2\right.$ is similar $)$. Let f be a $\gamma_{r 3}\left(P_{3} \square P_{n}\right)$-function such that $\omega\left(f_{0}\right)=1$. If $\left|f\left(v_{0}\right)\right|=1\left(\left|f\left(w_{0}\right)\right|=1\right.$ is similar), then $\left|f\left(w_{0}\right)\right|=\left|f\left(u_{0}\right)\right|=0,\left|f\left(u_{1}\right)\right| \geq 2$ and $\left|f\left(w_{1}\right)\right|=3$. We may assume that $\{1,2\} \subseteq f\left(u_{1}\right)$. It is easy to see that the function g defined by $g\left(w_{0}\right)=\{3\}, g\left(w_{2}\right)=\{3\}, g\left(w_{1}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 3RDF of $P_{3} \square P_{n}$ of weight less than $\omega(f)$, which is a contradiction. Now, let $\left|f\left(u_{0}\right)\right|=1$. Then, $\left|f\left(w_{0}\right)\right|=\left|f\left(v_{0}\right)\right|=0,\left|f\left(v_{1}\right)\right| \geq 2$ and $\left|f\left(w_{1}\right)\right| \geq 2$. It is easy to see that the function g defined by $g\left(w_{0}\right)=\{1\}, g\left(w_{2}\right)=\{2\}, g\left(u_{1}\right)=\{3\}, g\left(v_{2}\right)=f\left(v_{2}\right) \cup\{1\}, g\left(w_{2}\right)=f\left(w_{2}\right) \cup\{2\}$, $g\left(u_{1}\right)=g\left(u_{2}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 3RDF of $P_{3} \square P_{n}$ of weight $\omega(f)$.

Hence, there is a $\gamma_{r 3}\left(P_{3} \square P_{n}\right)$-function, f that satisfies the following conditions:

1. For every $0 \leq i \leq n-1, \omega\left(f_{i}\right) \geq 1$;
2. For every $1 \leq i \leq n-2$, if $\omega\left(f_{i}\right)=1$, then $\omega\left(f_{i-1}\right)+\omega\left(f_{i+1}\right) \geq 4$; and
3. $\omega\left(f_{0}\right) \geq 2$ and $\omega\left(f_{n-1}\right) \geq 2$.

If n is odd, then

$$
\begin{aligned}
2 \omega(f) & =2 \sum_{0 \leq i \leq n-1} \omega\left(f_{i}\right) \\
& =\omega\left(f_{0}\right)+\omega\left(f_{n-1}\right)+\sum_{0 \leq i \leq n-2}\left(\omega\left(f_{i}\right)+\omega\left(f_{i+1}\right)\right) \\
& \geq 4+3(n-1)
\end{aligned}
$$

Then, $\omega(f)=\frac{3 n+1}{2}$ when n is odd. Now, let n is even. Then, there is $s \neq n-1$ such that $\omega\left(f_{s}\right)+\omega\left(f_{s+1}\right) \geq 4$. Hence,

$$
\begin{aligned}
2 \omega(f) & =2 \sum_{0 \leq i \leq n-1} \omega\left(f_{i}\right) \\
& =\omega\left(f_{s}\right)+\omega\left(f_{s+1}\right)+\omega\left(f_{0}\right)+\omega\left(f_{n-1}\right)+\sum_{0 \leq i \leq n-2, i \neq s}\left(\omega\left(f_{i}\right)+\omega\left(f_{i+1}\right)\right) \\
& \geq 8+3(n-2)
\end{aligned}
$$

Therefore, $\omega(f)=\frac{3 n+2}{2}$ when n is even.

4. 4-Rainbow Domination Number of $P_{3} \square P_{n}$

As above, a 4 RDF is given in three lines and we use $0,1,2,5$ to encode the sets $\varnothing,\{1\},\{2\},\{3,4\}$. To provide a complete answer, we need the following fact.

Fact 3. $\gamma_{r 4}\left(P_{3} \square P_{3}\right)=6, \gamma_{r 4}\left(P_{3} \square P_{4}\right)=9$.
Theorem 3. For $n \geq 5, \gamma_{r 4}\left(P_{3} \square P_{n}\right)=2 n$.
Proof. First, we show that $\gamma_{r 4}\left(P_{3} \square P_{n}\right) \leq 2 n$. To do this, we present constructions of a 4RDF of $P_{3} \square P_{n}$ of the desired weight.

