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Abstract

:

The purpose of this paper is to introduce the notion of generalized multivalued ψ,ϕ-type contractions and generalized multivalued ψ,ϕ-type Suzuki contractions and establish some new common fixed point theorems for such multivalued mappings in complete metric spaces. Our results are extension and improvement of the Suzuki and Nadler contraction theorems, Jleli and Samet, Piri and Kumam, Mizoguchi and Takahashi, and Liu et al. fixed point theorems. We provide an example for supporting our new results. Moreover, an application of our main result to the existence of solution of system of functional equations is also presented.
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1. Introduction and Preliminaries


In the fixed point theory of continuous mappings, a well-known theorem of Banach [1] states that if (X,d) is a complete metric space and if S is a self-mapping on X which satisfies the inequality d(Sx,Sy)≤kd(x,y) for some k∈0,1 and all x,y∈X, then S has a unique fixed point x* and the sequence of successive approximations Sxn converges to x* for all x∈X, the Banach’s theorem [1] has been extensively studied and generalized on many settings (see [2,3,4,5,6,7,8,9,10,11,12,13,14,15]).



Suzuki [16] proved the following fixed point theorem.



Theorem 1

([16]). Let (X,d) be a compact metric space and S:X→X be a self-mapping. If for all x,y∈X with x≠y,


12dx,Sx<d(x,y)⟹dSx,Sy<d(x,y),








then S has a unique fixed point in X.





Wardowski [17] introduced the notion of F-contractions and proved fixed point theorems concerning F-contractions as follows.



Definition 1

([17]). Let (X,d) be a metric space. A mapping T:X→X is said to be an F-contraction if there exist F∈ϝ and τ>0 such that


∀x,y∈X,d(Tx,Ty)>0⇒τ+Fd(Tx,Ty)≤Fd(x,y),








where ϝ is the set of functions F:[0,∞)→−∞,∞ satisfying the following conditions:

	(F1) 

	
F is strictly increasing, i.e., for all x,y∈R+ such that x≤y, F(x)<F(y);




	(F2) 

	
For each sequence {αn}n=1∞ of positive numbers,


limn→∞Fαn=−∞ifandonlyiflimn→∞αn=0;












	(F3) 

	
There exists k∈(0,1) such that limα→0+αkF(α)=0.











Theorem 2

([17]). Let (X,d) be a complete metric space and T:X→X be an F-contraction. Then T has a unique fixed point x*∈X and for every x∈X the sequence {Tnx}n∈N converges to x*.





Piri and Kumam [18] modified the notion of F-contraction as follows.



Definition 2

([18]). Let (X,d) be a metric space. A mapping T:X→X is said to be an F-contraction if there exist F∈F and τ>0 such that


∀x,y∈X,d(Tx,Ty)>0⇒τ+Fd(Tx,Ty)≤Fd(x,y),








where F is the set of functions F:0,∞→−∞,∞ satisfying the following conditions:

	(F1) 

	
F is strictly increasing, i.e., for all x,y∈R+ such that x<y, F(x)<F(y);




	(F2) 

	
For each sequence {αn}n=1∞ of positive numbers,


limn→∞Fαn=−∞ifandonlyiflimn→∞αn=0;












	(F3) 

	
F is continuous.











On the other hand, recently, Jleli and Samet [19,20] introduced the notion of θ-contraction.



Definition 3.

Let X,d be a metric space. A mapping T:X⟶X is said to be a θ-contraction if there exist a constant k∈0,1 and θ∈Θ such that


x,y∈X,dTx,Ty≠0⟹θdTx,Ty≤θdx,yk,








where Θ is the set of functions θ:0,∞⟶1,∞ satisfying the following conditions:

	(Θ1)

	
θ is nondecreasing,




	(Θ2)

	
for each sequence tn⊂0,∞,


limn→∞θ(tn)=1ifandonlyiflimn→∞tn=0,












	(Θ3)

	
there exist r∈0,1 and ℓ∈0,∞ such that limt⟶0+θt−1tr=ℓ,




	(Θ4)

	
θ is continuous.











Jleli and Samet [20] established the following fixed point theorem as follows.



