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Abstract

:

Let k be a positive integer, and set [k]:={1,2,…,k}. For a graph G, a k-rainbow dominating function (or kRDF) of G is a mapping f:V(G)→2[k] in such a way that, for any vertex v∈V(G) with the empty set under f, the condition ⋃u∈NG(v)f(u)=[k] always holds, where NG(v) is the open neighborhood of v. The weight of kRDF f of G is the summation of values of all vertices under f. The k-rainbow domination number of G, denoted by γrk(G), is the minimum weight of a kRDF of G. In this paper, we obtain the k-rainbow domination number of grid P3□Pn for k∈{2,3,4}.
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1. Introduction


For a graph G, we denote by V(G) and E(G) the vertex set and the edge set of G, respectively. For a vertex v∈V(G), the open neighborhood of v, denoted by NG(v), is the set {u∈V(G):uv∈E(G)} and the closed neighborhood of v, denoted by NG[v], is the set NG(v)∪{v}. The degree of a vertex v∈V(G), denoted by dG(v), is defined by dG(v)=|NG(v)|. We let δ(G) and Δ(G) denote the minimum degree and maximum degree of a graph G, respectively.



Let k be a positive integer, and [k]:={1,2,…,k}. For a graph G, a k-rainbow dominating function (or kRDF) of G is a mapping f:V(G)→2[k] in such a way that for any vertex v∈V(G) with the empty set under f, the condition ⋃u∈NG(v)f(u)=[k] always holds. The weight of a kRDF f of G is the value ω(f):=∑v∈V(G)|f(v)|. The k-rainbow domination number of G, denoted by γrk(G), is the minimum weight of a kRDF of G. A kRDF f of G is a γrk-function if ω(f)=γrk(G). The k-rainbow domination number was introduced by Brešar, Henning, and Rall [1] was studied by several authors (see, for example [2,3,4,5,6,7,8,9,10,11,12,13,14,15]).



For graphs F and G, we let F□G denote the Cartesian product of F and G. Vizing [16] conjectured that for arbitrary graphs F and G, γ(F□G)≥γ(F)γ(G). This conjecture is still open, and the domination number or its related invariants of F□G are extensively studied with the motivation from Vizing’s conjecture.



Concerning the k-rainbow domination number of F□G, one problem naturally arises: Given two graphs F and G under some conditions, determine γrk(F□G) for all k. In [3], the authors determined γrk(P2□Pn) for k=3,4,5.



In this paper, we examine grid graphs P3□Pn, and determine the value γrk(P3□Pn) for k∈{2,3,4} and all n, where Pm is the path of order m.




2. 2-Rainbow Domination Number of P3□Pn


We write V(P3□Pn)={vi,ui,wi∣0≤i≤n−1} and let E(P3□Pn)={viui,uiwi∣0≤i≤n−1}∪{vivi+1,uiui+1,wiwi+1∣0≤i≤n−1} (see Figure 1). A 2RDF f is given in three lines, where in the first line there are values of the function f for vertices {v0,v1,…,vn−1}, in the second line of the vertices {u0,u1,…,un−1}, and in the third line of the vertices {w0,w1,…,wn−1} (see Figure 2). Furthermore, we use 0,1,2,3 to encode the sets ∅,{1},{2},{1,2}.



To provide a complete answer, we need the following fact that can easily be proved as an exercise.



Fact 1.

γr2(P3□P3)=4,γr2(P3□P4)=6,γr2(P3□P5)=7,γr2(P3□P6)=8,γr2(P3□P7)=10.





Theorem 1.

For n≥8, γr2(P3□Pn)=5n+34.





Proof. 

