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Abstract

:

In this paper, we introduce a multiple hybrid implicit iteration method for finding a solution for a monotone variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities, and a common fixed point problem of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces. Strong convergence of the proposed method to the unique solution of the problem is established under some suitable assumptions.
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1. Introduction


We suppose that H is a real Hilbert space. We use ⟨·,·⟩ to stand for the inner product and ∥·∥ the norm. We suppose that C is a convex closed nonempty set in the Hilbert space H, and PC is the well-known metric projection from the space H onto the set C. Here, we also suppose that T is a nonlinear self mapping defined in C. Let Fix(T) be the set of all fixed points of T, that is, Fix(T)={x∈C:x=Tx}. We use the notations → and ⇀ to indicate the norm convergence and the weak convergence, respectively. Now, we suppose that A:C→H is a nonlinear nonself mapping in C to H. The well-known classical variational inequality (VI), whose set of all solutions denoted by VI(C,A), is to find x*∈C such that


⟨Ax*,x−x*⟩≥0,∀x∈C.



(1)







A mapping T:C→C is said to be asymptotically nonexpansive if there exists a sequence {θn}⊂[0,+∞) with limn→∞θn=0 such that


∥Tnx−Tny∥≤∥x−y∥+θn∥x−y∥,∀n≥0,x,y∈C.



(2)







This mapping is Lipschitz continuous with the Lipschitz constant L>1. Fixed points of Lipschitz continuous mappings are a hot topic and have a lot of applications both in theoretical research, such as in differential equations, control theory, equilibrium problems, and in engineering applications; see References [1,2,3,4,5,6] and the references therein. In particular, T is said to be nonexpansive if |Tx−Ty∥≤∥x−y∥,∀x,y∈C, that is, θ≡1 for all n. Recently, the variational inequality problem (1) has been extensively studied via the iterative methods of Lipschitz continuous mappings, in particular, (asymptotically) nonexpansve mappings; see References [7,8,9,10,11,12] and the references therein.



We suppose that B1,B2:C→H are two nonlinear monotone mappings. We also suppose that μ1 and μ2 are two positive real constants. We consider the problem of finding (x*,y*)∈C×C such that


⟨μ1B1y*+x*−y*,x−x*⟩≥0,∀x∈C,⟨μ2B2x*+y*−x*,x−y*⟩≥0,∀x∈C.



(3)







Problem (3) is called a general system of variational inequalities (GSVI). From Reference [8], the GSVI (3) can be translated into a fixed point problem of a Lipschitz continuous nonlinear operator in the following way.



Lemma 1

([8]). We suppose that C is a convex subset in a Hilbert space H. Fix two elements x* and y* in C, (x*,y*) is a solution of GSVI (3) if and only if x*∈GSVI(C,B1,B2), where GSVI(C,B1,B2) is the fixed point set of the mapping G:=PC(I−μ1B1)PC(I−μ2B2), and y*=PC(I−μ2B2)x*.





The GSVI (3), which includes the variational inequality (1) as a special case, has been investigated via fixed-point algorithms recently in real or complex Hilbert spaces; see References [13,14,15,16,17,18] and the references therein.



A self mapping f:C→C is said to be a strict contraction on C if there is a number δ∈[0,1) such that ∥f(x)−f(y)∥≤δ∥x−y∥ for all x,y∈C. A nonself mapping F:C→H is called monotone if ⟨Fx−Fy,x−y⟩≥0∀x,y∈C. It is called η-strongly monotone if there is η>0 such that


η∥x−y∥2≤⟨Fx−Fy,x−y⟩,∀x,y∈C.











Moreover, it is called α-inverse-strongly monotone (or α-cocoercive) if there is a constant α>0 such that


α∥Fx−Fy∥2≤⟨Fx−Fy,x−y⟩,∀x,y∈C.











The class of inverse-strongly monotone operators or α-cocoercive operators has been in the spotlight of theoretical research and studied from the viewpoint of numerical computation and many results were obtained in Hilbert (and more generally, in Banach) spaces; see References [19,20,21,22,23,24] and the references therein.



Let X be a real Banach space whose dual space is denoted by X*. The well-known normalized duality operator J:X→2X* is defined by


J(x)={ψ∈X*:⟨x,ψ⟩=∥x∥2=∥ψ∥2},∀x∈X,








where ⟨·,·⟩ is the duality pairing between E and E*. A mapping T with domain D(T) and range R(T) in X is called pseudocontractive if the inequality holds


∥x−y+r((I−T)x−(I−T)y)∥≥∥x−y∥,∀x,y∈D(T),∀r>0.











Kato’s results [25] told us that the notion of pseudocontraction is equivalent to the one that for each x,y∈D(T), there exists j(x−y)∈J(x−y) such that


⟨Tx−Ty,j(x−y)⟩≤∥x−y∥2.











The purpose of this paper is act as a continuation of Reference [26], that is to introduce and analyze a multiple hybrid implicit iteration method for solving a monotone variational inequality with a variational inequality constraint for two inverse-strongly monotone mappings and a common fixed point problem (CFPP) of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces, which is called the triple hierarchical constrained variational inequality (THCVI). Here, the multiple hybrid implicit iteration method is based on the Moudafi’s viscosity approximation method, Korpelevich’s extragradient method, Mann’s mean method, and the hybrid steepest-descent method. Under some suitable assumptions, strong convergence of the proposed method to the unique solution of the THCVI is derived.




2. Preliminaries


Let {Tn}n=0∞ be a sequence of continuous pseudocontractive self-mappings on C. Then, {Tn}n=0∞ is said to be a countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings on C if there exists a constant ℓ>0 such that each Tn is ℓ-Lipschitz continuous. We fix an element x in H to see that there exists a unique nearest point in C, denoted by PCx, such that


∥x−PCx∥≤∥x−y∥,∀y∈C.











PC is called a metric projection of H onto C. It may be a set-valued operator. Further, C is assumed to be convex and closed, and X is assumed to be Hilbert, PC is, in such a situation, a single-valued operator.



We need the following propositions and lemmas to prove our main results.



Proposition 1

([27]). We suppose C is a convex closed subset of a Banach space X. Let S0,S1,… be a self-mapping sequence on C. Let ∑n=1∞sup{∥Snx−Sn−1x∥:x∈C}<∞. We conclude {Sny}, where y∈C, converges strongly to some point in C. Moreover, we assume S is a self mapping on C generated by Sy=limn→∞Sny for all y∈C. Therefore, limn→∞sup{∥Sx−Snx∥:x∈C}=0.