1. $n \equiv 0(\bmod 4)$:
2010... 20102201
0505... 05050050
1020... 10201102
2. $n \equiv 1(\bmod 4)$:
2010... 20102
0505... 05050
1020... 10201
3. $n \equiv 2(\bmod 4)$:
2010... 2010201201
0505... 0505050050
1020... 1020102102
4. $n \equiv 3(\bmod 4)$:
2010... 2010201
0505... 0505050
1020... 1020102

To prove the inverse inequality, we show that every $\gamma_{r 4}\left(P_{3} \square P_{n}\right)$-function f satisfies the following conditions:

1. For every $0 \leq i \leq n-1, \omega\left(f_{i}\right)=\left|f\left(v_{i}\right)\right|+\left|f\left(u_{i}\right)\right|+\left|f\left(w_{i}\right)\right| \geq 1$;
2. For every $1 \leq i \leq n-2$, if $\omega\left(f_{i}\right)=1$, then $\omega\left(f_{i-1}\right)+\omega\left(f_{i+1}\right) \geq 6$; and
3. $\omega\left(f_{0}\right) \geq 2$ and $\omega\left(f_{n-1}\right) \geq 2$.

First, we show that for every $\gamma_{r 4}\left(P_{3} \square P_{n}\right)$-function $f, \omega\left(f_{i}\right)=\left|f\left(v_{i}\right)\right|+\left|f\left(u_{i}\right)\right|+\left|f\left(w_{i}\right)\right| \geq 1$ when $0 \leq i \leq n-1$. Let $n \geq 5$ and f be a $\gamma_{r 4}\left(P_{3} \square P_{n}\right)$-function and $S=\left\{i \mid 0 \leq i \leq n-1\right.$ and $\left.\omega\left(f_{i}\right)=0\right\}$. We claim that $|S|=0$. Assume to the contrary that $|S| \geq 1$. Then, we consider the following cases.

Case 1. $0 \in S$ (the case $n-1 \in S$ is similar).
Then, we have $f\left(v_{1}\right)=f\left(u_{1}\right)=f\left(w_{1}\right)=\{1,2,3,4\}$ and the function g defined by $g\left(v_{0}\right)=$ $\{1\}, g\left(u_{1}\right)=\{3,4\}, g\left(w_{0}\right)=\{2\}, g\left(v_{2}\right)=f\left(v_{2}\right) \cup\{2\}, g\left(w_{2}\right)=f\left(w_{2}\right) \cup\{1\}, g\left(u_{0}\right)=$ $g\left(v_{1}\right)=g\left(w_{1}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 4RDF of $P_{3} \square P_{n}$ of weight less than $\omega(f)$, which is a contradiction.
Let $\omega\left(f_{s}\right)=0$. Then, $s \geq 1$ and $\omega\left(f_{s-1}\right)+\omega\left(f_{s+1}\right) \geq 12$.
Case 2. $s=1$ ($s=n-2$ is similar).
The function g defined by $g\left(v_{0}\right)=g\left(u_{0}\right)=g\left(w_{0}\right)=\{1\}, g\left(v_{1}\right)=\{2\}, g\left(w_{1}\right)=\{1\}$, $g\left(u_{2}\right)=\{3,4\}, g\left(v_{3}\right)=f\left(v_{3}\right) \cup\{1\}, g\left(w_{3}\right)=f\left(w_{3}\right) \cup\{2\}, g\left(u_{1}\right)=g\left(v_{2}\right)=g\left(w_{2}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 4RDF of $P_{3} \square P_{n}$ of weight less than $\omega(f)$, which is a contradiction.

