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Abstract: In this paper, a consensus-based method for multi-person decision making (MPDM) using
product transitivity with incomplete fuzzy preference relations (IFPRs) is proposed. Additionally,
an average aggregation operator has been used at the first level to estimate the missing preference
values and construct the complete fuzzy preference relation (FPR). Then it is confirmed to be product
consistent by using the transitive closure formula. Following this, weights of decision makers
(DMs) are evaluated by merging consistency weights and predefined priority weights (if any).
The consistency weights for the DMs are estimated through product consistency investigation of
the information provided by each DM. The consensus process determines whether the selection
procedure should be initiated or not. The hybrid comprises of a quitting process and feedback
mechanism, and is used to enhance the consensus level amongst DMs in case of an inadequate state.
The quitting process arises when some DMs decided to leave the course, and is common in MPDM
while dealing with a large number of alternatives. The feedback mechanism is the main novelty
of the proposed technique which helps the DMs to improve their given preferences based on this
consistency. At the end, a numerical example is deliberated to measure the efficiency and applicability
of the proposed method after the comparison with some existing models under the same assumptions.
The results show that proposed method can offer useful comprehension into the MPDM process.

Keywords: fuzzy set; multi-person decision making (MPDM); fuzzy preference relation (FPR);
incomplete fuzzy preference relation (IFPR); product transitivity

1. Introduction

Decision making is an investigative and rational procedure which is used to select a course of
action amongst various alternative situations. Every decision making procedure yields a final choice
(option) and outputs a judgment of choice by means of some scientifically-based techniques. During
daily life, everyone has to face decision making situations: commonly known situations are shopping,
to decide what to eat and what to vote for in an election etc. In our context, the selection of the best
alternative(s) from a fixed set of possible alternatives is the objective.

Decision making is not only the situation for an individual where he/she gives a pairwise
comparison of alternatives, but some decision making situations have to be explained by a group of
decision makers (DMs) who work together to evaluate the best alternative(s) from a set of feasible
alternatives. The procedure to solve decision making problem(s) with multiple DMs is called group
decision making (GDM), also known as multi-person decision making (MPDM). Preference relation
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is the most common representation format used in MPDM because it is a valuable tool in modeling
decision processes, when we have to combine DMs’ preferences into group preferences [1].

In fuzzy framework, a DM assigns a numerical value fitting in [0, 1] to each pair of alternatives
which reflects the preference degree of one alternative over the other. A first and natural question
straightway arises while allocating the values: which conditions have to be satisfied in order to achieve
consistent results in final ranking?

Moreover, consistency is an important issue to face while informations are provided by the DMs,
and is associated with the transitive property. Numerous procedures on consistency measure and
enhancement of preference values have been offered in a successive way. In 1999, Xu and Wei [2]
suggested an algorithm in order to enhance the consistency of preference opinions under multiplicative
transitivity to acceptable level. In 2006, Ma et al. [3] proposed a scheme to find the weak transitivity
and inconsistency of a preference relation and put forward a method to increase consistency-based on
additive transitivity. In 2007, Herrera–Viedma et al. [4] acquainted with a description of the consistency
measure using the additive transitivity property and suggested a technique to construct a consistent
preference format. In 2008, Dong et al. [5] defined the consistency index of linguistic preference
opinions and proposed a consistency-based method to handle linguistic preference relations. In 2011,
Ergu et al. [6] anticipated a technique to measure the consistency level for multiplicative preference
relations. In 2012, Siraj et al. [7] presented an algorithm-based method to enhance ordinal consistency
after the identification and elimination of intransitivity of multiplicative preference relations. In 2014,
Liu et al. [8] defined the consistent triangular fuzzy reciprocal preference relations and deliberated
numerous properties of consistency for triangular fuzzy reciprocal preference relations. In 2014,
Wu and Chiclana [9] provided a novel consensus model for GDM problems carrying with incomplete
intuitionistic reciprocal preference relations and applied to estimate unknown preferences using
multiplicative consistency. In 2015, Xia and Chen [10] defined the consistency index by constructing
the nearest consistent preference matrix on an abelian linearly ordered group from an inconsistent one,
together with two consistency improving methods. In 2016, Marasini et al. [11] set forth an intuitionistic
fuzzy sets (IFS) approach to the problem of students’ satisfaction of university teaching and potential
advantages of the IFS perspective with respect to other non-fuzzy approaches are provided. They also
applied IFS to questionnaire analysis, with a focus on the construction of membership, non-membership
and uncertainty functions [12]. In 2018, Kerre et al. [13] presented a multiplicative consistency-based
GDM method with reciprocal fuzzy preference relations in an incomplete environment.