Proposition 2

([28]). We suppose C is a convex closed subset of a Banach space X and T is a continuous strong pseudocontraction self-mapping. Therefore, T enjoys fixed points. Indeed, it has a unique fixed point.





The following lemma is trivial.



Lemma 2.

In a real Hilbert space H, there holds the inequality


2⟨y+x,y⟩≥∥x+y∥2−∥x∥2,∀x,y∈H.













Lemma 3

([29]). We suppose that {an} is a nonnegative number sequence satisfying the restrictions


an+1≤an+λnγn−λnan,∀n≥0,








where {λn} and {γn} are sequences of real sequences such that 



(i) lim supn→∞γn≤0 or ∑n=0∞|λnγn|<∞;



(ii) {λn}⊂[0,1] and ∑n=0∞λn=∞, or equivalently,


limn→∞∏k=0n(1−λk)=0.











Hence, an→0 as n→∞.





The following lemma is a direct consequence of Yamada [30].



Lemma 4.

Let F:H→H be a κ-Lipschitzian and η-strongly monotone. We suppose λ is a positive real number in (0,1] and T:C→H is a nonexpansive nonself mapping, and we define the mapping Tλ:C→H by


Tλx:=Tx−λμF(Tx),∀x∈C.











If 0<μ<2ηκ2, then Tλ is a contraction operator, that is,


∥Tλx−Tλy∥≤(1−λτ)∥x−y∥,∀x,y∈C,








where τ=1−1−μ(2η−μκ2)∈(0,1].





Lemma 5

([31]). We suppose that the nonself mapping A:C→H is α-inverse-strongly monotone. Then, for a given λ≥0,


∥(I−λA)x−(I−λA)y∥2≤∥x−y∥2+λ(λ−2α)∥Ax−Ay∥2.











In particular, if 0≤λ≤2α, then I−λA is nonexpansive. Further, we suppose A:C→H is a monotone and hemicontinuous mapping. Then, the following hold: 



(i) VI(C,A)={x*∈C:⟨Ay,y−x*⟩≥0,∀y∈C};



(ii) VI(C,A)=Fix(PC(I−λA)) for all λ>0;



(iii) VI(C,A) consists of one point if A is strongly monotone and Lipschitz continuous.





Lemma 6

([8]). We suppose the nonself operators B1,B2:C→H are α-inverse-strongly monotone and β-inverse-strongly monotone, respectively. Let the self operator G:C→C be defined in G:=PC(I−μ1B1)PC(I−μ2B2). G:C→C is nonexpansive if 0≤μ1≤2α and 0≤μ2≤2β.





Lemma 7

([32]). We suppose the Banach space X enjoys a weakly continuous duality mapping, and C is a convex closed set in X. Let T:C→C be an asymptotically nonexpansive self mapping on C with a nonempty fixed point set. Then, I−T is demiclosed at zero, i.e., if {xn} is a sequence in C converging weakly to some x∈C and the sequence {(I−T)xn} converges strongly to zero, then (I−T)x=0, where I is the identity mapping of X.





Lemma 8

([33]). Let both {xn} and {hn} be a bounded sequence in a Banach space X. Let {βn}⊂(0,1) be a number sequence such that


0<lim infn→∞βn≤lim supn→∞βn<1.











Suppose that xn+1=βnxn+(1−βn)hn∀n≥0 and lim supn→∞(∥hn+1−hn∥−∥xn+1−xn∥)≤0. So, limn→∞∥hn−xn∥=0.






3. Main Results


Let C be a convex closed subset of a real Hilbert space H. Let B1,B2:C→H be monotone mappings, A−g:C→H be a monotone mapping with A,g:C→H, T:C→C be an asymptotically nonexpansive mapping, and {Sn}n=0∞ be a countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings defined on C. We suppose Ω:=⋂n=0∞Fix(Sn)∩GSVI(C,B1,B2)∩Fix(T)≠∅ and studied the variational inequality for monotone mapping A−g over the common solution set Ω of the GSVI (3) and the CFPP of {Sn}n=0∞ and T:


Findx¯∈VI(Ω,A−g):={x¯∈Ω:⟨(A−g)x¯,y−x¯⟩≥0∀y∈Ω}.











This section introduces the following monotone variational inequality problem with the inequality constraint over the common solution set of the GSVI (2) and the CFPP of T and {Sn}n=0∞, which is named the triple hierarchical constrained variational inequality:



Assume that



(C1) T:C→C is an asymptotically nonexpansive mapping with a sequence {θn};



(C2) {Sn}n=0∞ is a countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings on C;



(C3) B1,B2:C→H are α-inverse-strongly monotone and β-inverse-strongly monotone, respectively;



(C4) GSVI(C,B1,B2):=Fix(G) where G:=PC(I−μ1B1)PC(I−μ2B2) for μ1,μ2>0;



(C5) Ω:=⋂n=0∞Fix(Sn)∩GSVI(C,B1,B2)∩Fix(T)≠∅;



(C6) ∑n=1∞supx∈D∥Snx−Sn−1x∥<∞ for any bounded subset D of C;



(C7) S:C→C is the mapping defined by Sx=limn→∞Snx∀x∈C, such that Fix(S)=⋂n=0∞Fix(Sn);



(C8) g:C→H is l-Lipschitzian and A:C→H is ζ-inverse-strongly monotone such that A−g is monotone;



(C9) f:C→C is a contraction mapping with coefficient δ∈[0,1) and F:C→H is κ-Lipschitzian and η-strongly monotone;



(C10) VI(Ω,A−g)≠∅.



Problem 1.

The objective is to


findx*∈VI(VI(Ω,A−g),I−f):={x*∈VI(Ω,A−g):⟨(I−f)x*,v−x*⟩≥0,∀v∈VI(Ω,A−g)}.













Since the original problem is a variational inequality, in this paper, we call it a triple hierarchical constrained variational inequality. Since the mapping f is a contractive, we easily get that the solution of the problem is unique. Inspired by the results announced recently, we introduce the following multiple hybrid implicit iterative algorithm to find the solution of such a problem.








	Algorithm 1: Multiple hybrid implicit iterative algorithm.



	Step 0. Take {αn}n=0∞,{βn}n=0∞,{γn}n=0∞⊂(0,∞), and μ>0, choose x0∈C arbitrarily, and let n:=0.



	Step 1. Given xn∈C, compute xn+1∈C as


un=γnxn+(1−γn)Snun,vn=PC(un−μ2B2un),zn=PC(vn−μ1B1vn),yn=PC[αng(xn)+(I−αnA)zn],wn=PC[αnxn+(I−αnμF)Tnyn],xn+1=αnf(xn)+βnxn+(1−αn−βn)wn.



(4)







	Update n:=n+1 and go to Step 1.