Case 3. $2 \leq s \leq n-3$.
Then, it is easy to see that the function g defined by $g\left(u_{s-1}\right)=g\left(u_{s+1}\right)=\{3,4\}, g\left(v_{s}\right)=\{2\}$, $g\left(w_{s}\right)=\{1\}, g\left(v_{s-2}\right)=f\left(v_{s-2}\right) \cup\{1\}, g\left(w_{s-2}\right)=f\left(w_{s-2}\right) \cup\{2\}, g\left(v_{s+2}\right)=f\left(v_{s+2}\right) \cup\{1\}$, $g\left(w_{s+2}\right)=f\left(w_{s+2}\right) \cup\{2\}, g\left(v_{s-1}\right)=g\left(v_{s+1}\right)=g\left(u_{s}\right)=g\left(w_{s-1}\right)=g\left(w_{s+1}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 4RDF of $P_{3} \square P_{n}$ of weight less than $\omega(f)$, which is a contradiction. Therefore, $|S|=0$.

Now, let f be a $\gamma_{r 4}\left(P_{3} \square P_{n}\right)$-function. It is easy to see that, if $\omega\left(f_{i}\right)=1$, then $\omega\left(f_{i-1}\right)+\omega\left(f_{i+1}\right) \geq 6$ when $1 \leq i \leq n-2$.

We show that for every $\gamma_{r 4}\left(P_{3} \square P_{n}\right)$-function $f \omega\left(f_{0}\right) \geq 2\left(\omega\left(f_{n-1}\right) \geq 2\right.$ is similar $)$. Let f be a $\gamma_{r 4}\left(P_{3} \square P_{n}\right)$-function such that $\omega\left(f_{0}\right)=1$. If $\left|f\left(v_{0}\right)\right|=1\left(\left|f\left(w_{0}\right)\right|=1\right.$ is similar), then $\left|f\left(w_{0}\right)\right|=$ $\left|f\left(u_{0}\right)\right|=0,\left|f\left(u_{1}\right)\right| \geq 3$ and $\left|f\left(w_{1}\right)\right|=4$. We may assume that $\{1,2,3\} \subseteq f\left(u_{1}\right)$. The function g defined by $g\left(w_{0}\right)=\{4\}, g\left(w_{2}\right)=\{4\}, g\left(w_{1}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 4RDF of $P_{3} \square P_{n}$ of weight less than $\omega(f)$, which is a contradiction. Now, let $\left|f\left(u_{0}\right)\right|=1$. Then, $\left|f\left(w_{0}\right)\right|=\left|f\left(v_{0}\right)\right|=0$,
$\left|f\left(v_{1}\right)\right| \geq 3$ and $\left|f\left(w_{1}\right)\right| \geq 3$. The function g defined by $g\left(w_{0}\right)=\{1\}, g\left(w_{2}\right)=\{2\}, g\left(u_{1}\right)=\{3,4\}$, $g\left(v_{2}\right)=f\left(v_{2}\right) \cup\{1\}, g\left(w_{2}\right)=f\left(w_{2}\right) \cup\{2\}, g\left(u_{1}\right)=g\left(u_{2}\right)=\varnothing$ and $g(x)=f(x)$ otherwise, is an 4RDF of $P_{3} \square P_{n}$ of weight less than $\omega(f)$, which is a contradiction.

Hence, every $\gamma_{r 4}\left(P_{3} \square P_{n}\right)$-function f satisfies the following conditions:

1. For every $0 \leq i \leq n-1, \omega\left(f_{i}\right) \geq 1$;
2. For every $1 \leq i \leq n-2$, if $\omega\left(f_{i}\right)=1$, then $\omega\left(f_{i-1}\right)+\omega\left(f_{i+1}\right) \geq 6$. In particular $\left(\omega\left(f_{i-1}\right)+\right.$ $\left.\omega\left(f_{i}\right)\right)+\left(\omega\left(f_{i}\right)+\omega\left(f_{i+1}\right)\right) \geq 8$; and
3. $\omega\left(f_{0}\right) \geq 2$ and $\omega\left(f_{n-1}\right) \geq 2$.