Theorem 3

([20]). Let X,d be a complete metric space and T:X⟶X be a θ-contraction. Then T has a unique fixed point.





As in [21] we denote by Ξ the set of functions θ:0,∞⟶1,∞ satisfying the following conditions:

	(Θ1)’

	
θ is nondecreasing,




	(Θ2)’

	
inft∈0,∞θ(tn)=1,




	(Θ3)’

	
θ is continuous.









Theorem 4

([21]). Let X,d be a complete metric space and T:X→X be a mapping. Then the following assertions are equivalent.

	(i) 

	
T is a θ-contraction with θ∈Ξ;




	(ii) 

	
T is an F-contraction with F ∈F.











Very recently, Liu et al. [21] proved new fixed point theorems for (ψ,ϕ)-type Suzuki contractions in complete metric spaces as follows.



Definition 4.

Let X,d be a metric space. A mapping T:X⟶X is said to be a ψ,ϕ-type Suzuki contraction if there exists a comparison function ψ and ϕ∈Φ such that for all, x,y∈X with Tx≠Ty


12dx,Tx<dx,y⟹ϕdTx,Ty≤ψϕMx,y,








where


Mx,y=maxdx,y,dx,Tx,dy,Ty,dx,Ty+dy,Tx2



(1.2)




and Φ is the set of functions ϕ:0,∞⟶0,∞ satisfying the following conditions:

	(Φ1)

	
ϕ is nondecreasing,




	(Φ2)

	
for each sequence tn⊂0,∞,


limn→∞ϕ(tn)=0ifandonlyiflimn→∞tn=0,












	(Φ3)

	
ϕ is continuous on 0,∞.











And as in [22], a function ψ:0,∞⟶0,∞ is called a comparison function if it satisfies the following conditions:

	(1)

	
ψ is monotone increasing, that is, t1<t2⟹ψt1≤ψt2,




	(2)

	
limn→∞ψn(t)=0 for all t>0, where ψn stands for the n-th iterate of ψ.









Lemma 1

([21]). Let ϕ:0,∞⟶0,∞ be a nondecreasing and continuous function with inft∈0,∞ϕ(t)=0 and tkk be a sequence in 0,∞. Then the following holds:


limk→∞ϕ(tk)=0ifandonlyiflimk→∞tk=0.













Example 1

([22]). The following functions ψ:0,∞⟶0,∞ are comparison functions:

	(1) 

	
ψ(t)=at, 0<a<1 for all t>0,




	(2) 

	
ψ(t)=tt+1 for all t>0.











Example 2

([21]). Define some functions as follows: for all t∈0,∞,

	(1) 

	
ϕ1(t)=t,




	(2) 

	
ϕ2(t)=tt,




	(3) 

	
ϕ3(t)=tet.











Then ϕ1,ϕ2,ϕ3∈Φ.



Consider a metric space (X,d). By CB(X), we will denote the family of all bounded and closed subsets of X. For x∈X and A,B∈CB(X), we define


D(x,B)=infy∈Bd(x,y).











Define a mapping H:CB(X)×CB(X)→0,1 by


H(A,B)=maxsupx∈Ad(x,B),supy∈Ad(y,A)








for all A,B∈CB(X). Then H is a metric on CB(X), which is called the Pompeiu-Hausdorff metric induced by d.



Nadler [23] proved the following Banach contraction principle for multivalued mappings.



Theorem 5

([23]). Let (X,d) be a complete metric space and S:X⟶CB(X) be a multivalued mapping, if there exists λ∈0,1 such that


HSx,Sy≤λd(x,y)








for all x,y∈X, then S has a fixed point x*∈X such that x*∈Sx*.





Theorem 6

([24]). Let (X,d) be a complete metric space and T:X⟶CB(X) be a multivalued mapping. If there exists a function β:(0,+∞)→[0,1) such that


limt⟶s+supβ(t)<1,foralls∈0,∞








satisfying


H(T(x),T(y))≤β(d(x,y))d(x,y)








for all x,y∈X with x≠y, then T has a fixed point.