To handle a MPDM problem appropriately, two main processes play a crucial role:

(i) consensus process,
(ii) selection process.

The first process is an iterative process that comprises of numerous consensus rounds, where
the DMs admit to negotiate diverse opinions to have an acceptable level, but an undisputed or full
consensus is often not achievable in practice [14]. After the attainment of DMs’ opinions is close enough,
the selection process initiates to rank and select suitable alternative(s) from a given set of feasible
alternatives. In order to help the DMs to reach an acceptable consensus level in MPDM, many consensus
models with different forms have been proposed in literature. In 2002, Herrera–Viedma et al. [15]
proposed a consensus-based method for GDM problems in different preference formats, utility
values, and multiplicative preference relations. In 2013, Xia et al. [16] examined the multiplicative
transitivity-based consensus of reciprocal preference matrices and presented an algorithm to improve
consensus level for given preferences. In 2013, Palomares et al. [17] proposed a consensus-based
model to incorporate group’s approach towards consensus by means of an extension of OWA
aggregation operators. To provide a general framework for existing methods, in 2015, Xia and
Chen [10] defined a consensus index of individual pairwise comparison matrices and developed two
consensus improving methods by introducing a general aggregation operator based on an abelian
linearly ordered group. In 2016, Zhang et al. [18] developed a consensus building method based on
multiplicative consistency for GDM with incomplete reciprocal preference relations (IRPRs).
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In a fuzzy preference context to handle MPDM problems, preference relations are always supposed
to be complete, but there may arise some situations in which DMs express their preferences in
incomplete fashion due to time constraint, lack of knowledge and limited expertise regarding the
problem etc. The incomplete fuzzy preference relations (IFPRs) have been widely used in MPDM
problems, in literature, various measures have been taken to determine unknown preference values.
Such as, in 2008, a least squared technique was presented by Gong [19] to evaluate the priority vector
for GDM using incomplete preference relations. In 2013, a logarithmic least squares method was
proposed by Xu et al. to estimate the priority weights in GDM dealing with IFPRs and develop the
acceptable fuzzy consistency ratio [20]. In 2015, Xu et al. [21] presented a least deviation method to
detremine the priority weights for GDM in IRPRs environment. In 2015, the trust-based consensus
model and aggregation method for GDM were investigated by Wu et al. [22] in the context of
incomplete linguistic information.

In this paper, we put forward a consensus-based hybrid technique for MPDM after getting
motivation from the work of Zhang et al. [18]. They used multiplicative transitivity property,
i.e., rik

rki
=

rijrjk
rjirkj

, j 6= i 6= k ∈ {1, 2, 3, ..., n}, to estimate the missing preferences and make the information
consistent accordingly where rik represents the preference degree of alternative i over alternative j.
We believe that the multiplicative transitivity condition is very hard to satisfy while decimal numbers
are being used and an alternative is not allowed to be fully preferred over another, i.e., rik ∈ (0, 1)
rather than rik ∈ [0, 1]. We also observed that the aggregated preference relation constructed in [18]