We remark here that our algorithm is quite general. It includes mean-valued techniques, gradient techniques, and implicit iteration techniques. Our algorithm can also generate a strong convergence without any compact assumptions in infinite dimensional spaces.



We now state and prove the main result of this paper, that is, the following convergence analysis is presented for our Algorithm 1.



Theorem 1.

We suppose μ1∈(0,2α),μ2∈(0,2β), and l+δ<τ:=1−1−μ(2η−μκ2)∈(0,1] for μ∈(0,2ηκ2). Let number sequences {αn},{βn} and {γn} lie in (0,1] such that 



(i) limn→∞αn=0 and ∑n=0∞αn=∞;



(ii) limn→∞θnαn=0;



(iii) 0<lim infn→∞βn≤lim supn→∞βn<1 and αn+βn≤1∀n≥0;



(iv) 0<lim infn→∞γn≤lim supn→∞γn<1 and limn→∞|γn+1−γn|=0;



(v) limn→∞∥Tn+1yn−Tnyn∥=0. Then, we have the following conclusions:



(a) {xn}n=0∞ is bounded;



(b) limn→∞∥xn−yn∥=0 and limn→∞∥xn−wn∥=0;



(c) limn→∞∥xn−Gxn∥=0,limn→∞∥xn−Txn∥=0 and limn→∞∥xn−Sxn∥=0;



(d) If (∥xn−yn∥+∥xn−wn∥)=o(αn), then {xn}n=0∞ converges strongly to the unique solution of the Problem 1.





Proof. 

Observe that the metric projection PVI(Ω,A−g) is nonexpansive. Indeed, it is firmly nonexpansive. The mapping f is contractive. Thus, the composition mapping PVI(Ω,A−g)f is a contraction mapping and hence PVI(Ω,A−g)f has a unique fixed point. Say x*∈C, that is, x*=PVI(Ω,A−g)f(x*). By Lemma 5,


{x*}=Fix(PVI(Ω,A−g)f)=VI(VI(Ω,A−g),I−f).











Therefore, Problem 1 has a unique solution. Without loss of the generality, we can assume that {αn}⊂(0,2ζ] and {γn}⊂[a,b]⊂(0,1) for some a,b∈(0,1). By Lemma 6, we know that G is nonexpansive. It is easy to see that for each n≥0 there exists a unique element un∈C such that


un=γnxn+(1−γn)Snun.



(5)







Therefore, it can be seen that the multiple hybrid implicit iterative scheme (4) can be rewritten as


un=γnxn+(1−γn)Snun,zn=Gun,yn=PC[αng(xn)+(I−αnA)zn],xn+1=αnf(xn)+βnxn+(1−αn−βn)PC[αnxn+(I−αnμF)Tnyn],∀n≥0.



(6)







Next, we divide the rest of the proof into several steps.



Step 1. We prove {xn},{yn},{zn},{un},{vn},{Tnyn}, and {F(Tnyn)} are bounded. Indeed, We can take an element p∈Ω=⋂n=0∞Fix(Sn)∩GSVI(C,B1,B2)∩Fix(T) arbitrarily. Then, we have Snp=p, Gp=p and Tp=p. Since Sn:C→C is a pseudocontraction self mapping, one can show that


∥un−p∥≤∥xn−p∥,∀n≥0.



(7)







Hence, we get


∥zn−p∥=∥Gun−p∥≤∥un−p∥≤∥xn−p∥.



(8)







Since limn→∞αn=0 and 1>lim supn→∞βn≥lim infn→∞βn>0, we may assume that {αn+βn} is a set in [c,d]. Here, c,d∈(0,1). In addition, since limn→∞θnαn=0, we may further assume that


θn(1+αnl)≤αn(τ−l−δ)2(≤αn(τ−l−δ)).











From Lemma 5 and (8), we can prove that


∥yn−p∥≤∥(I−αnA)zn−(I−αnA)p+αn(g(xn)−Ap)∥≤∥zn−p∥+αn∥g(xn)−Ap∥≤(1+αnl)∥xn−p∥+αn∥g(p)−Ap∥.



(9)







We have from (6) and using Lemma 4 and (9) that


∥xn+1−p∥≤αn∥f(xn)−p∥+βn∥xn−p∥+(1−αn−βn)∥PC[αnxn+(I−αnμF)Tnyn]−p∥≤αn∥f(xn)−f(p)+f(p)−p∥+βn∥xn−p∥+(1−αn−βn)∥αn(xn−p)+(I−αnμF)Tnyn−(I−αnμF)p+αn(I−μF)p∥≤(αnδ+βn)∥xn−p∥+αn∥f(p)−p∥+(1−αn−βn)[αn∥xn−p∥+(1−αnτ)(1+θn)∥yn−p∥+αn∥(I−μF)p∥]≤(αnδ+βn)∥xn−p∥+αn∥f(p)−p∥+(1−αn−βn)[αn∥xn−p∥+(1−αnτ+θn)∥yn−p∥+αn∥(I−μF)p∥]≤(αnδ+βn)∥xn−p∥+αn∥f(p)−p∥+(1−αn−βn){αn∥xn−p∥+(1−αnτ)[(1+αnl)∥xn−p∥+αn∥g(p)−Ap∥]+θn[(1+αnl)∥xn−p∥+αn∥g(p)−Ap∥]+αn∥(I−μF)p∥}≤(αnδ+βn)∥xn−p∥+αn∥f(p)−p∥+(1−αn−βn){αn∥xn−p∥+[1−αn(τ−l)]∥xn−p∥+(1−αnτ)αn∥g(p)−Ap∥+θn(1+αnl)∥xn−p∥+αn2τ∥g(p)−Ap∥}+αn∥(I−μF)p∥≤(αnδ+βn)∥xn−p∥+αn∥f(p)−p∥+(1−αn−βn)[αn+1−αn(τ−l)]∥xn−p∥+αn∥g(p)−Ap∥+θn(1+αnl)∥xn−p∥+αn∥(I−μF)p∥={1−αn(τ−l−δ)−(αn+βn)αn[1−(τ−l)]}∥xn−p∥+θn(1+αnl)∥xn−p∥+αn(∥f(p)−p∥+∥g(p)−Ap∥+∥(I−μF)p∥)≤[1−αn(τ−l−δ)]∥xn−p∥+αn(τ−l−δ)2∥xn−p∥+αn(∥f(p)−p∥+∥g(p)−Ap∥+∥(I−μF)p∥)=[1−αn(τ−l−δ)2]∥xn−p∥+αn(τ−l−δ)2·2(∥f(p)−p∥+∥g(p)−Ap∥+∥(I−μF)p∥)τ−l−δ≤max{∥xn−p∥,2(∥f(p)−p∥+∥g(p)−Ap∥+∥(I−μF)p∥)τ−l−δ}.