Definition 5

([25]). Let X,d be a metric space. Let T:X⟶CBX be a multivalued mapping. Then T is said to be a generalized multivalued F-contraction if there exist F∈F and τ>0 such that for all x,y∈X,


HTx,Ty>0⟹τ+FHTx,Ty≤FMx,y,








where


Mx,y=maxdx,y,Dx,Tx,Dy,Ty,Dx,Ty+Dy,Tx2.













HanÇer et al. [26] (see also [27]) extended the concept of θ-contraction to multivalued mappings as follows.



Definition 6

([26]). Let X,d be a metric space, T:X→CBX and θ∈Θ. Then, we say that T is a multivalued θ-contraction, if there exists k∈0,1 such that


θHTx,Ty≤θdx,yk








for all x,y∈X with HTx,Ty>0.





Theorem 7.

Let X,d be a complete metric space and T:X→CB(X). Then the following are equivalent.

	(i) 

	
T is a multivalued θ-contraction with θ∈Ξ;




	(ii) 

	
T is a multivalued F-contraction with F∈F.











Proof. 

The proof follows immediately from the proof of Theorem 4. □





Now we introduce the following definitions.



Definition 7.

Let X,d be a metric space. Let S,T:X⟶CBX. Then the pair T,S is said to be a generalized multivalued ψ,ϕ-type contraction if there exist a comparison function ψ and ϕ∈Φ such that for all x,y∈X,


HSx,Ty>0⟹ϕHSx,Ty≤ψϕMx,y,








where


Mx,y=maxdx,y,Dx,Sx,Dy,Ty,Dx,Ty+Dy,Sx2.













Definition 8.

Let X,d be a metric space. Let S,T:X⟶CBX. Then the pair T,S is said to be a generalized multivalued ψ,ϕ-type Suzuki contraction if there exist a comparison function ψ and ϕ∈Φ such that for all x,y∈X with Sx≠Ty,


12minDx,Sx,Dy,Ty<dx,y⟹ϕHSx,Ty≤ψϕMx,y.



(1)










2. Main Results


Theorem 8.

Let X,d be a complete metric space and S,T:X⟶CBX be generalized multivalued ψ,ϕ-type Suzuki contractions. If ψ is continuous, then S and T have a common fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Proof. 

Let x0∈X. Choose x1∈Sx0. Assume that Dx0,Sx0 and Dx1,Tx1>0. Then


12minDx0,Sx0,Dx1,Tx1<dx0,x1.








By the definition of Hausdorff metric, there exists x2∈Tx1.


0<dx1,x2=Dx1,Tx1≤HSx0,Tx1.








Since ϕ is nondecreasing, we have


ϕdx1,x2≤ϕHSx0,Tx1.








Hence from (1)


0≤ϕdx1,x2≤ϕHSx0,Tx1≤ψϕMx0,x1,



(2)




where


Mx0,x1=maxdx0,x1,Dx0,Sx0,Dx1,Tx1,Dx0,Tx1+Dx1,Sx02≤maxdx0,x1,Dx1,Tx1,Dx0,Tx12≤maxdx0,x1,Dx1,Tx1.








If maxdx0,x1,Dx1,Tx1=Dx1,Tx1, then from (2), we have


ϕdx1,x2≤ψϕdx1,x2<ϕdx1,x2,








which is a contradiction. Thus, we conclude that maxdx0,x1,Dx1,Tx1=dx0,x1. By (2), we get that


ϕdx1,x2≤ψϕdx0,x1.











Similarly, for x2∈Tx1 and x3∈Sx2, we have


ϕdx2,x3=ϕDx2,Sx2≤ϕHTx1,Sx2≤ψϕMx1,x2≤ψϕdx1,x2,








which implies


ϕdx2,x3≤ψϕdx1,x2.








By continuing this process, we construct a sequence {xn} in X such that x2i+1∈Sx2i and x2i+2∈Tx2i+1, i=0,1,2,… and


12minDx2i,Sx2i,Dx2i+1,Tx2i+1<dx2i,x2i+1.