P =


0.50 0.43 0.58 0.74
0.57 0.50 0.75 0.83
0.42 0.25 0.50 0.74
0.26 0.17 0.26 0.50


carries inconsistent data-based on multiplicative transitivity which definitely have impact on the final
ranking of alternatives. For instance, i = 1 and k = 3 implies that ri3

r3i
=

r1jrj3
rj1r3j

must be satisfied for

intermediate values of j, i.e., j = 2, 4. But from P we get: ri3
r3i

= 1.380952381 and r12r23
r21r32

= 2.263157895,
r14r43
r41r34

= 1, which results in inconsistent matrix. These are some issues raised in [18]. In our proposed
method, we modify the technique given by Zhang et al. using product transitivity to overcome
the above said drawbacks. Hence, this article presents a new approach to handle MPDM problems
based on consistency and consensus analysis while incomplete information is provided. At the
first stage, estimate the unknown preferences of IFPRs based on the product transitivity. Then, we
construct the modified consistent fuzzy preference relations (FPRs) against the DMs which satisfy the
product consistency and measure the level of consistency accordingly. The degrees of importance are
assigned to DMs based on consistency weights aggregated with predefined weights (if they exist),
otherwise, the consistency weights are used as weights of DMs. The proposed method provides us
with a valuable way for consensus building in GDM based on product consistency with incomplete
preference relations.

The rest of the paper is organized as: in Section 2, some preliminaries are given to support this
paper. In Section 3, a procedure is demonstrated to estimate the missing values in IFPRs based on
the product transitivity and construct the modified consistent matrices accordingly. In Section 4,
the proposed GDM process is detailed. In Section 5, an example is given to illustrate the realism and
achievability of the proposed technique. At the end, some comparison and conclusions are given.

2. Preliminaries

In 1965, Zadeh introduced fuzzy set theory [23], designated with a number between 0 and 1,
to cope with imprecise and uncertain information working in complex situation.
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Definition 1 ([23]). A fuzzy set A on the universe of discourse X is a mapping from X to [0, 1], and is
denoted by A = {(x, A(x))}. For any x ∈ X, the value A(x) is called the degree of membership of x in A,
i.e., A(x) =Degree(x ∈ A), and the map A : X → [0, 1] is called a membership function.

Definition 2 ([1]). An FPR R on a set X of alternatives X = {x1, x2, ..., xn} is characterized by a membership
function R(xi, xk) = rik, satisfying rik + rki = 1 for all i, k ∈ {1, 2, 3, .., n}, and is conveniently denoted
by matrix

R = (rik)n×n =


0.5 r12 . . r1n
r21 0.5 . . r2n
. . . .
. . . .

rn1 rn2 . . 0.5

 , (1)

where rik shows the degree of preference of alternative xi over alternative xk, and all rii = 0.5. If rik = 0.5,
this indicates that there is no difference between the two alternatives; if rik > 0.5, it implies that alternative xi is
superior to alternative xk.

Definition 3 ([4]). An IFPR R = (rik)n×n carries at least one unknown preference value rik for which the
expert does not have a clear idea of the degree of preference of alternative xi over the alternative xk.

Definition 4. An FPR R = (rik)n×n on a finite set X of alternatives is said to be product transitive if

rik ≥ rij.rjk (2)

holds for all intermediate alternatives xj with j 6= i, k. The product transitivity assures the product consistency
of FPR.

3. Repairing IFPR

In this section, a new procedure to evaluate the missing preference degrees based on product
transitivity has been put forward. Likewise, the proposed technique is used to construct a product
consistent FPR. In order to evaluate unknown preference degrees in an IFPR R = (rik)n×n, the pairs of
alternatives for known and unknown preference values are signified in form of following sets:

Kp = {(i, k)|rik is known}, (3)

Up = {(i, k)|rik is unknown}, (4)

where Kp represents the set of pairs of alternatives with known preference values while Up denotes
the set of pairs of alternatives with unknown preference values. The preference value of alternative
xi over xk belongs to [0, 1] (i.e., rik ∈ [0, 1]). We can define following set of intermediate alternative xj
which can be used to determine the unknown preference value rik of alternative xi over alternative xk