First, we present constructions of a 2RDF of P3□Pn of the desired weight.

	
n≡0(mod8):



020030010200⋯300102003001



101000200010⋯002000100020



020201003002⋯010030020101



	
n≡1(mod8):



020030010200⋯3001020030010



101000200010⋯0020001000202



020201003002⋯0100300201010



	
n≡2(mod8):



020030010200⋯30010200300101



101000200010⋯00200010002020



020201003002⋯01003002010101



	
n≡3(mod8):



020030010200⋯300102003001001



101000200010⋯002000100020220



020201003002⋯010030020101001



	
n≡4(mod8):



020030010200⋯3001020030010010



101000200010⋯0020001000202202



020201003002⋯0100300201010010



	
n≡5(mod8):



020030010200⋯30010200300102020



101000200010⋯00200010002000101



020201003002⋯01003002010030020



	
n≡6(mod8):



020030010200⋯3001020030



101000200010⋯0020001001



020201003002⋯0100300201



	
n≡7(mod8):



020030010200⋯30010200301



101000200010⋯00200010002



020201003002⋯01003002010








To show that these are also lower bounds, we prove there is a γr2(P3□Pn)-function, f such that for every 0≤i≤n−1, ω(fi)=|f(vi)|+|f(ui)|+|f(wi)|≥1. Let n≥8 and f be a γr2(P3□Pn)-function such that the cardinality of S={i∣0≤i≤n−1andω(fi)=0} is as small as possible. We claim that |S|=0. Suppose, to the contrary, that |S|≥1 and let s be the smallest positive integer for which ω(fs)=0. Then, ω(fs−1)+ω(fs+1)≥6. Then, we consider the following cases.

	Case 1.

	
s=1 (the case s=n−1 is similar).



Then, we have f(v1)=f(u1)=f(w1)={1,2} and the function g defined by g(u0)={1}, g(v1)=g(w1)={2}, g(u2)=f(u2)∪{1}, g(v0)=g(w0)=g(u1)=∅ and g(x)=f(x) otherwise, is a 2RDF of P3□Pn of weight at most ω(f), which contradicts the choice of f.




	Case 2.

	
s=1 (s=n−2 is similar).



Then, ω(f0)+ω(f2)≥6 and the function g defined by g(u0)=g(u2)={1}, g(v1)=g(w1)={2}, g(v3)=f(v3)∪{2}, g(w3)=f(w3)∪{2}, g(v0)=g(w0)=g(u1)=g(v2)=g(w2)=∅ and g(x)=f(x) otherwise, is an 2RDF of P3□Pn of weight at most ω(f), which contradicts the choice of f.




	Case 3.

	
2≤s≤n−3.



Since ω(fs−2)≥1, then |f(vs−2)|+|f(us−2)|+|f(ws−2)|≥1. First, let |f(us−2)|≥1. We may assume that {1}⊆f(us−2). It is easy to see that the function g defined by g(vs−1)=g(vs+1)=g(ws−1)=g(ws+1)={2}, g(us)={1}, g(us+2)=f(us+2)∪{1}, g(us−1)=g(vs)=g(ws)=g(us+1)=∅ and g(x)=f(x) otherwise, is an 2RDF of P3□Pn of weight at most ω(f), which contradicts the choice of f. Now, let |f(ws−2)|≥1 (|f(vs−2)|≥1 is similar). We may assume that {1}⊆f(ws−2). Hence, the function g defined by g(vs−2)=f(vs−2)∪{1}, g(vs+1)=g(us−1)=g(ws+1)={2}, g(us)={1}, g(us+2)=f(us+2)∪{1}, g(us−1)=g(vs)=g(ws)=g(ws−1)=g(us+1)=∅ and g(x)=f(x) otherwise, is an 2RDF of P3□Pn of weight ω(f), which is contradicting the choice of f. Therefore, |S|=0.









We can see that for every 0≤i≤n−2, if ω(fi)=ω(fi+1)=ω(fi+2)=1, then ω(fi−1),ω(fi+3)>1. In addition, there is the function f such that, if ω(f0)=1 (ω(fn−1)=1 is similar), then ω(f1)>1 and ω(f1)+ω(f2)+ω(f3)+ω(f4)≥6 and if ω(f0)=2 (ω(fn−1)=2 is similar), then ω(f0)+ω(f1)+ω(f2)+ω(f3)≥6.



If ω(f0)=1 and ω(fn−1)=1, then


4ω(f)=4∑0≤i≤n−1ω(fi)=[3ω(f0)+2ω(f1)+ω(f2)]+[3ω(fn−1)+2ω(fn−2)+ω(fn−3)]+∑i∈{0,…,n−4}−{1,n−5}ω(fi)+ω(fi+1)+ω(fi+2)+ω(fi+3)+[ω(f1)+ω(f2)+ω(f3)+ω(f4)]+[ω(fn−5)+ω(fn−4)+ω(fn−3)+ω(fn−2)]≥8+8+5(n−5)+12=5(n−3)+18.