Hence from (1), we have


0<ϕdx2i+1,x2i+2≤ϕHSx2i,Tx2i+1≤ψϕMx2i,x2i+1,



(3)




where


Mx2i,x2i+1=maxdx2i,x2i+1,Dx2i,Sx2i,Dx2i+1,Tx2i+1,Dx2i,Tx2i+1+Dx2i+1,Sx2i2≤maxdx2i,x2i+1,dx2i,x2i+1,dx2i+1,x2i+2,dx2i,x2i+22≤maxdx2i,x2i+1,dx2i+1,x2i+2.








If maxdx2i,x2i+1,dx2i+1,x2i+2=dx2i+1,x2i+2, then from (3) we have


ϕdx2i+1,x2i+2≤ψϕdx2i+1,x2i+2<ϕdx2i+1,x2i+2,








which is a contradiction. Thus,


maxdx2i,x2i+1,dx2i+1,x2i+2=dx2i,x2i+1.








By (3), we get that


ϕdx2i+1,x2i+2<ψϕdx2i,x2i+1.








This implies that


12minDxn,Sxn,Dxn+1,Txn+1<dxn,xn+1.








Hence


ϕdx2n+1,x2n+2<ψϕdx2n,x2n+1,








which implies that


ϕdx2n+1,x2n+2≤ψϕdx2n,x2n+1≤ψ2ϕdx2n−1,x2n≤⋯≤ψnϕdx0,x1.








Letting n⟶∞ in the above inequality, we get


0≤limn⟶∞ϕdx2n+1,x2n+2≤limn⟶∞ψnϕdx0,x1=0,








which implies that


limn⟶∞ϕdx2n+1,x2n+2=0.








This together with Φ2 and Lemma 1 gives


limn⟶∞dx2n+1,x2n+2=0.



(4)







Now, we prove that the sequence xn is Cauchy. Arguing by contradiction, we assume that there exist ε>0 and sequences pnn=1∞ and qnn=1∞ of positive integers such for all n∈N,pn>qn>n with dxpn,xqn≥ε,dxpn−1,xqn<ε. Therefore,


ε≤dxpn,xqn≤dxpn,xpn−1+dxpn−1,xqn










<ε+dxpn,xpn−1.



(5)




By taking the limit as n→∞ in (5), we get


limn→∞dxpn,xqn=ε.



(6)




From (4) and (5) we can choose a positive integer n0≥1 such that


12minDxpn,Sxpn,Dxqn,Txqn<12ε<dxpn,xqn








and hence, from (1), we get


0<ϕdxp(n)+1,xqn+1≤ϕHSxp(n),Txqn≤ψϕMxp(n),xqn,








where


Mxp(n),xqn=maxdxp(n),xqn,Dxp(n),Sxp(n),Dxqn,Txqn,Dxp(n),Txqn+Dxqn,Sxp(n)2≤maxdxp(n),xqn,dxp(n),xp(n)+1,dxqn,xqn+1,dxp(n),xqn+1+dxqn,xp(n)+12≤maxdxp(n),xqn,dxp(n),xp(n)+1,dxqn,xqn+1,dxp(n),xpn+1+dxp(n)+1,xqn+1+dxqn,xq(n)+12.











Letting n⟶∞ in the above inequality and by using (Φ2), (4), (6), we get


ϕ(ε)=limn→∞ϕdxp(n)+1,xqn+1≤limn→∞ϕψdxp(n)+1,xqn+1=ψϕ(ε)<ϕ(ε).








This is a contradiction. Therefore xn is a Cauchy sequence. Since X is complete, we can ensure that xn converges to some point x*∈X, that is, limn→∞dxn,x*=0 and so


limn→∞dxn,x*=limn→∞dx2n,x*=limn→∞dx2n+1,x*=0.



(7)




Now we claim that


12minDxn,Sxn,Dx*,Tx*<dxn,x*



(8)




or


12minDx*,Sx*,Dxn+1,Txn+1<dxn+1,x*








for all n∈N.



Suppose that it is not the case. Then there exists m∈N such that


12minDxm,Sxm,Dx*,Tx*≥dxm,x*



(9)




and


12minDx*,Sx*,Dxm+1,Txm+1≥dxm+1,x*.



(10)




Therefore,


2dxm,x*≤minDxm,Sxm,Dx*,Tx*≤mindxm,x*+Dx*,Sxm,Dx*,Tx*≤dxm,x*+Dx*,Sxm≤dxm,x*+dx*,xm+1,








which implies


dxm,x*≤dx*,xm+1.