Wik = {j 6= i, k | (i, j) ∈ Kp, (j, k) ∈ Kp and (i, k) ∈ Up}, (5)

for 1 ≤ i ≤ n, 1 ≤ j ≤ n and 1 ≤ k ≤ n. Based on (5), the aggregated value (global value) of rik is
obtained by using the average aggregation operator, and is the degree of preference of alternative xi
over the alternative xk, given as

rik =

 Ave
j∈Wik

(rij.rjk) if |Wik| 6= 0

0.5 otherwise
, (6)
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where |Wik| is the cardinality of the set Wik. Aggregation is for purposed so as to use different pieces of
information simultaneously in order to reach a conclusion. The value rki can be evaluated by using

rki = 1− rik, (7)

after having the value of rik. New sets of the pairs of alternatives for known and unknown preference
values are determined by

K′p = Kp ∪ {(i, k)}, (8)

U′p = Up − {(i, k)}. (9)

After having a complete FPR, it needs to be a fully product consistent FPR R̃ = (r̃ik)n×n which
can be obtained by calculating r̃ik from

r̃ik = max
j 6=i,k

(rik, rij.rjk), (10)

such that R̃ is stable with r̃ik + r̃ki = 1. It remains working until (2) is satisfied.

4. Iterative Procedure for GDM

This section comprises of a step-by-step procedure for GDM based on product consistency.
An explanatory example is given to validate the method. Suppose that there are n alternatives
x1, x2, ..., xn and m DMs D1, D2, ..., Dm. Let Rq be the fuzzy preference relation for the expert Dq

shown as follows:

Rq =
(

rq
ik

)
n×n

=


0.5 rq

12 . . rq
1n

rq
21 0.5 . . rq

2n
. . . .
. . . .

rq
n1 rq

n2 . . 0.5

 ,

where rq
ik ∈ [0, 1] is the preference value given by DM Dq for alternative xi over xk, rq

ik + rq
ki = 1,

1 ≤ i ≤ n, 1 ≤ k ≤ n and 1 ≤ q ≤ m and rq
ii = 0.5, for all i ∈ {1, 2, ..., n} as an alternative cannot

be preferred on itself. Due to time constraints or lack of information and complexity, some of the
preference values are missing while data is provided by the DMs. The proposed GDM method consists
of several states as follows.

4.1. Repairing IFPRs

Initially, to estimate the unknown preference values in IFPR Rq provided by the DM Dq, the sets
Kq

p and Uq
p of pairs of alternatives for known and unknown preferences are introduced as in (3) and (4)

respectively. After this, the missing preference values are estimated by using (5)–(9) to construct the
complete FPR Rq.

4.2. Consistency Analysis

The product consistent FPRs R̃q, for q = 1, 2, 3, ..., m, can be constructed with the use of (10) after
evaluating the missing preference degrees. We can then approximate the level of consistency of an
FPR Rq based on its similarity with the corresponding product transitivity-based R̃q by computing
their distances [18].

1. Product consistency index (PCI) of a pair of alternatives is estimated by using

PCI(rq
ik) = 1−

∣∣∣rq
ik − r̃q

ik

∣∣∣ . (11)
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Apparently, the higher the value of PCI(rq
ik), the more consistent rq

ik is with respect to the rest of
the preference values involving alternatives xi and xk.

2. PCI associated to a particular alternative xi, 1 ≤ i ≤ n, of an FPR is estimated as

PCI(xi) =
1

(n− 1)

n

∑
k=1 6=i

PCI(rq
ik), (12)

with PCI(xi) ∈ [0, 1]. When PCI(xi) = 1 all the preferences involving the alternative xi are fully
consistent, otherwise, the lower PCI(xi) is, the more inconsistent these preference values are.

3. Finally, we evaluate PCI of an FPR Rq by taking the average of all PCI of alternatives xi as

PCI(Rq) =
1
n

n

∑
i=1

PCI(xi), (13)

and PCI(Rq) ∈ [0, 1]. When PCI(Rq) = 1 the preference relation Rq is fully consistent, otherwise,
the lower PCI(Rq) the more inconsistent Rq is.