By induction, we have


∥xn+1−p∥≤max{2(∥p−f(p)∥+∥Ap−g(p)∥+∥(I−μF)p∥)τ−l−δ,∥p−x0∥},∀n≥0.











Thus, {xn} is a bounded sequence, and so are the sequences {yn},{zn},{un},{Tnyn}, and {F(Tnyn)}. Since {Sn} is ℓ-uniformly Lipschitzian on C, we know that


∥Snun∥≤∥Snun−p∥+∥p∥≤ℓ∥un−p∥+∥p∥,








which implies that the set {Snun} is bounded. Additionally, from Lemma 1 and p∈Ω⊂GSVI(C,B1,B2), it follows that (p,q) is a solution of the GSVI (3), where q=PC(I−μ2B2)p. Noting that vn=PC(I−μ2B2)un for all n≥0, by Lemma 5, we have


∥vn∥≤∥PC(I−μ2B2)un−q∥+∥q∥=∥PC(I−μ2B2)un−PC(I−μ2B2)q∥+∥q∥≤∥un−q∥+∥q∥,








which shows that {vn} also is bounded.



Step 2. We prove that ∥xn+1−xn∥→0 and ∥yn+1−yn∥→0 as n→∞. Indeed, we set


xn+1=βnxn+(1−βn)hn








and notice


wn=PC[(I−αnμF)Tnyn+αnxn].











Then,


hn=αn1−βnf(xn)+(1−αn1−βn)PC[αnxn+(I−αnμF)Tnyn].











Simple calculations show that


hn+1−hn=αn+11−βn+1(f(xn+1)−f(xn))+(1−αn+11−βn+1){PC[αn+1xn+1+(I−αn+1μF)Tn+1yn+1]−PC[αnxn+(I−αnμF)Tnyn)}+(αn+11−βn+1−αn1−βn)(f(xn)−wn).











It follows from (6) that


∥hn+1−hn∥≤αn+11−βn+1∥f(xn)−f(xn+1)∥+(1−αn+11−βn+1)∥PC[αn+1xn+1+(I−αn+1μF)Tn+1yn+1]−PC[αnxn+(I−αnμF)Tnyn]∥+|αn+11−βn+1−αn1−βn|∥wn−f(xn)∥≤αn+1δ1−βn+1∥xn−xn+1∥+(1−αn+11−βn+1)∥Tn+1yn+1−Tn+1yn+Tn+1yn−Tnyn+αn+1(xn+1−μF(Tn+1yn+1))−αn(xn−μF(Tnyn))∥+|αn+11−βn+1−αn1−βn|∥f(xn)−Tnyn−αn(xn−μF(Tnyn))∥≤αn+1δ1−βn+1∥xn+1−xn∥+(1−αn+11−βn+1)(1+θn+1)∥yn+1−yn∥+∥Tnyn−Tn+1yn∥+αn+1∥xn+1−μF(Tn+1yn+1)∥+αn∥xn−μF(Tnyn)∥+|αn+11−βn+1−αn1−βn|∥f(xn)−Tnyn−αn(xn−μF(Tnyn))∥≤∥yn+1−yn∥+θn+1∥yn−yn+1∥+αn+1δ1−βn+1∥xn+1−xn∥+∥Tn+1yn−Tnyn∥+αn+1∥xn+1−μF(Tn+1yn+1)∥+αn∥xn−μF(Tnyn)∥+|αn+11−βn+1−αn1−βn|∥f(xn)−Tnyn−αn(xn−μF(Tnyn))∥.



(10)







Since {αn}⊂(0,2ζ] and A is ζ-inverse-strongly monotone, by Lemma 5, we obtain


∥yn+1−yn∥=∥PC[αng(xn)+(I−αnA)zn]−PC[αn+1g(xn+1)+(I−αn+1A)zn+1]∥≤∥(I−αn+1A)zn+1−(I−αnA)zn+αn+1g(xn+1)−αng(xn)∥=∥(I−αn+1A)zn+1−(I−αn+1A)zn+(αn−αn+1)Azn+αn+1g(xn+1)−αng(xn)∥≤∥(I−αn+1A)zn+1−(I−αn+1A)zn∥+|αn−αn+1|∥Azn∥+∥αn+1g(xn+1)−αng(xn)∥≤∥zn+1−zn∥+|αn−αn+1|∥Azn∥+αn+1∥g(xn+1)∥+αn∥g(xn)∥≤∥un+1−un∥+∥Azn∥|αn−αn+1|+αn+1∥g(xn+1)∥+αn∥g(xn)∥.



(11)







Furthermore, simple calculations show that


un+1−un=γn+1(xn+1−xn)+(1−γn+1)(Sn+1un+1−Snun)+(γn+1−γn)(xn−Snun),








which hence yields


∥un+1−un∥2=γn+1⟨xn+1−xn,un+1−un⟩+(1−γn+1)⟨Sn+1un+1−Snun,un+1−un⟩+(γn+1−γn)⟨xn−Snun,un+1−un⟩=γn+1⟨xn+1−xn,un+1−un⟩+(1−γn+1)[⟨Sn+1un+1−Snun+1,un+1−un⟩+⟨Snun+1−Snun,un+1−un⟩]+(γn+1−γn)⟨xn−Snun,un+1−un⟩≤γn+1∥xn+1−xn∥∥un+1−un∥+(1−γn+1)[∥Sn+1un+1−Snun+1∥∥un+1−un∥+∥un+1−un∥2]+|γn+1−γn|∥xn−Snun∥∥un+1−un∥.











So it follows that


∥un+1−un∥≤γn+1∥xn+1−xn∥+(1−γn+1)[∥Sn+1un+1−Snun+1∥+∥un+1−un∥]+|γn+1−γn|∥xn−Snun∥,








which immediately leads to


∥un+1−un∥≤∥xn+1−xn∥+1−γn+1γn+1∥Sn+1un+1−Snun+1∥+|γn+1−γn|∥xn−Snun∥γn+1≤∥xn+1−xn∥+1a∥Sn+1un+1−Snun+1∥+|γn+1−γn|∥xn−Snun∥a.



(12)







Put D={un:n≥0}. Since {un} is a bounded sequence, we know that D is a bounded set. Then, by the assumption of this theorem, we get


∑n=0∞supx∈D∥Sn+1x−Snx∥<∞.











Noticing that


∥Sn+1un+1−Snun+1∥≤supx∈D∥Sn+1x−Snx∥,∀n≥0,








we have


∑n=0∞∥Sn+1un+1−Snun+1∥<∞.