This together with (9) shows that


dxm,x*≤dx*,xm+1≤12minDx*,Sx*,Dxm+1,Txm+1.



(11)




Since 12minDxm,Sxm,Dx*,Tx*<dxm,xm+1, by (1), we have


0<ϕdxm+1,xm+2≤ϕHSxm,Txm+1≤ψϕMxm,xm+1,



(12)




where


Mxm,xm+1=maxdxm,xm+1,Dxm,Sxm,Dxm+1,Txm+1,Dxm,Txm+1+Dxm+1,Sxm2≤maxdxm,xm+1,dxm,xm+1,dxm+1,xm+2,Dxm,xm+22≤maxdxm,xm+1,dxm+1,xm+2.








If maxdxm,xm+1,dxm+1,xm+2=dxm+1,xm+2, then from (12) we have


ϕdxm+1,xm+2≤ψϕdxm+1,xm+2<ϕdxm+1,xm+2,








which is a contradiction. Thus, we conclude that


maxdxm,xm+1,dxm+1,xm+2=dxm,xm+1.








By (11), we get that


ϕdxm+1,xm+2≤ψϕdxm,xm+1<ϕdx2m,x2m+1.








It follows from (Φ1) that


dxm+1,xm+2<dxm,xm+1.



(13)




From (10), (11) and (13), we get


dxm+1,xm+2<dxm,xm+1≤dxm,x*+dx*,xm+1≤12minDx*,Sx*,Dxm+1,Txm+1+12minDx*,Sx*,Dxm+1,Txm+1=minDx*,Sx*,dxm+1,xm+2≤dxm+1,xm+2.








This is a contradiction. Hence (8) holds, that is, for every n≥2


12minDxn,Sxn,Dx*,Tx*<dxn,x*








holds. From (1) it follows that for every n≥2


0<ϕDxn+1,Tx*≤ϕHSxn,Tx*≤ψϕMxn,x*,



(14)




where


Mxn,x*=maxdxn,x*,dxn,xn+1,Dx*,Tx*,Dxn,Tx*+dxn+1,xn+12.








Now we prove that x*∈Tx*. Suppose on the contrary, Dx*,Tx*>0. Letting n⟶∞ in (14) and by using (7) and (Φ3), we obtain


Dx*,Tx*=limn→∞ϕDxn+1,Tx*≤limn→∞ψϕMxn,x*=ψϕMx*,Tx*<Dx*,Tx*,








which is a contradiction. Therefore, x*∈Tx*.



Similarly, we can show that x*∈Sx*. Thus, S and T have a common fixed point. □





Corollary 1.

Let X,d be a complete metric space and S,T:X⟶CBX be generalized multivalued ψ,ϕ-type contractions. If ψ is continuous, then S and T have a common fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Example 3.

Let X=0,1. Define a function d:X×X→[0,+∞) by d(x,y)=x−y. Clearly, (X,d) is a complete metric space. Define ϕ:0,∞⟶0,∞ by ϕt=t for all t>0. Then ϕ∈Φ. Also define ψ:0,∞⟶0,∞ by ψt=98t100 for all t>0. Then ψ is a continuos comparison function. Define the mappings S,T:X⟶CBX by


Sx=0,x5andTx=0,x3.








Suppose, without any loss of generality, that all x,y are nonzero and x<y and HSx,Ty>0. Then


ϕHSx,Ty=ϕH0,x5,0,y3=ϕx5−y3=x5−y3≤98100x−y≤98100Mx,y=98100ϕMx,y=ψϕMx,y.








Hence all the conditions of Corollary 1 are satisfied and 0 is a common fixed point of S and T.





In Theorem 8, if we set S=T and


Mx,y=maxdx,y,Dx,Sx,Dy,Sy,Dx,Sy+Dy,Sx2,








then we obtain the following results.



Corollary 2.