As soon as the PCI is computed in three levels using expressions (11)–(13), it is rational to assign
higher weights to the DMs against the preference relations with larger consistency degrees respectively.
Hence, consistency weights can be assigned to the experts by using the relation

Cw(Dq) =
PCI(Rq)

m

∑
q=1

PCI(Rq)

. (14)

4.3. Assigning Weights to Experts

Final priority weights are allocated to DMs by emerging respective predefined priority weights
and consistency weights by using

w(Dq) =
λq × Cw(Dq)

m

∑
q=1

λq × Cw(Dq)

, (15)

where λq, 1 ≤ q ≤ m, are the predefined priority weights of DMs and
m

∑
q=1

w(Dq) = 1. If the priority

weight vector is not given, then consistency weights will be taken as the priority weights of DMs.

4.4. Consensus Measures

After getting FPRs in complete form, we measure the consensus degree amongst DMs. In this
manner, similarity matrices Sqr = (sqr

ik )n×n for every pair of DMs (Dq, Dr) (q = 1, 2, ..., m − 1;
r = q + 1, ..., m) are to be determined and defined as

sqr
ik = 1−

∣∣∣rq
ik − rr

ik

∣∣∣ . (16)

Then the collective similarity matrix S = (sik)n×n is constructed after aggregating all the similarity
matrices by using following relation

sik =
2

m(m− 1)

m−1

∑
q=1

m

∑
r=q+1

sqr
ik . (17)

To compute the degree of consensus amongst the DMs, the following three states are to be
faced [18].
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1. At first level, the consensus degree amongst DMs on a pair of alternative (xi, xk), denoted by
codik, is measured as

codik = sik. (18)

2. At second level, the consensus degree amongst DMs on alternative xi, denoted by CoDi,
is estimated using

CoDi =
1

(n− 1)

n

∑
k=1,k 6=i

sik. (19)

3. At third level, the consensus degree amongst DMs on the relation, denoted by CoR,
is determined as

CoR =
1
n

n

∑
i=1

CoDi. (20)

Once the global consensus level among all the experts is reached, it requires us to compare it
with a threshold consensus degree η (say), generally settled in advance depending upon the nature
of problem. If CoR ≥ η, this shows that an acceptable level of consensus has been obtained, and the
decision process begins. Otherwise, the consensus degree is not stable, and the feedback mechanism
along with the quitting process originates.

4.5. Quitting Process

This process is concerned with the DMs when some of them no longer wish to participate in
GDM and decide to leave the group. Usually, this situation arises when there is a large number of
alternatives where the DMs can vary over time. Once a DM Dk, k = 1, 2, ..., m, decides to quit the
process, the priority weights of the remaining DMs will be affected and updated as

wnew(Dq) = w(Dq) +
w(Dk)

l
, (21)

where l represents the remaining number of DMs participating in decision making.

4.6. Feedback Mechanism

The central aim of the feedback mechanism is to provide comprehensive knowledge to experts,
so as to change their opinions acceptably to enhance the consensus degree. When consensus is not
sufficiently high, then we have to identify the preference values that are to be changed, and the
following formula helps us in this regard:

Rq = {(i, k) | codik < CoR and rq
ik is known, } (22)

for i, k ∈ {1, ..., n}. The system recommends that the corresponding expert has to increase in value if it
is smaller than the mean value of the valuations of the rest of experts, or decrease it if it is greater than
the mean [18].

4.7. Accumulation Phase

It may quite frequently happen that the preference degree set forth by each DM is weighted
differently. As soon as the weights for the DMs are estimated, their preferences need to be
accumulated into a global one. We determine the collective matrix Rc against all DMs using weighted
average formula

Rc = (rc
ik)n×n =

(
m

∑
q=1

w(Dq)× r̃q
ik

)
n×n

, (23)

where 1 ≤ i ≤ n, 1 ≤ k ≤ n.
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4.8. Selection Phase

Once a satisfactory consensus level amongst all DMs is reached, the selection process starts in
order to rank and select the best alternative. For a consistent FPR R̃ = (r̃ik)n×n, the ranking value
Rv(xi) of alternative xi, i = 1, .., n, is defined by:

Rv(xi) =
2

n(n− 1)

n

∑
k=1,k 6=i

r̃ik, i = 1, .., n (24)

with
n

∑
i=1

Rv(xi) = 1.