(13)







Therefore, from (10)–(12) we deduce that


∥hn+1−hn∥≤θn+1∥yn+1−yn∥+αn+1δ1−βn+1∥xn+1−xn∥+∥Tn+1yn−Tnyn∥+∥yn+1−yn∥+αn+1∥xn+1−μF(Tn+1yn+1)∥+αn∥xn−μF(Tnyn)∥+|αn+11−βn+1−αn1−βn|∥f(xn)−Tnyn−αn(xn−μF(Tnyn))∥≤∥un+1−un∥+|αn−αn+1|∥Azn∥+αn+1∥g(xn+1)∥+αn∥g(xn)∥+θn+1∥yn+1−yn∥+αn+1δ1−βn+1∥xn+1−xn∥+∥Tn+1yn−Tnyn∥+αn+1∥xn+1−μF(Tn+1yn+1)∥+αn∥xn−μF(Tnyn)∥+|αn+11−βn+1−αn1−βn|∥f(xn)−Tnyn−αn(xn−μF(Tnyn))∥≤∥xn+1−xn∥+1a∥Sn+1un+1−Snun+1∥+|γn+1−γn|∥xn−Snun∥a+|αn−αn+1|∥Azn∥+αn+1∥g(xn+1)∥+αn∥g(xn)∥+θn+1∥yn+1−yn∥+αn+1δ1−βn+1∥xn+1−xn∥+∥Tn+1yn−Tnyn∥+αn+1∥xn+1−μF(Tn+1yn+1)∥+αn∥xn−μF(Tnyn)∥+|αn+11−βn+1−αn1−βn|∥f(xn)−Tnyn−αn(xn−μF(Tnyn))∥,








which immediately attains


∥hn+1−hn∥−∥xn+1−xn∥≤1a∥Sn+1un+1−Snun+1∥+|γn+1−γn|∥xn−Snun∥a+|αn−αn+1|∥Azn∥+αn+1∥g(xn+1)∥+αn∥g(xn)∥+θn+1∥yn+1−yn∥+αn+1δ1−βn+1∥xn+1−xn∥+∥Tn+1yn−Tnyn∥+αn+1∥xn+1−μF(Tn+1yn+1)∥+αn∥xn−μF(Tnyn)∥+|αn+11−βn+1−αn1−βn|∥f(xn)−Tnyn−αn(xn−μF(Tnyn))∥.



(14)







Since limn→∞θn=0 and limn→∞∥Tn+1yn−Tnyn∥=0 (due to condition (v)), from (13) and conditions (i), (iii), (iv), it follows that


lim supn→∞(∥hn+1−hn∥−∥xn+1−xn∥)≤0.











Hence, by condition (iii) and Lemma 8, we get limn→∞∥hn−xn∥=0. Consequently,


limn→∞∥xn+1−xn∥=limn→∞(1−βn)∥hn−xn∥=0.



(15)







Again from (11) and (12), we conclude that


∥yn+1−yn∥≤∥un+1−un∥+|αn−αn+1|∥Azn∥+αn+1∥g(xn+1)∥+αn∥g(xn)∥≤∥xn+1−xn∥+1a∥Sn+1un+1−Snun+1∥+|γn+1−γn|∥xn−Snun∥a+|αn−αn+1|∥Azn∥+αn+1∥g(xn+1)∥+αn∥g(xn)∥→0(n→∞),








and


∥zn−zn+1∥=∥Gun−Gun+1∥≤∥un−un+1∥→0(n→∞).











Thus,


limn→∞∥yn−yn+1∥=0,limn→∞∥un−un+1∥=0andlimn→∞∥zn−zn+1∥=0.











Step 3. We prove ∥xn−Gxn∥→0 as n→∞. Indeed, noticing wn=PC[(I−αnμF)Tnyn+αnxn] for all n≥0, we have


⟨(I−αnμF)Tnyn+αnxn−PC[αnxn+(I−αnμF)Tnyn],p−wn⟩≤0.



(16)







From (16), we have


∥wn−p∥2=⟨PC[(I−αnμF)Tnyn+αnxn]−p,wn−p⟩=⟨PC[(I−αnμF)Tnyn+αnxn]−αnxn−(I−αnμF)Tnyn,wn−p⟩+⟨αnxn+(I−αnμF)Tnyn−p,wn−p⟩≤⟨αnxn+(I−αnμF)Tnyn−p,wn−p⟩=⟨(I−αnμF)Tnyn−(I−αnμF)p,wn−p⟩+αn⟨xn−μFp,wn−p⟩≤(1−αnτ)∥Tnyn−p∥∥wn−p∥+αn⟨xn−μFp,wn−p⟩≤12(1−αnτ)2∥Tnyn−p∥2+12∥wn−p∥2+αn⟨xn−μFp,wn−p⟩.











Hence, we have


∥wn−p∥2≤(1−αnτ)2∥Tnyn−p∥2+2αn⟨xn−μFp,wn−p⟩≤(1−αnτ)(1+θn)2∥yn−p∥2+2αn⟨xn−μFp,wn−p⟩=(1−αnτ)[∥yn−p∥2+θn(2+θn)∥yn−p∥2]+2αn⟨xn−μFp,wn−p⟩≤(1−αnτ)∥yn−p∥2+θn(2+θn)∥yn−p∥2+2αn⟨xn−μFp,wn−p⟩.



(17)







From (9) and (17), we get


∥xn+1−p∥2=∥βn(xn−p)+αn(f(xn)−f(p))+(1−αn−βn)(wn−p)+αn(f(p)−p)∥2≤∥βn(xn−p)+αn(f(xn)−f(p))+(1−αn−βn)(wn−p)∥2+2αn⟨f(p)−p,xn+1−p⟩≤αn∥f(xn)−f(p)∥2+βn∥xn−p∥2+(1−αn−βn)∥wn−p∥2+2αn⟨f(p)−p,xn+1−p⟩≤αnδ∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn)[(1−αnτ)∥yn−p∥2+θn(2+θn)∥yn−p∥2+2αn⟨xn−μFp,wn−p⟩]+2αn⟨f(p)−p,xn+1−p⟩≤αnδ∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn){(1−αnτ)(∥zn−p∥+αn∥g(xn)−Ap∥)2+θn(2+θn)∥yn−p∥2+2αn⟨xn−μFp,wn−p⟩}+2αn⟨f(p)−p,xn+1−p⟩≤αnδ∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn){(1−αnτ)∥zn−p∥2+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn⟨xn−μFp,wn−p⟩}+2αn⟨f(p)−p,xn+1−p⟩≤αnδ∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn)(1−αnτ)∥zn−p∥2+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥.