Let X,d be a complete metric space and S:X⟶CBX be a ψ,ϕ-type Suzuki contraction. If ψ is continuous, then S has a fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Corollary 3

([21]). Let X,d be a complete metric space and S:X⟶X be a generalized ψ,ϕ-type Suzuki contraction. If ψ is continuous, then S has a unique fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Remark 1.

Theorem 8 is an improvement and a generalization and of the main results given by Suzuki [16] and the recent result given by Liu [21].





Remark 2.

Corollary 1 is a generalization and improvement of Nadler [23] and the recent results by Jleli et al. [19,20], HanÇer et al. [26] and Vetro [27].






3. Some Consequences


Corollary 4.

Let X,d be a complete metric space and S,T:X⟶CBX be multivalued mappings. If there exists λ∈0,1 such that for all x,y∈X,


HSx,Ty≤λM(x,y),








where


Mx,y=maxdx,y,Dx,Sx,Dy,Ty,Dx,Ty+Dy,Sx2.











Then S and T have a common fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Proof. 

The result follows from Corollary 1 by taking ψt=λt and ϕt=t, where ϕ:0,∞⟶0,∞. □





Corollary 5.

Let X,d be a complete metric space and S,T:X⟶CBX be multivalued mappings. Suppose that there exist a1,a2,a3,a4,a5≥0 with a1+a2+a3+a4+a5<1 such that for all x,y∈X,


HSx,Ty≤a1d(x,y)+a2Dx,Sx+a3Dy,Ty+12a4Dy,Sx+a5Dx,Ty.











Then S and T have a common fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Corollary 6.

Let X,d be a complete metric space and S,T:X⟶CBX be multivalued θ-contractions, that is, there exist θ∈Θ∼ and k∈0,1 such that


∀x,y∈X,HSx,Ty>0⟹θHSx,Ty≤θM(x,y)k,








where


Mx,y=maxdx,y,Dx,Sx,Dy,Ty,Dx,Ty+Dy,Sx2.











Then S and T have a common fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Proof. 

The result follows from Corollary 1 by taking ψt:=lnkt and ϕt=lnt, where ϕ:0,∞⟶0,∞. □





Corollary 7.

Let X,d be a complete metric space and S,T:X⟶CBX be multivalued F-contractions, that is, there exist F∈F and τ>0 such that


∀x,y∈X,HSx,Ty>0⟹τ+FHSx,Ty≤FM(x,y),








where


Mx,y=maxdx,y,Dx,Sx,Dy,Ty,Dx,Ty+Dy,Sx2.











Then S and T have a common fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Proof. 

The result follows from Corollary 1 by taking ψt=e−τt and ϕt=et, where ϕ:0,∞⟶0,∞. □





Corollary 8.

Let X,d be a complete metric space and S,T:X⟶CBX be multivalued mappings. Suppose that


HSx,Ty≤M(x,y)1+M(x,y),forallx,y∈X,Sx≠Ty,








where


Mx,y=maxdx,y,Dx,Sx,Dy,Ty,Dx,Ty+Dy,Sx2.











Then S and T have a common fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Proof. 

It follows from Corollary 1 by taking ψt:=t1+t, t>0 and ϕt=t, where ϕ:0,∞⟶0,∞. □





Corollary 9.

Let X,d be a complete metric space and S,T:X⟶CBX be multivalued mappings. Suppose that, for all x,y∈X,Sx≠Ty,


HSx,Ty≤βM(x,y)M(x,y),








where


Mx,y=maxdx,y,Dx,Sx,Dy,Ty,Dx,Ty+Dy,Sx2








and β is a function from 0,∞ into 0,∞ such that limr⟶t+βr<1 for each t∈(0,∞). Then S and T have a common fixed point x*∈X and for x∈X the sequence Tnx converges to x*.





Proof. 

It follows from Corollary 1 by taking ψt:=βtt and ϕt=t, where ϕ:0,∞⟶0,∞. □






4. Application


In this section, we present an application of our result in solving functional equations arising in dynamic programming.



For more details on dynamic programming, we refer to [28,29,30,31,32,33]. Suppose that W and D represent the state and decision spaces, respectively. The problem of related dynamic programming is reduced to solve the functional equations.


p(x)=supy∈D{g(x,y)+Γ(x,y,p(ξ(x,y)))},forx∈W,



(15)






q(x)=supy∈D{u(x,y)+Ψ(x,y,q(ξ(x,y)))},forx∈W.