5. Numerical Example

This section deals with a numerical example taken from [18] in order to demonstrate the process of
the proposed method and its effectiveness. Consider that four DMs D1, D2, D3 and D4 from different
fields are requested to select the best alternative out of four alternatives x1, x2, x3, x4. The four DMs
provide their FPRs as follows:

R1 =

 0.5 0.6 r1
13 r1

14
0.4 0.5 0.7 r1

24
r1

31 0.3 0.5 0.9
r1

41 r1
42 0.1 0.5

 , R2 =

 0.5 0.6 0.7 r2
14

0.4 0.5 r2
23 0.7

0.3 r2
32 0.5 r2

34
r2

41 0.3 r2
43 0.5

 ,

R3 =

 0.5 0.3 0.5 0.75
0.7 0.5 0.8 0.6
0.5 0.2 0.5 0.8
0.25 0.4 0.2 0.5

 , R4 =

 0.5 0.4 0.55 0.65
0.6 0.5 0.8 0.75

0.45 0.2 0.5 0.7
0.35 0.25 0.3 0.5

 .

The threshold consensus level η settled in advance is 0.80. Now, we perform the following steps
to evaluate the result.

Step-i: Repairing IFPRs

Initially, all the missing preference values need to be determined using (6). For instance, taking R1,
the sets of pairs of alternatives for known and unknown preference values are determined as follows:

K1
v = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)},

U1
v = {(1, 3), (3, 1), (1, 4), (4, 1), (2, 4), (4, 2)}.

Using (5)–(9), we get the complete FPR R1 against DM D1 as:

R1 =

 0.5000 0.6000 0.4200 0.3780
0.4000 0.5000 0.7000 0.3906
0.5800 0.3000 0.5000 0.9000
0.6220 0.6094 0.1000 0.5000

 .

Similarly, the complete form of R2 can be obtained and given as

R2 =

 0.5000 0.6000 0.7000 0.4200
0.4000 0.5000 0.2800 0.7000
0.3000 0.7200 0.5000 0.3150
0.5800 0.3000 0.6850 0.5000

 .

Step-ii: Consistency analysis

Consistency analysis is initiated to assign consistency weights to the DMs. In this manner,
all complete FPRs are to be transformed into their product consistent forms using (10) and are given as

R̃1 =

 0.5000 0.5940 0.4200 0.3780
0.4060 0.5000 0.6555 0.6300
0.5800 0.3445 0.5000 0.7388
0.6220 0.3700 0.2612 0.5000

 , R̃2 =

 0.5000 0.5940 0.7000 0.4200
0.4060 0.5000 0.4795 0.6555
0.3000 0.5205 0.5000 0.3643
0.5800 0.3445 0.6357 0.5000

 ,
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R̃3 =

 0.5000 0.3000 0.5000 0.7480
0.7000 0.5000 0.7120 0.6400
0.5000 0.2880 0.5000 0.7437
0.2520 0.3600 0.2563 0.5000

 , R̃4 =

 0.5000 0.4000 0.5500 0.6500
0.6000 0.5000 0.8000 0.7500
0.4500 0.2000 0.5000 0.7000
0.3500 0.2500 0.3000 0.5000

 .

The significant PCI values for the given FPRs are determined using (11)–(13) as

PCI(R1) = 0.9248; PCI(R2) = 0.9501;

PCI(R3) = 0.9689; PCI(R4) = 1.

Finally, the consistency weights to the experts are computed by using (14) as

Cw(D1) = 0.2406, Cw(D2) = 0.2472,

Cw(D3) = 0.2521, Cw(D4) = 0.2601.

