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Abstract: The purpose of this paper is to introduce the notion of generalized multivalued (¢, ¢)-type
contractions and generalized multivalued (¢, ¢)-type Suzuki contractions and establish some new
common fixed point theorems for such multivalued mappings in complete metric spaces. Our results
are extension and improvement of the Suzuki and Nadler contraction theorems, Jleli and Samet,
Piri and Kumam, Mizoguchi and Takahashi, and Liu et al. fixed point theorems. We provide an
example for supporting our new results. Moreover, an application of our main result to the existence
of solution of system of functional equations is also presented.

Keywords: fixed point; generalized multivalued (¢, ¢)-type contraction; generalized multivalued
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1. Introduction and Preliminaries

In the fixed point theory of continuous mappings, a well-known theorem of Banach [1] states
that if (X, d) is a complete metric space and if S is a self-mapping on X which satisfies the inequality
d(Sx,Sy) < kd(x,y) for some k € [0,1) and all x,y € X, then S has a unique fixed point x* and the
sequence of successive approximations {Sx, } converges to x* for all x € X, the Banach’s theorem [1]
has been extensively studied and generalized on many settings (see [2-15]).

Suzuki [16] proved the following fixed point theorem.

Theorem 1 ([16]). Let (X, d) be a compact metric space and S : X — X be a self-mapping. If for all x,y € X
with x # y,

%d (x,Sx) <d(x,y) = d(Sx,Sy) <d(x,y),

then S has a unique fixed point in X.

Wardowski [17] introduced the notion of F-contractions and proved fixed point theorems
concerning F-contractions as follows.

Definition 1 ([17]). Let (X, d) be a metric space. A mapping T : X — X is said to be an F-contraction if there
exist F € [ and T > 0 such that

Vx,y € X,d(Tx,Ty) >0= 1+ F(d(Tx,Ty)) < F (d(x,y)),
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where F is the set of functions F : [0,00) — (—o00,00) satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all x,y € R such that x <y, F(x) < F(y);
(F2) For each sequence {ay}9° , of positive numbers,

JEEOF(an) = —oo ifand onlyyf}ij%oan =0;

(F3) There exists k € (0,1) such that lim,_,o+ «*F(a) = 0.

Theorem 2 ([17]). Let (X, d) be a complete metric space and T : X — X be an F-contraction. Then T has a
unique fixed point x* € X and for every x € X the sequence {T"x},cn converges to x*.

Piri and Kumam [18] modified the notion of F-contraction as follows.

Definition 2 ([18]). Let (X, d) be a metric space. A mapping T : X — X is said to be an F-contraction if there
exist F € F and T > 0 such that

Vx,y € X,d(Tx, Ty) >0= 1+ F(d(Tx,Ty)) < F (d(x,y)),

where F is the set of functions F : (0,00) — (—o0, 00) satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all x,y € R such that x <y, F(x) < F(y);
(F2) For each sequence {ay}_, of positive numbers,

,}EIJOF (an) = —oo if and only if Ji_r}r()loocn =0;

(F3) F is continuous.
On the other hand, recently, Jleli and Samet [19,20] introduced the notion of 6-contraction.

Definition 3. Let (X, d) be a metric space. A mapping T : X — X is said to be a 6-contraction if there exist a
constant k € (0,1) and 6 € © such that

x,y € X,d(Tx, Ty) #0 =0 (d (Tx, Ty)) < [0 (d (x,y))]",

where © is the set of functions 6 : (0,00) — (1, c0) satisfying the following conditions:

(®1) 6 is nondecreasing,
(©2) for each sequence {t,} C (0,0),

lim 6(t,) = 1if and only if nlgn th, =0,

n—oo

(©3) thereexistr € (0,1) and £ € (0, 00| such that lim o-1 _ l,

t—07t r

(©4) 6 is continuous.
Jleli and Samet [20] established the following fixed point theorem as follows.

Theorem 3 ([20]). Let (X, d) be a complete metric space and T : X — X be a 0-contraction. Then T has a
unique fixed point.

As in [21] we denote by E the set of functions 6 : (0,00) — (1,00) satisfying the following
conditions:

(©1) 6 is nondecreasing,
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(@2)/ infte(o,oo) Q(tn) = 1,
(®3)" 0 1is continuous.

