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Abstract: Locating node technology, as the most fundamental component of wireless sensor networks
(WSNs) and internet of things (IoT), is a pivotal problem. Distance vector-hop technique (DV-Hop)
is frequently used for location node estimation in WSN, but it has a poor estimation precision.
In this paper, a multi-objective DV-Hop localization algorithm based on NSGA-II is designed,
called NSGA-II-DV-Hop. In NSGA-II-DV-Hop, a new multi-objective model is constructed, and an
enhanced constraint strategy is adopted based on all beacon nodes to enhance the DV-Hop positioning
estimation precision, and test four new complex network topologies. Simulation results demonstrate
that the precision performance of NSGA-II-DV-Hop significantly outperforms than other algorithms,
such as CS-DV-Hop, OCS-LC-DV-Hop, and MODE-DV-Hop algorithms.

Keywords: wireless sensor networks (WSNs); DV-Hop algorithm; multi-objective DV-Hop
localization algorithm; NSGA-II-DV-Hop

1. Introduction

As the hottest research topics currently, internet of things (IoT) contains many technologies such
as cyber physical systems [1,2], embedded system technology, network information technology, and so
on. And wireless sensor networks (WSNs) [3,4], as an important branch of cyber physical systems,
have become an innovation and area of research under the spotlight worldwide. Moreover, WSNs
technology is so popular that it has been applied in various fields, including the military and national
defense, industry [5], disaster relief, medical treatment, environmental monitoring [6], and so on [7].
However, for most WSNs applications, sensor node location information plays a key role; generally,
the information obtained from WSNs would be meaningless, if sensor node locations were unknown
in applications such as smart grid, object tracking, and location-based routing. Hence, the sensor node
localization technology is a critical issue in the rapid development of WSNs and even IoT technology.

Currently, the BeiDou navigation satellite system (BDS) [8,9] and global positioning system
(GPS) [10] are generally considered to be the most capable systems for obtaining the exact location.
However, it’s worth mentioning that due to the expensive cost, it is almost impossible to complete
the full coverage installation of BDS equipment in the whole WSNs. Besides, its positioning accuracy
is invariably not satisfactory enough in some special contexts, including the indoor, mine tunnel,
canyon, and other complex environments. As a result, it has begun to receive researchers’ attention
that the use of interactions and connectivity information between sensor nodes for positioning. Using
this information, researchers have proposed a series of localization algorithms. These algorithms
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are generally classified as a range-based localization algorithm or range-free localization algorithm,
depending on whether they are independent of the additional hardware devices. These hardware
devices are necessary to obtain the requisite information for the range-based localization algorithm,
such as point-to-point distances and angles between sensor nodes. The information between the
sensor nodes ensures that the range-based algorithm can achieve accurate positioning, including
RSSI [11], ToA [12], and AoA [13], but it requires extensive CPU time and a mass of energy. In contrast,
the range-free localization algorithm only needs to ensure the connectivity between sensor nodes,
including APIT [14], Centroid [15], Amorphous [16], and DV-Hop [17]. Due to cost constraints, it’s
widely used in a large and complex network.

DV-Hop localization algorithm, as a representative range-free positioning algorithm, has garnered
extensive attention because of its simple positioning principle. Its main principle is that the beacon
nodes (node location information is known) use the connectivity between nodes to send packets
to other nodes in the network to obtain the minimum hop count between the beacon nodes and
unknown nodes (node location information is unknown). And then, the average distances per
hop of beacon nodes are calculated using the position and hop count information of the beacon
nodes. Finally, the locations of the unknown nodes are estimated by calculating the distance between
the unknown nodes to each beacon node. Compared to other range-free positioning algorithms,
it is easier to bring into operation, but the low positioning accuracy has become a problem to be
solved. For this reason, scholars propose various improved algorithms based on DV-Hop localization
algorithm, including the deterministic algorithms [18–20] and bio-inspired optimization algorithms.
In addition, Mobility-Assisted Localization in WSNs has also been widely studied by scholars, such as
Rezazadeh [21], who proposed a path planning mechanism to improve the accuracy of mobile assisted
localization. Alomari improved the path planning method and proposed a path planning strategy
based on dynamic fuzzy-logic [22], and proposed an obstacle avoidance strategy based on swarm
intelligence optimization [23].