Step-iii: Weights to experts

Primarily, the priority weights to DMs are not assigned, hence, the consistency weights will be
taken as the priority weights of the DMs:

w(D1) = 0.2406, w(D2) = 0.2472,

w(D3) = 0.2521, w(D4) = 0.2601.

Step-iv: Consensus measures

After evaluating missing preference values in IFPRs, a collective similarity matrix is constructed by
aggregating the different similarity matrices amongst the DMs using (16) and (17). Then, the consensus
levels are measured at the three states using (18)–(20).

S12 =

 1.0000 1.0000 0.7200 0.9580
1.0000 1.0000 0.5800 0.6906
0.7200 0.5800 1.0000 0.4150
0.9580 0.6906 0.4150 1.0000

 , S13 =

 1.0000 0.7000 0.9200 0.6280
0.7000 1.0000 0.9000 0.7906
0.9200 0.9000 1.0000 0.9000
0.6280 0.7906 0.9000 1.0000

 ,

S14 =

 1.0000 0.8000 0.8700 0.7280
0.8000 1.0000 0.9000 0.6406
0.8700 0.9000 1.0000 0.8000
0.7280 0.6406 0.8000 1.0000

 , S23 =

 1.0000 0.7000 0.8000 0.6700
0.7000 1.0000 0.4800 0.9000
0.8000 0.4800 1.0000 0.5150
0.6700 0.9000 0.5150 1.0000

 ,

S24 =

 1.0000 0.8000 0.8500 0.7700
0.8000 1.0000 0.4800 0.9500
0.8500 0.4800 1.0000 0.6150
0.7700 0.9500 0.6150 1.0000

 , S34 =

 1.0000 0.9000 0.9500 0.9000
0.9000 1.0000 1.0000 0.8500
0.9500 1.0000 1.0000 0.9000
0.9000 0.8500 0.9000 1.0000

 .

1. On pair of alternatives:

CoD =

 1.0000 0.8167 0.8517 0.7757
0.8167 1.0000 0.7233 0.8036
0.8517 0.7233 1.0000 0.6908
0.7757 0.8036 0.6908 1.0000

 .

2. On alternatives:

CoD1 = 0.8147, CoD2 = 0.7812,

CoD3 = 0.7553, CoD4 = 0.7567.

3. On relation:

CoR = 0.7770.
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Now, the threshold consensus degree η settled in advance is compared with global consensus
degree CoR of the relation; CoR < η. This indicates that the given consensus level is not acceptable
amongst the DMs.

Step-v: Quitting process

Suppose the DM D2 decides to leave the process, then the updated priority weights of DMs are
taken under the use of (21) as

wnew(D1) = 0.3230, wnew(D3) = 0.3345, wnew(D4) = 0.3425.

Step-vi: Feedback mechanism

The DMs are asked to enhance their preferences using (22), based on the average value of the
preferences provided by the DMs D1, D3 and D4, given as

R134
av =

 0.5000 0.4333 0.4900 0.5927
0.5667 0.5000 0.7667 0.5802
0.5100 0.2333 0.5000 0.8000
0.4073 0.4198 0.2000 0.5000

 .

Suppose these DMs accepted the suggestions and enhance their preference relations
accordingly, as

R1
new =

 0.5 0.45 r1
13 r1

14
0.55 0.5 0.75 r1

24
r1

31 0.25 0.5 0.8
r1

41 r1
42 0.2 0.5

 , R3
new =

 0.5 0.4 0.5 0.6
0.6 0.5 0.8 0.6
0.5 0.2 0.5 0.8
0.4 0.4 0.2 0.5

 , R4
new =

 0.5 0.4 0.5 0.6
0.6 0.5 0.8 0.6
0.5 0.2 0.5 0.75
0.4 0.4 0.25 0.5

 .

Initially, all the unknown preference values are estimated, as explained in Section 3, and construct
the complete FPR R1

new as

R1
new =

 0.5000 0.4500 0.3375 0.2700
0.5500 0.5000 0.7500 0.3743
0.6625 0.2500 0.5000 0.8000
0.7300 0.6257 0.2000 0.5000

 .