Theorem 4 ([21]). Let (X, d) be a complete metric space and T : X — X be a mapping. Then the following
assertions are equivalent.

(i) T is a 6-contraction with 6 € Z;
(ii) T is an F-contraction with Fe F.

Very recently, Liu et al. [21] proved new fixed point theorems for (1, ¢)-type Suzuki contractions
in complete metric spaces as follows.

Definition 4. Let (X,d) be a metric space. A mapping T : X — X is said to be a (P, ¢)-type Suzuki
contraction if there exists a comparison function  and ¢ € ® such that for all, x,y € X with Tx # Ty

24 (3, Tx) < d(x,y) = ¢ (d(Tx,Ty)) < [p (M (x,9)],

where

M (x,y) = max {d (x,y),d(x,Tx),d (y, Ty), d(x,Ty) +d(y, Tx) } (1.2)

2
and @ is the set of functions ¢ : (0,00) — (0, co) satisfying the following conditions:

(P1) ¢ is nondecreasing,
(P2) for each sequence {t,} C (0,00),

,}E‘Jo"’(t") = 0if and only if nlgr;O t, =0,
(P3) ¢ is continuous on (0, 00).

And as in [22], a function ¢ : (0,00) — (0, o0) is called a comparison function if it satisfies the
following conditions:

(1) ¢ is monotone increasing, thatis, t1 < tp = ¢ (t1) < ¥ (t2),
(2) limye " (t) = 0 forall t > 0, where ¢" stands for the n-th iterate of .

Lemma 1 ([21]). Let ¢ : (0,00) — (0, 00) be a nondecreasing and continuous function with infe (o .00) () = 0
and {t; }, be a sequence in (0,00). Then the following holds:

lim ¢(t;) = 0if and only if lim t; = 0.
k—o00 k—o00

Example 1 ([22]). The following functions ¢ : (0,00) — (0, 00) are comparison functions:

(1) y(t)=at,0<a<1forallt >0,
(2)  (t) = 75 forall t > 0.

Example 2 ([21]). Define some functions as follows: for all t € (0,00),
(1) ¢1(t) =t,

2)  ¢a(t) = VL,
(3)  ¢3(t) = te'.

Then ¢1, ¢2, P3 € .
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Consider a metric space (X, d). By CB(X), we will denote the family of all bounded and closed
subsets of X. For x € X and A, B € CB(X), we define

D(x,B) = yiggd(x,y).

Define a mapping H : CB(X) x CB(X) — [0,1) by

H(A, B) = max ¢ supd(x, B),supd(y, A)
x€A yeEA

forall A,B € CB(X). Then H is a metric on CB(X), which is called the Pompeiu-Hausdorff metric
induced by 4.
Nadler [23] proved the following Banach contraction principle for multivalued mappings.

Theorem 5 ([23]). Let (X, d) be a complete metric space and S : X — CB(X) be a multivalued mapping, if
there exists A € [0,1) such that
H (Sx,Sy) < Ad(x,y)

forall x,y € X, then S has a fixed point x* € X such that x* € Sx*.

Theorem 6 ([24]). Let (X, d) be a complete metric space and T : X — CB(X) be a multivalued mapping. If
there exists a function B : (0, +0c0) — [0,1) such that

lim supp(t) <1, foralls € (0,0c0)
t—st

satisfying
H(T(x), T(y)) < p(d(x,y))d(x,y)

forall x,y € X with x # y, then T has a fixed point.

Definition 5 ([25]). Let (X, d) be a metric space. Let T : X — CB (X) be a multivalued mapping. Then T is
said to be a generalized multivalued F-contraction if there exist F € F and T > 0 such that for all x,y € X,

H(Tx,Ty) >0= 1+ F(H(Tx,Ty)) < F((M(x,y))),

where

M (x,y) = max {d (x,y),D (x,Tx),D (y, Ty), D (x, Ty) 42‘D (y, Tx) } '

HanCer et al. [26] (see also [27]) extended the concept of f-contraction to multivalued mappings
as follows.

Definition 6 ([26]). Let (X, d) be a metric space, T : X — CB(X) and 6 € ©. Then, we say that T is a
multivalued 6-contraction, if there exists k € [0,1) such that

k
0 (H (Tx, Ty)) < [6(d (x,y))]
forall x,y € X with H(Tx, Ty) > 0.
Theorem 7. Let (X, d) be a complete metric space and T : X — CB(X). Then the following are equivalent.