If ω(f0)=1 and ω(fn−1)=2, then


4ω(f)=4∑0≤i≤n−1ω(fi)=[3ω(f0)+2ω(f1)+ω(f2)]+[3ω(fn−1)+2ω(fn−2)+ω(fn−3)]+∑i∈{0,…,n−4}−{1}ω(fi)+ω(fi+1)+ω(fi+2)+ω(fi+3)+[ω(f1)+ω(f2)+ω(f3)+ω(f4)]≥8+9+5(n−4)+6=5(n−3)+18.











If ω(f0)=2 and ω(fn−1)=2, then


4ω(f)=4∑0≤i≤n−1ω(fi)=[3ω(f0)+2ω(f1)+ω(f2)]+[3ω(fn−1)+2ω(fn−2)+ω(fn−3)]+∑i∈{0,…,n−4}−{1}[ω(fi)+ω(fi+1)+ω(fi+2)+ω(fi+3)]+[ω(f1)+ω(f2)+ω(f3)+ω(f4)]≥9+9+5(n−3)=5(n−3)+18.











Thus, ω(f)=5n+34. □






3. 3-Rainbow Domination Number of P3□Pn


As in the previous section, a 3RDF is given in three lines and we use 0,1,2,3 to encode the sets ∅,{1},{2},{3}.



To provide a complete answer, we need the following fact.



Fact 2.

γr3(P3□P3)=5,γr3(P3□P4)=8.





Theorem 2.

For n≥5,


γr3(P3□Pn)=(3n+1)/2ifn≡1(mode2),(3n+2)/2ifn≡0(mode2),













Proof. 

First, we present constructions of a 3RDF of P3□Pn of the desired weight.

	
n≡0(mod4):



2010⋯20102201



0303⋯03030030



1020⋯10201102



	
n≡1(mod4):



2010⋯20102



0303⋯03030



1020⋯10201



	
n≡2(mod4):



2010⋯2010201201



0303⋯0303030030



1020⋯1020102102



	
n≡3(mod4):



2010⋯2010201



0303⋯0303030



1020⋯1020102








To show that these are also lower bounds, we prove there is a γr3(P3□Pn)-function, f that satisfies the following conditions:

	
For every 0≤i≤n−1, ω(fi)=|f(vi)|+|f(ui)|+|f(wi)|≥1,



	
For every 1≤i≤n−2, if ω(fi)=1, then ω(fi−1)+ω(fi+1)≥4. In particular, if ω(fi)=1, then (ω(fi−1)+ω(fi))+(ω(fi)+ω(fi+1))≥6,



	
ω(f0)≥2 and ω(fn−1)≥2.








First, we show that for every γr3(P3□Pn)-function f, ω(fi)=|f(vi)|+|f(ui)|+|f(wi)|≥1 when 0≤i≤n−1. Let n≥5 and f be a γr3(P3□Pn)-function and S={i∣0≤i≤n−1andω(fi)=0}. We claim that |S|=0. Assume to the contrary that |S|≥1. Then, we consider the following cases.

	Case 1.

	
0∈S (the case n−1∈S is similar).



Then, we have f(v1)=f(u1)=f(w1)={1,2,3} and it is easy to see that the function g defined by g(v0)={1}, g(u1)={3}, g(w0)={2}, g(v2)=f(v2)∪{2}, g(w2)=f(w2)∪{1}, g(u0)=g(v1)=g(w1)=∅ and g(x)=f(x) otherwise, is an 3RDF of P3□Pn of weight less than ω(f), which is a contradiction.



Let s be the smallest positive integer for which ω(fs)=0. Then, s≥1 and ω(fs−1)+ω(fs+1)≥9.




	Case 2.

	
s=1 (s=n−2 is similar).



Then, the function g defined by g(v0)=g(u0)=g(w0)={1}, g(v1)={2}, g(w1)={1}, g(u2)={3}, g(v3)=f(v3)∪{1}, g(w3)=f(w3)∪{2}, g(u1)=g(v2)=g(w2)=∅ and g(x)=f(x) otherwise, is an 3RDF of P3□Pn of weight less than ω(f), which is a contradiction.