(18)







We now note that q=PC(p−μ2B2p),vn=PC(un−μ2B2un), and zn=PC(vn−μ1B1vn). Then, zn=Gun. By Lemma 5, we have


∥vn−q∥2=∥PC(un−μ2B2un)−PC(p−μ2B2p)∥2≤∥un−p−μ2(B2un−B2p)∥2≤∥un−p∥2−μ2(2β−μ2)∥B2un−B2p∥2



(19)




and


∥zn−p∥2=∥PC(vn−μ1B1vn)−PC(q−μ1B1q)∥2≤∥vn−q−μ1(B1vn−B1q)∥2≤∥vn−q∥2−μ1(2α−μ1)∥B1vn−B1q∥2.



(20)







Substituting (19) for (20), we obtain from (7) that


∥zn−p∥2≤∥un−p∥2−μ2(2β−μ2)∥B2un−B2p∥2−μ1(2α−μ1)∥B1vn−B1q∥2≤∥xn−p∥2−μ2(2β−μ2)∥B2un−B2p∥2−μ1(2α−μ1)∥B1vn−B1q∥2.



(21)







Combining (18) and (21), we get


∥xn+1−p∥2≤αnδ∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn)(1−αnτ)∥zn−p∥2+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥≤αn∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn)(1−αnτ)[∥xn−p∥2−μ2(2β−μ2)∥B2un−B2p∥2−μ1(2α−μ1)∥B1vn−B1q∥2]+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥=[1−αn(1−αn−βn)τ]∥xn−p∥2−(1−αn−βn)(1−αnτ)[μ2(2β−μ2)∥B2un−B2p∥2+μ1(2α−μ1)∥B1vn−B1q∥2]+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥≤∥xn−p∥2−(1−αn−βn)(1−αnτ)[μ2(2β−μ2)∥B2un−B2p∥2+μ1(2α−μ1)∥B1vn−B1q∥2]+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥,








which immediately yields


(1−αn−βn)(1−αnτ)[μ2(2β−μ2)∥B2un−B2p∥2+μ1(2α−μ1)∥B1vn−B1q∥2]≤∥xn−p∥2−∥xn+1−p∥2+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥≤(∥xn−p∥+∥xn+1−p∥)∥xn−xn+1∥+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥.








(1−αn−βn)(1−αnτ)[μ2(2β−μ2)∥B2un−B2p∥2+μ1(2α−μ1)∥B1vn−B1q∥2]→0 as n→∞. Since lim infn→∞(1−αn−βn)>0 (due to condition (iii)), μ1∈(0,2α),μ2∈(0,2β),limn→∞θn=0 and limn→∞αn=0, we obtain from (15) that


limn→∞∥B2un−B2p∥=0andlimn→∞∥B1vn−B1q∥=0.



(22)







On the other hand, we have


∥vn−q∥2=∥PC(un−μ2B2un)−PC(p−μ2B2p)∥2≤⟨un−μ2B2un−(p−μ2B2p),vn−q⟩=⟨un−p,vn−q⟩+μ2⟨B2p−B2un,vn−q⟩≤12[∥un−p∥2+∥vn−q∥2−∥un−vn−(p−q)∥2]+μ2∥B2p−B2un∥∥vn−q∥,








which implies that


∥vn−q∥2≤∥un−p∥2−∥un−vn−(p−q)∥2+2μ2∥B2p−B2un∥∥vn−q∥.



(23)







In the same way, we derive


∥zn−p∥2=∥PC(vn−μ1B1vn)−PC(q−μ1B1q)∥2≤⟨vn−μ1B1vn−(q−μ1B1q),zn−p⟩=⟨vn−q,zn−p⟩+μ1⟨B1q−B1vn,zn−p⟩≤12[∥vn−q∥2+∥zn−p∥2−∥vn−zn+(p−q)∥2]+μ1∥B1q−B1vn∥∥zn−p∥,








which implies that


∥zn−p∥2≤∥vn−q∥2−∥vn−zn+(p−q)∥2+2μ1∥B1q−B1vn∥∥zn−p∥.



(24)







Substituting (23) for (24), we deduce from (7) that


∥zn−p∥2≤∥un−p∥2−∥un−vn−(p−q)∥2−∥vn−zn+(p−q)∥2+2μ2∥B2p−B2un∥∥vn−q∥+2μ1∥B1q−B1vn∥∥zn−p∥≤∥xn−p∥2−∥un−vn−(p−q)∥2−∥vn−zn+(p−q)∥2+2μ2∥B2p−B2un∥∥vn−q∥+2μ1∥B1q−B1vn∥∥zn−p∥.



(25)







Combining (18) and (25), we have


∥xn+1−p∥2≤αnδ∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn)(1−αnτ)∥zn−p∥2+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥≤αn∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn)(1−αnτ)[∥xn−p∥2−∥un−vn−(p−q)∥2−∥vn−zn+(p−q)∥2+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥]+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥=[1−αn(1−αn−βn)τ]∥xn−p∥2−(1−αn−βn)(1−αnτ)[∥un−vn−(p−q)∥2+∥vn−zn+(p−q)∥2]+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥≤∥xn−p∥2−(1−αn−βn)(1−αnτ)[∥un−vn−(p−q)∥2+∥vn−zn+(p−q)∥2]+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥+αn∥g(xn)−Ap∥×(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥,








which hence yields


(1−αn−βn)(1−αnτ)[∥un−vn−(p−q)∥2+∥vn−zn+(p−q)∥2]≤∥xn−p∥2−∥xn+1−p∥2+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥≤(∥xn−p∥+∥xn+1−p∥)∥xn−xn+1∥+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥.











Since lim infn→∞(1−αn−βn)>0 (due to condition (iii)), limn→∞θn=0 and limn→∞αn=0, we conclude from (15) and (22) that


limn→∞∥un−vn−(p−q)∥=0andlimn→∞∥vn−zn+(p−q)∥=0.



(26)







It follows that


∥un−zn∥≤∥un−vn−(p−q)∥+∥vn−zn+(p−q)∥→0(n→∞).











That is,


limn→∞∥un−Gun∥=limn→∞∥un−zn∥=0.



(27)







Additionally, according to (6), we have


∥un−p∥2=γn⟨xn−p,un−p⟩+(1−γn)⟨Snun−p,un−p⟩≤γn⟨xn−p,un−p⟩+(1−γn)∥un−p∥2,








which implicitly yields that


2∥un−p∥2≤2⟨xn−p,un−p⟩=∥xn−p∥2−∥xn−un∥2+∥un−p∥2.