(i) T is a multivalued 0-contraction with 6 € &;
(ii) T is a multivalued F-contraction with F € F.
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Proof. The proof follows immediately from the proof of Theorem 4. [J

Now we introduce the following definitions.

Definition 7. Let (X, d) be a metric space. Let S, T : X — CB (X). Then the pair (T,S) is said to be a
generalized multivalued (1, ¢ )-type contraction if there exist a comparison function  and ¢ € ® such that for
all x,y € X,

H(Sx,Ty) > 0= ¢ (H(Sx, Ty)) < ¢ (¢ (M (x,y))),

where

M (x,y) = max {d (x,y),D (x,5%),D (y,Ty), 2% V) ; D (y, 5x) } '

Definition 8. Let (X, d) be a metric space. Let S,T : X — CB(X). Then the pair (T,S) is said to be a
generalized multivalued (1, )-type Suzuki contraction if there exist a comparison function 1 and ¢ € P such
that for all x,y € X with Sx # Ty,

S min {D (x,5x), D (3,Ty)} < d (x,y) = ¢ (H (55, Ty)) < $ (¢ (M (x,9))) . M

2. Main Results

Theorem 8. Let (X,d) be a complete metric space and S,T : X — CB (X)) be generalized multivalued
(¥, p)-type Suzuki contractions. If ¥ is continuous, then S and T have a common fixed point x* € X and for
x € X the sequence {T"x} converges to x*.

Proof. Let xy € X. Choose x1 € Sxg. Assume that D (xg, Sxg) and D (x1, Tx1) > 0. Then

%min{D (x0,5x%0),D (x1,Tx1)} < d(x0,x1).

By the definition of Hausdorff metric, there exists x; € Txy.
0 <d(x1,x2) =D (x1,Tx1) < H(Sxp,Tx1).
Since ¢ is nondecreasing, we have
¢ (d(x1,x2)) < ¢ (H (Sxo, Tx1)).

Hence from (1)

¢ (d(x1,x2)) < ¢ (H (Sxo,Tx1)) )
P (¢ (M (x0,x1))),

IN A

where

M (Xo, xl)

D(x9,Tx1)+D(x1,5xg)
2

d D S D T
max{ (XO,X1), (XO, xO)/ (xll X]), }

< max {d (x0,%1),D (x1,Tx1), D(xoz,Txl)}

< max{d (xo,x1),D (x1,Tx1)}.

If max {d (xo,x1),D (x1,Tx1)} = D (x1, Tx1), then from (2), we have

¢ (d (x1,x2)) < P (¢ (d (x1,%2))) < P (d(x1,%2)),
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which is a contradiction. Thus, we conclude that max {d (xo,x1),D (x1, Tx1)} = d (x0, x1) . By (2), we
get that
¢ (d (x1,%2)) < ¢ (¢ (d (x0,x1)))-

Similarly, for x, € Tx; and x3 € Sx,, we have

¢ (d (x2,x3))

ININ A

which implies
¢ (d(x2,x3)) < ¢ (¢ (d(x1,%2)))-

By continuing this process, we construct a sequence {x,} in X such that x5;;1 € Sxp; and x5 €
TX2i+1, 1= 0, 1,2, ...and

1 .
5 min {D (x2i,S%,,), D (x2i41, Tx,;, ;) } < d (X1, X2i41) -
Hence from (1), we have

0 < ¢(d(x2i41,%2i12)) < ¢ (H (Sx2i, Txoi41)) 3)
< Y (¢ (M (x2i,%2i41)))

where

M (xi, %2i11)

_ d (x2i, X9i+1) , D (21, Sx2i) , D (X211, TXi41) ,
= max D(x;, Txgi11)+D(%9i11,5%2:)
2

d (x5, X0i41) ,d (X5, X0i11) ,d (Xpi41, X2i42) ,
max d(x2i/§2[+2)

< max{d (xo;, Xpi41) ,d (X2i41, X2i42) } -

If max {d (x;, X0i 1) , 4 (X211, X2i12) } = d (X2i11, X2i12) , then from (3) we have