	Case 3.

	
2≤s≤n−3.



The function g defined by g(us−1)=g(us+1)={3}, g(vs)={2}, g(ws)={1}, g(vs−2)=f(vs−2)∪{1}, g(ws−2)=f(ws−2)∪{2}, g(vs+2)=f(vs+2)∪{1}, g(ws+2)=f(ws+2)∪{2}, g(vs−1)=g(vs+1)=g(us)=g(ws−1)=g(ws+1)=∅ and g(x)=f(x) otherwise, is an 3RDF of P3□Pn of weight less than ω(f), which is a contradiction. Therefore, |S|=0.









Now, let f be a γr3(P3□Pn)-function. It is easy to see that, if ω(fi)=1, then ω(fi−1)+ω(fi+1)≥4 when 1≤i≤n−2.



Finally, we show that there is γr3(P3□Pn)-function f such that ω(f0)≥2 ( ω(fn−1)≥2 is similar). Let f be a γr3(P3□Pn)-function such that ω(f0)=1. If |f(v0)|=1 (|f(w0)|=1 is similar), then |f(w0)|=|f(u0)|=0, |f(u1)|≥2 and |f(w1)|=3. We may assume that {1,2}⊆f(u1). It is easy to see that the function g defined by g(w0)={3}, g(w2)={3}, g(w1)=∅ and g(x)=f(x) otherwise, is an 3RDF of P3□Pn of weight less than ω(f), which is a contradiction. Now, let |f(u0)|=1. Then, |f(w0)|=|f(v0)|=0, |f(v1)|≥2 and |f(w1)|≥2. It is easy to see that the function g defined by g(w0)={1}, g(w2)={2}, g(u1)={3}, g(v2)=f(v2)∪{1}, g(w2)=f(w2)∪{2}, g(u1)=g(u2)=∅ and g(x)=f(x) otherwise, is an 3RDF of P3□Pn of weight ω(f).



Hence, there is a γr3(P3□Pn)-function, f that satisfies the following conditions:

	
For every 0≤i≤n−1, ω(fi)≥1;



	
For every 1≤i≤n−2, if ω(fi)=1, then ω(fi−1)+ω(fi+1)≥4; and



	
ω(f0)≥2 and ω(fn−1)≥2.








If n is odd, then


2ω(f)=2∑0≤i≤n−1ω(fi)=ω(f0)+ω(fn−1)+∑0≤i≤n−2(ω(fi)+ω(fi+1))≥4+3(n−1).











Then, ω(f)=3n+12 when n is odd. Now, let n is even. Then, there is s≠n−1 such that ω(fs)+ω(fs+1)≥4. Hence,


2ω(f)=2∑0≤i≤n−1ω(fi)=ω(fs)+ω(fs+1)+ω(f0)+ω(fn−1)+∑0≤i≤n−2,i≠s(ω(fi)+ω(fi+1))≥8+3(n−2).











Therefore, ω(f)=3n+22 when n is even. □






4. 4-Rainbow Domination Number of P3□Pn


As above, a 4RDF is given in three lines and we use 0,1,2,5 to encode the sets ∅,{1},{2},{3,4}.



To provide a complete answer, we need the following fact.



Fact 3.

γr4(P3□P3)=6,γr4(P3□P4)=9.





Theorem 3.

For n≥5, γr4(P3□Pn)=2n.





Proof. 

First, we show that γr4(P3□Pn)≤2n. To do this, we present constructions of a 4RDF of P3□Pn of the desired weight.

	
n≡0(mod4):



2010⋯20102201



0505⋯05050050



1020⋯10201102



	
n≡1(mod4):



2010⋯20102



0505⋯05050



1020⋯10201



	
n≡2(mod4):



2010⋯2010201201



0505⋯0505050050



1020⋯1020102102



	
n≡3(mod4):



2010⋯2010201



0505⋯0505050



1020⋯1020102








To prove the inverse inequality, we show that every γr4(P3□Pn)-function f satisfies the following conditions:

	
For every 0≤i≤n−1, ω(fi)=|f(vi)|+|f(ui)|+|f(wi)|≥1;



	
For every 1≤i≤n−2, if ω(fi)=1, then ω(fi−1)+ω(fi+1)≥6; and



	
ω(f0)≥2 and ω(fn−1)≥2.