This immediately implies that


∥un−p∥2≤∥xn−p∥2−∥xn−un∥2,








which together with (3.16), yields


∥xn+1−p∥2≤αnδ∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn)(1−αnτ)∥zn−p∥2+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥≤αn∥xn−p∥2+βn∥xn−p∥2+(1−αn−βn)(1−αnτ)[∥xn−p∥2−∥xn−un∥2]+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥=[1−αn(1−αn−βn)τ]∥xn−p∥2−(1−αn−βn)(1−αnτ)∥xn−un∥2+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥≤∥xn−p∥2+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥−(1−αn−βn)(1−αnτ)∥xn−un∥2.











Hence, we have


(1−αn−βn)(1−αnτ)∥xn−un∥2≤∥xn−p∥2−∥xn+1−p∥2+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥≤(∥xn−p∥+∥xn+1−p∥)∥xn−xn+1∥+αn∥g(xn)−Ap∥(2∥zn−p∥+αn∥g(xn)−Ap∥)+θn(2+θn)∥yn−p∥2+2αn∥xn−μFp∥∥wn−p∥+2αn∥f(p)−p∥∥xn+1−p∥.











Since lim infn→∞(1−αn−βn)>0, limn→∞θn=0 and limn→∞αn=0, we obtain from (15) that


limn→∞∥xn−un∥=0.



(28)







Moreover, observe that


∥xn−zn∥≤∥xn−un∥+∥Gun−un∥,










∥xn−Gxn∥≤∥xn−zn∥+∥Gun−Gxn∥≤∥xn−zn∥+∥un−xn∥,








and


∥xn−yn∥≤∥xn−αng(xn)−(I−αnA)zn∥≤∥xn−zn∥+αn∥g(xn)−Azn∥.











Then, from (27) and (28), it follows that


limn→∞∥xn−zn∥=0,limn→∞∥xn−Gxn∥=0andlimn→∞∥xn−yn∥=0.



(29)







Step 4. Let us prove ∥xn−Snxn∥→0,∥xn−wn∥→0 and ∥xn−Txn∥→0 as n→∞. Indeed, combining (5) and (8), we obtain that


∥Snun−un∥=γn1−γn∥xn−un∥≤b1−b∥xn−un∥→0(n→∞).











That is,


limn→∞∥Snun−un∥=0.



(30)







Observe {Sn}n=0∞ is ℓ-uniformly Lipschitzian. We further get from (28) and (30) that


∥Snxn−xn∥≤∥Snxn−Snun∥+∥Snun−un∥+∥un−xn∥≤ℓ∥xn−un∥+∥Snun−un∥+∥un−xn∥=(ℓ+1)∥xn−un∥+∥Snun−un∥→0(n→∞).











That is,


limn→∞∥xn−Snxn∥=0.



(31)







We note that {αn+βn}⊂[c,d]⊂(0,1) for some c,d∈(0,1), and observe that


∥xn−Tnyn∥≤∥xn−xn+1∥+∥xn+1−Tnyn∥≤∥xn−xn+1∥+αn∥f(xn)−Tnyn∥+βn∥xn−Tnyn∥+(1−αn−βn)∥PC[αnxn+(I−αnμF)Tnyn]−Tnyn∥≤∥xn−xn+1∥+αn∥f(xn)−Tnyn∥+βn∥xn−Tnyn∥+αn∥xn−μF(Tnyn)∥.











Then,


∥xn−Tnyn∥≤11−βn{∥xn−xn+1∥+αn(∥f(xn)−Tnyn∥+∥xn−μF(Tnyn)∥)}≤11−d{∥xn−xn+1∥+αn(∥f(xn)−Tnyn∥+∥xn−μF(Tnyn)∥)}.











Hence, we get


∥yn−Tnyn∥≤∥yn−xn∥+∥xn−Tnyn∥≤∥yn−xn∥+11−d{∥xn−xn+1∥+αn(∥f(xn)−Tnyn∥+∥xn−μF(Tnyn)∥)}.











Consequently, from (15), (29) and limn→∞αn=0, we obtain that


limn→∞∥xn−Tnyn∥=0andlimn→∞∥yn−Tnyn∥=0.



(32)







So it follows that


∥xn−wn∥≤∥xn−αnxn−(I−αnμF)Tnyn∥≤∥xn−Tnyn∥+αn∥xn−μF(Tnyn)∥→0(n→∞).











That is,


limn→∞∥xn−wn∥=0.



(33)







We also note that


∥yn−Tyn∥≤∥yn−Tnyn∥+∥Tnyn−Tn+1yn∥+∥Tn+1yn−Tyn∥≤∥yn−Tnyn∥+∥Tnyn−Tn+1yn∥+(1+θ1)∥Tnyn−yn∥=∥Tnyn−Tn+1yn∥+(2+θ1)∥Tnyn−yn∥.











By the condition (v) and (32), we get


limn→∞∥yn−Tyn∥=0.











Further, noticing that


∥xn−Txn∥≤∥xn−yn∥+∥yn−Tyn∥+∥Tyn−Txn∥≤∥yn−Tyn∥+(2+θ1)∥xn−yn∥,








we deduce from (29) that


limn→∞∥xn−Txn∥=0.



(34)







Step 5. Set S¯:=(2I−S)−1. We aim to prove ∥xn−S¯xn∥→0 as n→∞. We show that S:C→C is pseudocontractive and ℓ-Lipschitzian such that limn→∞∥Sxn−xn∥=0, where Sx=limn→∞Snx∀x∈C. Observe that for all x,y∈C, limn→∞∥Snx−Sx∥=0 and limn→∞∥Sny−Sy∥=0. Since each Sn is a pseudocontractive operator, we get


⟨Sx−Sy,x−y⟩=limn→∞⟨Snx−Sny,x−y⟩≤∥x−y∥2.











This presents that S is pseudocontractive. Note that {Sn}n=0∞ is ℓ-uniformly Lipschitzian


∥Sx−Sy∥=limn→∞∥Snx−Sny∥≤ℓ∥x−y∥,∀x,y∈C.











This means that S is ℓ-Lipschitzian. Since the boundedness of {xn} and putting D=conv¯{xn:n≥0} (the closure of convex hull of the set {xn:n≥0}), we have ∑n=1∞supx∈D∥Snx−Sn−1x∥<∞. Hence, by Proposition 1, we get


limn→∞∥Snxn−Sxn∥=0.



(35)







Thus, combining (31) with (35) we have


∥xn−Sxn∥≤∥xn−Snxn∥+∥Snxn−Sxn∥→0(n→∞).











That is,


limn→∞∥xn−Sxn∥=0.