¢ (d (x241,%2i42)) < P (¢ (d (x2i11, %21 42)))
< ¢ (d(x2i41,%2i42))

which is a contradiction. Thus,

max {d (x;, X2i1) ,d (X2i41, X2i12) } = d (X2i, X2i11) -

By (3), we get that
¢ (d (x2i41, X2i42)) < 9 (¢ (d (x27, X2141))) -
This implies that
% min {D (x,, Sx,), D (xn41, Tx,.,) } < d (Xn, Xp41).
Hence

¢ (d (x2n11, X2n+2)) < P (¢ (d (20, %2041)))
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which implies that

¢ (¢ (d (x2, x2041))) < 9 (¢ (d (x20-1,%20)))
e <P (@ (d (x0,21))) -

¢ (d (Xon41, X2n42)) <
<

Letting n — oo in the above inequality, we get
0< lim ¢ (d (Xzrer, ¥2s2) < lim ¢ (¢ (d (x0,31))) =0,

which implies that

nl.ir;loo(l) (d (x2n+1/ x2”+2)) =0.

This together with (®2) and Lemma 1 gives

lim d (x2041, Xan42) = 0. 4)

Now, we prove that the sequence {x, } is Cauchy. Arguing by contradiction, we assume that there
exist ¢ > 0 and sequences {p,},_; and {g,},_; of positive integers such foralln € N, p, > g, > n

with d (xp(n),xq(n)> >e¢,d (xp(n)_l,xq(n)) < ¢. Therefore,

e<d (xp(n)/xq(n)> <d (xp(n),xp(n)_1> +d (xp(n)—ll xq(n))

<e+d (xp(n),xp(n),l) . 5)
By taking the limit as # — oo in (5), we get
limd (%0 Xy ) = & ©

From (4) and (5) we can choose a positive integer 119 > 1 such that

%miﬂ {D (39087, ) D (%40 T ) § < %8 <4 (xp )

and hence, from (1), we get

0 < ¢ (d (xp(n)+1,xq(n)+1)) <¢ (H (sxp(n), qu(n)))
=¥ ("b (M (xp(n)fxq(n)») ,
where
’ ' ’ g 4 4 ’
M (xp(n)'xq(n)) = max (XP(H) xq(H)I)D(Zn)(;Z:ZZ)zzp((:;(z)si(g;q(n) qu(n))

d (xp<n>rxq<n>+1);d (%qn) Xp(n)+1)

—~

n)fxp(n)+1) A (xqw)fxq(ﬂ“) ’

p<n>+§rxq<n>+1)+d (%q(n) Xg(m)+1)

IN
=]
)
X

IN
o]
X
——
U
—
=
=
2
=
el
©
~

U
—~
=
=
=
=
=
¥
N
+
0
—~ =
=

d xp(n)’xp(n)Jrl) z (xq(”)’x‘i(”Hl) ’ }
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Letting 1 — co in the above inequality and by using ($2), (4), (6), we get

(P(E) = nh_rf(}o(l’ (d (xp(n)+1rxq(n)+1>) < nh_{{}o(l) <¢ (d (xp(n)+1rxq(n)+1>)>
P (¢(e)) < ().

8 of 15

This is a contradiction. Therefore {x,} is a Cauchy sequence. Since X is complete, we can ensure that

{xn} converges to some point x* € X, that is, 1211 d (xy,x*) = 0 and so
n—oo

limd (x,, x*) = nlgrolod (xop,x*) = nlg{)lod (X241, x™) = 0.

n—oo

Now we claim that 1
5 min {D (xy,Sx,),D (x*, Tx")} < d (xy,x")

or
1 .
5 min {D (x*,8x*),D (xp41,Tx, ) } < d (xp41,x7)
foralln € N.
Suppose that it is not the case. Then there exists m € N such that
% min {D (x, Sx,,),D (x*, Tx*)} > d (xp, x¥)
and
L mi D (x*,5x*),D T >d ¥
Emm{ (x*,8x%), D (xmi1, Tx, ;) } = d (Xpy1,X7).
Therefore,

2d (xp, x™) min {D (xy, Sx,,), D (x*, Tx*)}
min {d (x,,, x*) + D (x*,Sx,,), D (x*, Tx")}

d (Xm, x*) 4+ D (x*,5x,) < d (xpu,x*) +d (x*,x,,,),

INIA A

which implies
d(xm,x*) <d(x*,x,,,).