Then, consensus states are re-evaluated to estimate the census degree amongst DMs in this round.
In this way, the DMs reach a final global consensus level, with CoR = 0.9036 > η. Therefore, the entire
process enters into the accumulation phase to get a collective product consistent FPR Rc.

Step-vii: Accumulation phase

Rc =


0.5000 0.4162 0.4475 0.4934
0.5838 0.5000 0.6976 0.6134
0.5525 0.3024 0.5000 0.7303
0.5066 0.3866 0.2697 0.5000

 . (25)

Step-viii: Selection phase

The relation Rc obtained in (25) is clearly product consistent, therefore, (24) results in ranking
value Rv(xi) of alternative xi, 1 ≤ i ≤ 4 as follows:

Rv(x1) = 0.2262, Rv(x2) = 0.3158,

Rv(x3) = 0.2642, Rv(x4) = 0.1938,

where
4
∑

i=1
Rv(xi) = 1 and Rv(x2) > Rv(x3) > Rv(x1) > Rv(x4), therefore, the ranking order of

alternatives x1, x2, x3 and x4 is: x2 > x3 > x1 > x4, and the best option is x2.
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6. Comparison

To clearly validate the productivity of our proposed scheme, we compare results with two other
existing models under the same norms. These models are the consensus building model [18], and
a goal-programming model [24]. The two ranking lists are provided as

(a) x2 > x1 > x3 > x4,

(b) x2 > x1 > x4 > x3.

The result depicted in the first model was different from ours, as the intermediate alternatives x1

and x3 had changed while x2 was the best alternative based on the DMs’ D3 and D4 opinions with
high importance level. The second model resulted in different ordering regarding alternatives x1, x3

and x4, but the alternative x2 was at the common best place. There may be three reasons that created
differences in the ranking order. Firstly, data may be inconsistent based on the under-considered
transitivity condition and, definitely, a different result could have been created. Secondly, different
techniques were used to evaluate missing values. Thirdly, the corresponding parameters regarding
different models could have been evaluated in various ways and results may be affected. However,
the quitting process was introduced while the consensus-attainment process was being conducted. We
think that the proposed technique provides better, consistent information based on product transitivity
rather than multiplicative transitivity. Thus, it can deal with the MPDM situations more suitably, and
can accelerate the consensus process.

7. Conclusions

In this paper, an hybrid consensus procedure for MPDM with IFPRs based on product transitivity
is proposed. After evaluating the missing preference values, the transitive closure formula is used to
get the matrices product to be consistent. The weights of the DMs are obtained from the consistency
analysis and, rationally, the DMs with a high level of consistency should have large weights assigned
to them, in order to carry more importance in the aggregation process. Additionally, a feedback
mechanism is proposed to accelerate the execution of a higher consensus level. After getting
a satisfactory consensus state amongst DMs, the entire process entered into the selection phase
to rank all the alternatives to choose the best one. An example is provided to highlight the efficiency
and feasibility of the proposed method, and results in comparison with some existing models are given.
The results established the practicability of the method, which can help us to gain a greater insight into
the MPDM process.

Some of the key advantages of the set forth technique are: (1) product transitivity being used to
evaluate the unknown preference values of FPRs in this paper. As compared with some other methods
based on consistency measures, product transitivity provides better information and consistency
accordingly. (2) The final priority weights of the DMs are based on consistency weights and predefined
weights (if they exist), which plays an important role in evaluating the consistency indices of DMs’
opinions. (3) The quitting process allowed DMs to leave the MPDM process, rather than staying
on in the procedure until the problem is solved. (4) The modified feedback mechanism enables the
DMs to think in different directions to reach the consensus amongst them. We think that there are
only a few techniques of such kinds presented in the literature to deal with MPDM in an incomplete
FPRs’ environment.

In future, we aim to apply the proposed model in multi-criteria decision making problems.
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