(36)







Define S¯:=(2I−S)−1. S¯:C→C is nonexpansive, Fix(S¯)=Fix(S)=⋂n=0∞Fix(Sn) and limn→∞∥xn−S¯xn∥=0. Indeed, put S¯:=(2I−S)−1, where I is the identity mapping of H. Then, S¯ is nonexpansive and the fixed point set Fix(S¯)=Fix(S)=⋂n=0∞Fix(Sn). Observe that


∥xn−S¯xn∥=∥S¯S¯−1xn−S¯xn∥≤∥S¯−1xn−xn∥=∥xn−Sxn∥.











From (36), it follows that


limn→∞∥xn−S¯xn∥=0.



(37)







Step 6. We aim to present


lim supn→∞⟨(I−f)x*,x*−xn⟩≤0,



(38)




where {x*}=VI(VI(Ω,A−g),I−f). Indeed, we choose a subsequence {xni} of {xn} such that


limi→∞⟨(I−f)x*,x*−xni⟩=lim supn→∞⟨(I−f)x*,x*−xn⟩.











We suppose a subsequence xni⇀x¯∈C. Observe that G and S¯ have the nonexpansivity and that T has the asymptotically nonexpansivity. Since (I−G)xn→0,(I−T)xn→0 and (I−S¯)xn→0, by Lemma 7, we have that x¯∈Fix(G)=GSVI(C,B1,B2),x¯∈Fix(T) and x¯∈Fix(S¯)=⋂n=0∞Fix(Sn). Then, x¯∈Ω=⋂n=0∞Fix(Sn)∩GSVI(C,B1,B2)∩Fix(T). We present that x¯∈VI(Ω,A−g). As a fact, let y∈Ω be a arbitrarily fixed point. Then, it follows from (6), (8), and the monotonicity of A−g that


∥yn−y∥2≤∥(zn−y)−αn(Azn−g(xn))∥2=∥zn−y∥2+2αn⟨Azn−g(xn),y−zn⟩+αn2∥Azn−g(xn)∥2≤∥xn−y∥2+2αn⟨Azn−g(zn),y−zn⟩+2αnl∥zn−xn∥∥y−zn∥+αn2∥Azn−g(xn)∥2≤∥xn−y∥2+2αn⟨Ay−g(y),y−zn⟩+2αnl∥zn−xn∥∥y−zn∥+αn2∥Azn−g(xn)∥2,








which implies that, for all n≥0,


0≤∥xn−y∥2−∥yn−y∥2αn+2⟨(A−g)y,y−zn⟩+2l∥zn−xn∥∥y−zn∥+αn∥Azn−g(xn)∥2≤(∥xn−y∥+∥yn−y∥)∥xn−yn∥αn+2⟨(A−g)y,y−zn⟩+2l∥zn−xn∥∥y−zn∥+αn∥Azn−g(xn)∥2.











From (29), it is easy to see that xni⇀x¯ leads to zni⇀x¯. Since limn→∞αn=0 and ∥xn−yn∥=o(αn) (due to the assumption), we have


0≤lim infn→∞{(∥xn−y∥+∥yn−y∥)∥xn−yn∥αn+2⟨(A−g)y,y−zn⟩+2l∥zn−xn∥∥y−zn∥+αn∥Azn−g(xn)∥2}=lim infn→∞2⟨(A−g)y,y−zn⟩≤limi→∞2⟨(A−g)y,y−zni⟩=2⟨(A−g)y,y−x¯⟩.











It follows that


⟨(A−g)y,y−x¯⟩≥0,∀y∈Ω.











Accordingly, Lemma 5 and the Lipschitz continuity and monotonicity of A−g grant that


⟨(A−g)x¯,y−x¯⟩≥0,∀y∈Ω;








that is, x¯∈VI(Ω,A−g). Consequently, from {x*}=VI(VI(Ω,A−g),I−f), we have


lim supn→∞⟨(I−f)x*,x*−xn⟩=limi→∞⟨(I−f)x*,x*−xni⟩=⟨(I−f)x*,x*−x¯⟩≤0.



(39)







Step 7. Finally, we prove xn→x* as n→∞. Indeed, from (4) we get


∥xn+1−x*∥2=βn⟨xn−x*,xn+1−x*⟩+αn⟨f(xn)−x*,xn+1−x*⟩+(1−αn−βn)⟨wn−x*,xn+1−x*⟩=αn[⟨f(xn)−f(x*),xn+1−x*⟩+⟨f(x*)−x*,xn+1−xn⟩+⟨f(x*)−x*,xn−x*⟩]+βn⟨xn−x*,xn+1−x*⟩+(1−αn−βn)[⟨wn−xn,xn+1−x*⟩+⟨xn−x*,xn+1−x*⟩]≤αn[δ∥xn−x*∥∥xn+1−x*∥+∥f(x*)−x*∥∥xn+1−xn∥+⟨f(x*)−x*,xn−x*⟩]+βn∥xn−x*∥∥xn+1−x*∥+∥wn−xn∥∥xn+1−x*∥+(1−αn−βn)∥xn−x*∥∥xn+1−x*∥≤[1−αn(1−δ)]∥xn−x*∥∥xn+1−x*∥+αn∥f(x*)−x*∥∥xn+1−xn∥+αn⟨f(x*)−x*,xn−x*⟩+∥wn−xn∥∥xn+1−x*∥≤[1−αn(1−δ)]22∥xn−x*∥2+12∥xn+1−x*∥2+αn∥f(x*)−x*∥∥xn+1−xn∥+αn⟨f(x*)−x*,xn−x*⟩+∥wn−xn∥∥xn+1−x*∥,








which immediately yields


∥xn+1−x*∥2≤2αn∥f(x*)−x*∥∥xn+1−xn∥+[1−αn(1−δ)]2∥xn−x*∥2+2αn⟨f(x*)−x*,xn−x*⟩+2∥wn−xn∥∥xn+1−x*∥≤[1−αn(1−δ)]∥xn−x*∥2+αn(1−δ)·21−δ{∥f(x*)−x*∥∥xn+1−xn∥+⟨f(x*)−x*,xn−x*⟩+∥wn−xn∥αn·∥xn+1−x*∥}.



(40)







Since ∥wn−xn∥=o(αn), ∑n=0∞αn=∞, and limn→∞αn=0, we deduce from (15), (38), and (39) that ∑n=0∞αn(1−δ)=∞ and


lim supn→∞{∥f(x*)−x*∥∥xn+1−xn∥+⟨f(x*)−x*,xn−x*⟩+∥wn−xn∥αn·∥xn+1−x*∥}≤0.











Therefore, applying Lemma 3 to relation (40), we conclude that xn→x* as n→∞. This completes the proof. □
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