7 m41

This together with (9) shows that
* * 1 : * *
d(xp,x*) <d(x*,x,41) < Emm{D (x*,8x*),D (xmy1,Tx,, ) } -
Since % min {D (x, Sx,,), D (x*, Tx*)} < d (xu,x,,,), by (1), we have

0 < (P(d(xm+l/xm+2))S¢(H(5xmexm+l))
< P (@M (xm, Xmt1))),

where

M (xm/ Xm+1 )

B d (Xm, Xms1) , D (Xm, Sxm) , D (X1, TXmy1),
= max D (%, Txpy 1) +D(X41,5%m)
2

d (xm, Xpr1) o d (m, Xm1) 4 (X1, Yme2)
< max { D(¥m,Xm12)

< max{d (xm, Xm+1) ,d (Xms1, Xm+2) } -

@)

®)

©)

(10)

(11)

(12)
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If max {d (xm, Xp+1) , 4 (Xm+1, Xmy2) } = d (X1, Xm2) , then from (12) we have

¢ (d (Xmi1,Xms2)) < P (P (d (X1, Xmi2)))
< (P(d (xm+1/xm+2))f

which is a contradiction. Thus, we conclude that

max {d (Xm, Xm11),d (X1, Xma2)} = d (X, Xpy1) -
By (11), we get that
¢ (d(Xmi1, Xmi2)) < P (P (d (om Xms1)))
< ¢ (d (x2m, Xom+1)) -

It follows from (P1) that
d (X1, Xme2) < d (Xm, Xmg1) - (13)

From (10), (11) and (13), we get

d(Xpmi1, Xme2) < d(Xm Xpt1)
d (xm/ x*) + d (x*/ xm+1)

% min {D (x*,Sx*), D (x41,Tx,, ) }

IN

IN

+% min {D (x*,Sx*), D (xy41,Tx, ;) }

min {D (x*/ SX*) ’ d (merlr xm+2) }

S d (xm+1’xrn+2) :

This is a contradiction. Hence (8) holds, that is, for every n > 2
1 . * * *
Emm{D (xn,Sx,), D (x*, Tx*)} < d (x4, x")
holds. From (1) it follows that for every n > 2

0 < ¢(D(xnp1,Tx%)) < ¢ (H (Sxn, Tx")) (14)
< P (¢ (M(xn,x7))),

where

d(xn,x*),d (X0, xp41), D (2%, Tx*),
v (x”’x*) - { ' D(""rTx}Z)'FZ(XnH,an) ’
2

Now we prove that x* € Tx*. Suppose on the contrary, D (x*, Tx*) > 0. Letting n — oo in (14) and
by using (7) and ($3), we obtain

D", Tx") = lim¢ (D (X1, Tx")) < lim ¢ (¢ (M (x5, x7)))
= (e (M(x",Tx"))) <D (x%,Tx),

which is a contradiction. Therefore, x* € Tx*.
Similarly, we can show that x* € Sx*. Thus, S and T have a common fixed point. [
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Corollary 1. Let (X, d) be a complete metric space and S, T : X — CB (X) be generalized multivalued
(¥, p)-type contractions. If P is continuous, then S and T have a common fixed point x* € X and for x € X the
sequence {T"x} converges to x*.

Example 3. Let X = [0,1]. Define a function d : X x X — [0, 4+00) by d(x,y) = |x —y|. Clearly, (X,d)
is a complete metric space. Define ¢ : (0,00) — (0,00) by ¢ (t) =t for all t > 0. Then ¢ € ®. Also define
1 (0,00) — (0,00) by ¢ (t) = 385 for all t > 0. Then ¢ is a continuos comparison function. Define the
mappings S, T : X — CB (X)) by

Sx = [O, g} and Tx = {O,g} .

Suppose, without any loss of generality, that all x,y are nonzero and x < y and H (Sx, Ty) > 0. Then
_ X YIWVoo(l2-4
pH 1) = (1 ([og].[o5])) =2 (|5 -3))

X vy 98 98
T < oy < 2=
53 =00 Y= oM Y)
98

= 1op? (M (xy) =9 (9 (M (x,y))).

Hence all the conditions of Corollary 1 are satisfied and 0 is a common fixed point of S and T.

In Theorem 8, if we set S = T and

M () = max {d (3,9), D (x,5%), D (), Z 2 ELWE0

2

then we obtain the following results.