(16)







These settings allow us to formulate many problems, where U and V are Banach spaces, W⊆U, D⊆V and


ξ:W×D⟶W,g,u:W×D⟶R,Γ,Ψ:W×D×R⟶R.











Our aim is to give the existence and uniqueness of common and bounded solution of functional equations given in (15) and (16). Let B(W) denote the set of all bounded real-valued functions on W. Consider,


d(h,k)=supx∈Whx−kx.











Then (B(W), d) is a complete metric space. Suppose that the following hold:

	(B1):

	
Γ,Ψ,g, and u are bounded and continuous.




	(B2):

	
For x∈W, h∈B(W) and b>0, define E,A:B(W)⟶B(W) by


Eh(x)=supy∈D{g(x,y)+Γ(x,y,h(ξ(x,y)))},Ah(x)=supy∈D{u(x,y)+Ψ(x,y,h(ξ(x,y)))}.

















Moreover, for every (x,y)∈W×D,h,k∈B(W) and t∈W,


Γ(x,y,h(t))−Ψ(x,y,k(t))≤M(h(t),k(t))M(h(t),k(t))+1,



(17)




where


M((h(t),k(t))=max{d(h(t),k(t)),d(h(t),Eh(t)),d(k(t),Ak(t)),d(h(t),Ak(t))+d(k(t),Eh(t))2}.











Theorem 9.

Assume that the conditions (B1)−(B2) are satisfied. Then the system of functional Equations (15) and (16) has a unique common and bounded solution in B(W).





Proof. 

Note that (B(W),d) is a complete metric space. By (B1), E,A are self-mappings of B(W). Let λ be an arbitrary positive number and h1,h2∈B(W). Choose x∈W and y1,y2∈D such that


Eh1<g(x,y1)+Γ(x,y1,h1(ξ(x,y1))+λ,



(18)






Ah2<g(x,y2)+Ψ(x,y2,h2(ξ(x,y2))+λ.



(19)




Further from (18) and (19), we have


Eh1≥g(x,y2)+Γ(x,y2,h1(ξ(x,y2)),



(20)






Ah2≥g(x,y1)+Ψ(x,y1,h2(ξ(x,y1)).



(21)




Then (18) and (21) together with (17) imply


Eh1(x)−Ah2(x)<Γ(x,y1,h1(ξ(x,y1)))−Ψ(x,y1,h2(ξ(x,y1)))+λ≤Γ(x,y1,h1(ξ(x,y1)))−Ψ(x,y1,h2(ξ(x,y1)))+λ≤M(h1(x),h2(x))M(h1(x),h2(x)+1+λ.



(22)




Then (19) and (20) together with (17) imply


Ah2(x)−Eh1(x)≤Γ(x,y2,h1(ξ(x,y2))−Ψ(x,y2,h2(ξ(x,y2))+λ≤Γ(x,y2,h1(ξ(x,y2))−Ψ(x,y2,h2(ξ(x,y2))+λ≤M(h1(x),h2(x))M(h1(x),h2(x)+1+λ,



(23)




where


M((h1(x),h2(x))=max{d(h1(x),h2(x)),d(h1(x),Eh1(x)),d(h2(x),Ah2(x)),d(h1(t),Ah2(t))+d(h2(t),Eh1(t))2}.








From (22) and (23), we obtain


Eh1(x)−Ah2(x)≤M(h1(x),h2(x))M(h1(x),h2(x)+1



(24)




since λ>0 was taken as an arbitrary number. The inequality (24) implies


d(Eh1(x),Ah2(x))≤M(h1(x),h2(x))M(h1(x),h2(x)+1.








Taking ϕt=t,t>0 and ψt=tt+1,t>0, we get


ϕd(Eh1(x),Ah2(x))≤ψϕM(h1(x),h2(x)).








Therefore, all the conditions of Corollary 1 are immediately satisfied. Thus, E and A have a common fixed point h*∈B(W), that is, h*(x) is a unique, bounded and common solution of the system of functional Equations (15) and (16). □
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