First, we show that for every γr4(P3□Pn)-function f, ω(fi)=|f(vi)|+|f(ui)|+|f(wi)|≥1 when 0≤i≤n−1. Let n≥5 and f be a γr4(P3□Pn)-function and S={i∣0≤i≤n−1andω(fi)=0}. We claim that |S|=0. Assume to the contrary that |S|≥1. Then, we consider the following cases.

	Case 1.

	
0∈S (the case n−1∈S is similar).



Then, we have f(v1)=f(u1)=f(w1)={1,2,3,4} and the function g defined by g(v0)={1}, g(u1)={3,4}, g(w0)={2}, g(v2)=f(v2)∪{2}, g(w2)=f(w2)∪{1}, g(u0)=g(v1)=g(w1)=∅ and g(x)=f(x) otherwise, is an 4RDF of P3□Pn of weight less than ω(f), which is a contradiction.



Let ω(fs)=0. Then, s≥1 and ω(fs−1)+ω(fs+1)≥12.




	Case 2.

	
s=1 (s=n−2 is similar).



The function g defined by g(v0)=g(u0)=g(w0)={1}, g(v1)={2}, g(w1)={1}, g(u2)={3,4}, g(v3)=f(v3)∪{1}, g(w3)=f(w3)∪{2}, g(u1)=g(v2)=g(w2)=∅ and g(x)=f(x) otherwise, is an 4RDF of P3□Pn of weight less than ω(f), which is a contradiction.




	Case 3.

	
2≤s≤n−3.



Then, it is easy to see that the function g defined by g(us−1)=g(us+1)={3,4}, g(vs)={2}, g(ws)={1}, g(vs−2)=f(vs−2)∪{1}, g(ws−2)=f(ws−2)∪{2}, g(vs+2)=f(vs+2)∪{1}, g(ws+2)=f(ws+2)∪{2}, g(vs−1)=g(vs+1)=g(us)=g(ws−1)=g(ws+1)=∅ and g(x)=f(x) otherwise, is an 4RDF of P3□Pn of weight less than ω(f), which is a contradiction. Therefore, |S|=0.









Now, let f be a γr4(P3□Pn)-function. It is easy to see that, if ω(fi)=1, then ω(fi−1)+ω(fi+1)≥6 when 1≤i≤n−2.



We show that for every γr4(P3□Pn)-function f ω(f0)≥2 (ω(fn−1)≥2 is similar). Let f be a γr4(P3□Pn)-function such that ω(f0)=1. If |f(v0)|=1 (|f(w0)|=1 is similar), then |f(w0)|=|f(u0)|=0, |f(u1)|≥3 and |f(w1)|=4. We may assume that {1,2,3}⊆f(u1). The function g defined by g(w0)={4}, g(w2)={4}, g(w1)=∅ and g(x)=f(x) otherwise, is an 4RDF of P3□Pn of weight less than ω(f), which is a contradiction. Now, let |f(u0)|=1. Then, |f(w0)|=|f(v0)|=0, |f(v1)|≥3 and |f(w1)|≥3. The function g defined by g(w0)={1}, g(w2)={2}, g(u1)={3,4}, g(v2)=f(v2)∪{1}, g(w2)=f(w2)∪{2}, g(u1)=g(u2)=∅ and g(x)=f(x) otherwise, is an 4RDF of P3□Pn of weight less than ω(f), which is a contradiction.



Hence, every γr4(P3□Pn)-function f satisfies the following conditions:

	
For every 0≤i≤n−1, ω(fi)≥1;



	
For every 1≤i≤n−2, if ω(fi)=1, then ω(fi−1)+ω(fi+1)≥6. In particular (ω(fi−1)+ω(fi))+(ω(fi)+ω(fi+1))≥8; and



	
ω(f0)≥2 and ω(fn−1)≥2.








Hence,


2ω(f)=2∑0≤i≤n−1ω(fi)=∑0≤i≤n−2(ω(fi)+ω(fi+1))+ω(f0)+ω(fn−1)≥4(n−1)+4.











Hence, ω(f)=2n. □
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Figure 1. The grid graph P3□P16. 
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Figure 2. A 2RDF of P3□Pn. 
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