Corollary 2. Let (X, d) be a complete metric space and S : X — CB (X)) be a (¢, ¢)-type Suzuki contraction.
If  is continuous, then S has a fixed point x* € X and for x € X the sequence {T"x} converges to x*.

Corollary 3 ([21]). Let (X, d) be a complete metric space and S : X — X be a generalized (1, ¢)-type Suzuki
contraction. If ¥ is continuous, then S has a unique fixed point x* € X and for x € X the sequence {T"x}
converges to x*.

Remark 1. Theorem 8 is an improvement and a generalization and of the main results given by Suzuki [16]
and the recent result given by Liu [21].

Remark 2. Corollary 1 is a generalization and improvement of Nadler [23] and the recent results by
Jleli et al. [19,20], HanCer et al. [26] and Vetro [27].

3. Some Consequences

Corollary 4. Let (X,d) be a complete metric space and S, T : X — CB (X)) be multivalued mappings. If
there exists A € (0,1) such that forall x,y € X,

H (Sx,Ty) < AM(x,y),

where

M (x,y) = max {d (x,),D (x,5%),D (y, Ty), 25 W) + D (¥, 5%) } _

2

Then S and T have a common fixed point x* € X and for x € X the sequence {T"x} converges to x*.
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Proof. The result follows from Corollary 1 by taking ¢ (t) = At and ¢ (t) = t, where ¢ : (0,00) —
(0,00). O

Corollary 5. Let (X,d) be a complete metric space and S,T : X — CB (X) be multivalued mappings.
Suppose that there exist aq,ay, a3, a4, as > 0 with a1 + ap + a3 + aq + as < 1 such that forall x,y € X,

1
H (5x,Ty) < myd(x,y) + axD (x,Sx) +a3D (y, Ty) + §u4D (y,Sx) +asD (x, Ty) .
Then S and T have a common fixed point x* € X and for x € X the sequence {T"x} converges to x*.

Corollary 6. Let (X,d) be a complete metric space and S, T : X — CB (X)) be multivalued 6-contractions,

~

that is, there exist € © and k € (0,1) such that
Vx,y € X, H(Sx,Ty) > 0= 6 (H (Sx,Ty)) < [0 (M(x,y))]k,

where

M () = max {d (5,9), D (x,5%), D (3, Ty), 2L DU,

Then S and T have a common fixed point x* € X and for x € X the sequence {T"x} converges to x*.

Proof. The result follows from Corollary 1 by taking ¢ (t) := (Ink)t and ¢ (f) = Int, where ¢ :
(0,00) — (0,00). O

Corollary 7. Let (X,d) be a complete metric space and S, T : X — CB (X) be multivalued F-contractions,
that is, there exist F € F and T > 0 such that

Vx,y € X, H(Sx,Ty) >0= 17+ F (H (Sx,Ty)) < F (M(x,y)),

where

M (x,y) = max {d (x,9),D (x,5%), D (y, Ty), 25TV T D (. 5%) } .

2

Then S and T have a common fixed point x* € X and for x € X the sequence {T"x} converges to x*.

Proof. The result follows from Corollary 1 by taking ¢ (t) = e~ "t and ¢ (t) = ¢!, where ¢ : (0,00) —
(0,00). O

Corollary 8. Let (X,d) be a complete metric space and S,T : X — CB (X) be multivalued mappings.
Suppose that

( ,y)
< NI
H(Sx,Ty) 1 M( Iy),forallx,y € X, Sx # Ty,

where

M (x,y) = max {d (x,y),D(x,8x),D (y, Ty), D(xTy) ; D (y, 5x) } '

Then S and T have a common fixed point x* € X and for x € X the sequence {T"x} converges to x*.

Proof. It follows from Corollary 1 by taking ¢ (t) := %_H, t > 0and ¢ (t) = t, where ¢ : (0,00) —>
(0,00). O
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Corollary 9. Let (X,d) be a complete metric space and S, T : X — CB (X) be multivalued mappings.
Suppose that, for all x,y € X, Sx # Ty,
H (Sx, Ty) = p(M(x,y)) M(x,y),

where

M (x,y) = max {d(x,y),D (x,5x),D (v, Ty), D (x, Ty) ‘; D (y, Sx) }

and B is a function from [0, 00) into [0, 00) such that lim B (r) < 1foreacht € (0,00). Then S and T have a
r—t

common fixed point x* € X and for x € X the sequence {T"x} converges to x*.