Hence,

$$
\begin{aligned}
2 \omega(f) & =2 \sum_{0 \leq i \leq n-1} \omega\left(f_{i}\right) \\
& =\sum_{0 \leq i \leq n-2}\left(\omega\left(f_{i}\right)+\omega\left(f_{i+1}\right)\right)+\omega\left(f_{0}\right)+\omega\left(f_{n-1}\right) \\
& \geq 4(n-1)+4 .
\end{aligned}
$$

Hence, $\omega(f)=2 n$.
Author Contributions: R.K. contributes for supervision, methodology, validation, project administration and formal analysing. N.D., J.A., Y.W., J.-B.L. contribute for resources, some computations and wrote the initial draft of the paper which were investigated and approved by Y.W., X.W., J.-B.L., and J.A. wrote the final draft.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 11701118), Guangdong Provincial Engineering and Technology Research Center ([2015]1487), Guangdong Provincial Key Platform and Major Scientific Research Projects (Grant No. 2016KQNCX238), Key Supported Disciplines of Guizhou Province - Computer Application Technology (Grant No. QianXueWeiHeZi ZDXK [2016]20), and the Specialized Fund for Science and Technology Platform and Talent Team Project of Guizhou Province (Grant No. QianKeHePingTaiRenCai [2016]5609), the China Postdoctoral Science Foundation under Grant 2017M621579; the Postdoctoral Science Foundation of Jiangsu Province under Grant 1701081B; Project of Anhui Jianzhu University under Grant no. 2016QD116 and 2017dc03.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Brešar, B.; Henning, M.A.; Rall, D.F. Rainbow domination in graphs. Taiwan. J. Math. 2008, 12, 213-225. [CrossRef]
2. Amjadi, J.; Asgharshrghi, L.; Dehgardi, N.; Furuyai, M.; Sheikholeslami, S.M.; Volkmann, L. The k-rainbow reinforcement numbers in graphs. Discrete Appl. Math. 2017, 217, 394-404. [CrossRef]
3. Amjadi, J.; Dehgardi, N.; Furuya, M.; Sheikholeslami, S.M. A sufficient condition for large rainbow domination number. Int. J. Comp. Math. Comp. Syst. Theory 2017, 2, 53-65. [CrossRef]
4. Brešar, B.; Šumenjak, T.K. On the 2-rainbow domination in graphs. Discrete Appl. Math. 2007, 155, 2394-2400. [CrossRef]
5. Chang, G.J.; Wu, J.; Zhu, X. Rainbow domination on trees. Discrete Appl. Math. 2010, 158, 8-12. [CrossRef]
6. Chunling, T.; Xiaohui, L.; Yuansheng, Y.; Meiqin, L. 2-rainbow domination of generalized Petersen graphs P(n,2). Discrete Appl. Math. 2009, 157, 1932-1937.
7. Dehgardi, N.; Sheikholeslami, S.M.; Volkmann, L. The rainbow domination subdivision number of a graph. Mat. Vesnik 2015, 67, 102-114. [CrossRef]
8. Dehgardi, N.; Sheikholeslami, S.M.; Volkmann, L. The k-rainbow bondage number of a graph. Discrete Appl. Math. 2014, 174, 133-139. [CrossRef]
9. Meierling, D.; Sheikholeslami, S.M.; Volkmann, L. Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph. Appl. Math. Lett. 2011, 24, 1758-1761. [CrossRef]
10. Shao, Z.; Jiang, H.; Wu, P.; Wang, S.; Žerovnik, J.; Zhang, X.; Liu, J.B. On 2-rainbow domination of generalized Petersen graphs. Discrete Appl. Math. 2018. [CrossRef]
11. Shao, Z.; Liang, M.; Yin, C.; Xu, X.; Pavlič, P.; Žerovnik, J. On rainbow domination numbers of graphs. Inform. Sci. 2014, 254, 225-234. [CrossRef]
12. Shao, Z.; Sheikholeslami, S.M.; Wang, B.; Wu, P.; Zhang, X. Trees with equal total domination and 2-rainbow domination numbers. Filomat 2018, 32, 599-607. [CrossRef]
13. Sheikholeslami, S.M.; Volkmann, L. The k-rainbow domatic number of a graph. Discuss. Math. Graph Theory 2012, 32, 129-140. [CrossRef]
14. Wu, Y.; Jafari Rad, N. Bounds on the 2-rainbow domination number of graphs. Graphs Combin. 2013, 29, 1125-1133. [CrossRef]
15. Xu , G. 2-rainbow domination of generalized Petersen graphs $P(n, 3)$. Discrete Appl. Math. 2009, 157, 2570-2573. [CrossRef]
16. Vizing, V.G. Some unsolved problems in graph theory. Uspehi Mater. Nauk 1968, 23, 117-134. [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