Proof. It follows from Corollary 1 by taking ¢ (f) := B(t)t and ¢ (t) = t, where ¢ : (0,00) —>
(0,00). O

4. Application

In this section, we present an application of our result in solving functional equations arising in
dynamic programming.

For more details on dynamic programming, we refer to [28-33]. Suppose that W and D represent
the state and decision spaces, respectively. The problem of related dynamic programming is reduced
to solve the functional equations.

p(x) = sug{g(x,y) +T(x,y, p(E(x,y)))}, forx e W, (15)
ye

q(x) = sug{u(x,y) +¥(x,y,9((x,y)))}, forx € W. (16)
ye

These settings allow us to formulate many problems, where U and V are Banach spaces, W C U,
D C V and

& WxD—W,
gu : WxD-—R,
Y : WxDxR—R.

Our aim is to give the existence and uniqueness of common and bounded solution of functional
equations given in (15) and (16). Let B(W) denote the set of all bounded real-valued functions on W.
Consider,

d(h,k) = sup |hx — kx|.
xeW

Then (B(W), d) is a complete metric space. Suppose that the following hold:

(B1): T,'¥, g, and u are bounded and continuous.
(B2): Forx € W, h € B(W) and b > 0, define E, A : B(W) — B(W) by

Eh(x) = sup,p{8(x,y) +T(x,y,h(i(x,y)))},
Ah(x) = sup cpfu(x,y) +¥(xy h(E(x,y)))}.
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Moreover, for every (x,y) € W x D, h,k € B(W) and t € W,

T (e, k() — ¥ (o, k(1))] < k(1)) 17)

where

M((r(t) k(t)) = max{d(h(t) k(t)),d(h(t), Eh(t)),d(k(t), Ak(t)),
A((t), AK(1)) +d(k(t), ER(1)) |
. :

Theorem 9. Assume that the conditions (B1) — (B2) are satisfied. Then the system of functional Equations (15)
and (16) has a unique common and bounded solution in B(W).

Proof. Note that (B(W),d) is a complete metric space. By (B1), E, A are self-mappings of B(W). Let A
be an arbitrary positive number and k1, h, € B(W). Choose x € W and y1,y2 € D such that

Ehy < g(x,y1) +T(x,y1, h1(E(x,y1)) + A, (18)

Ahy < g(x,y2) +¥(x,y2,h2(8(x, 2)) + A (19)

Further from (18) and (19), we have

Ehy > g(x,y2) +T(x,y2,h1(E(x,12)), (20)

Ahy > g(x,y1) +¥(x,y1,h2(E(x, 1)) (21)

Then (18) and (21) together with (17) imply

Ehi(x) = Ahp(x) < T(x,y1,h1(8(x,y1))) — ¥ (x,y1,h2(8(x,y1))) + A (22)
< |F(x/}/1, hl((:(x/]/l))) - T(xryl, hZ(g(xryl))N +A
o _Mn(x), ()

- M(hl(x),hz(X)+1

Then (19) and (20) together with (17) imply

Ahy(x) —Em(x) < T(x,y2,m(5(x,y2)) — ¥ (x,y2, h2(5(x, y2)) + A (23)
< |F(x,y2,h1(§(x,y2)) _T(xryZ,hZ(g(xryZ)H +A
o Min@)hx)

M(hi(x), ha(x) +1

where

(%)), d(h1(x), Ehy (x)), d(ha(x), Aha(x)),

2(x)),
) +d(ha(t), Ehy(t))

M((h1(x),h2(x)) = max{d(h(x)h
) }
. .

d(hy(t), Aho(t

From (22) and (23), we obtain

|Eh1(x) — Ahp(x)| < (24)
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since A > 0 was taken as an arbitrary number. The inequality (24) implies

d(Ehy (x), Ahy(x)) < M(’ll( )' ())

Taking ¢ (t) = t,t > 0and ¢ (t) = L, t > 0, we get

1/

¢ (d(Ehy(x), Aha(x))) < ¢ (¢ (M(h1(x), h2(x)))) -

Therefore, all the conditions of Corollary 1 are immediately satisfied. Thus, E and A have a common
fixed point h* € B(W), that is, h*(x) is a unique, bounded and common solution of the system of
functional Equations (15) and (16). O
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