In recent years, with the excellent performance of intelligent computing in various complex
optimization problems, various bionic algorithms have been proposed, such as particle swarm
optimization (PSO) [24], ant colony optimization (ACO) [25], bat algorithm (BA) [26–28], Differential
Evolution (DE) [29], Firefly algorithm (FA) [30–32], and so on [33]. Compared with the mathematics
optimization methods, these biological inspired algorithms show some unique advantages. First,
they don’t depend on the requirement of any gradient information in the variable space; in addition,
they are insensitive to the initial value and insusceptible to local entrapment. These optimization
algorithms play a very good role in practical applications, such as [34–40], however, with the increasing
amount of data in the IoT era, many problems in the real world include multiple decision variables
and evaluation indicators. Single-objective optimization has gradually revealed defects for solving
such problems. For this reason, multi-objective optimization algorithms based on bionics have also
been proposed and are used in various fields, including Multi-Objective Particle Swarm Optimizers
(MOPSO) [41,42], multi-objective evolutionary algorithm based on decomposition (MOEA/D) [43],
hybrid multi-objective cuckoo search (HMOCS) [44,45], and so on [46,47].

In this paper, we propose a multi-objective DV-Hop localization algorithm based on NSGA-II [48]
to solve the sensor node localization problem in WSNs. The remainder of this paper is arrayed as
follows. In Section 2, DV-Hop with optimization algorithms and problems are reviewed. In Section 3,
standard DV-Hop and NSGA-II are presented. In Section 4, a multi-objective DV-Hop localization
model is structured and NSGA-II-DV-Hop is proposed. Simulation results and performance analysis
are summarized in Section 5. Lastly, the conclusion is summarized in Section 6.
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2. Related Works

In the last few years, with the maturity of various stochastic optimization algorithms in theory,
more attention has been paid to the practical application of the algorithm. In 1975, Holland [49]
proposed the theory and method of genetic algorithm by studying the genetic evolution process in
the natural environment. And after a series of research work, Goldberg [50] formally presented the
genetic algorithm (GA) in 1989. In 2007, on the basis of solving the numerical optimization by genetic
algorithm, Nan [51] proposed to apply the real-coded GA to WSNs. And in 2010, Gao [52] developed
an improved GA to solve wireless sensor localization problem in WSNs. Moreover, Bo [53] also applied
GA to solve the problem of WSNs location, and proposed a population constraint strategy based on
three beacon nodes to solve the feasible domain of the population.

Furthermore, Yang [54] presented a cuckoo search (CS) algorithm based on Levy flights in 2009.
In 2014, Sun [55] developed the CS algorithm and applied it to the DV-Hop positioning algorithm
and achieved good positioning results. Based on this, Zhang [56] proposed a weight-oriented CS
algorithm (WOCS), and combined it with DV-Hop to locate the unknown sensor nodes in WSNs.
The paper improved the search ability of the CS algorithm for unknown nodes by limiting the hop
count (which is the minimum hop count between the unknown nodes and each beacon node) in the
DV-Hop algorithm. Furthermore, Cui [57] further developed the WOCS algorithm, and proposed
an oriented CS algorithm based on the Lévy-Cauchy distribution (OCS-LC) in 2017. This improved
strategy is applied to solve the positioning problem of sensor nodes in WSN, and compared with the
CS algorithm, there is a large performance improvement when the number of sensor nodes is small.
However, these studies were based on the study of the location performance of sensor nodes in a large
area, but ignored the positioning performance of sensor nodes in complex terrain. In response to this
phenomenon, Cui [58] studied the positioning performance of sensor nodes in C-shaped random and
C-shaped grids in 2018. Nevertheless, in this research, the nodes in the network are required to obey
Uniform distribution, which is unimaginable in practical production applications. Not only is this so,
a common feature of these studies is that more effort is devoted to the improvement of algorithmic
search strategies, while ignoring improvements to the original model.

In these studies, although the positioning accuracy has been improved, there are some defects.
According to the calculation formula (Equation (7)) of the single-objective model, the population
gradually converges to the estimated position as the number of iterations increases, as shown in
Figure 4 of the part IV. The actual position of the unknown node is UN, but the population will
converge to the UN∗1 and UN∗2 points, which will bring a large error.

To solve this problem, we propose three other complex terrains for research, including coal mine
tunnels [59,60], lake terrain, and canyons terrain. In these specific cases, for the distribution of sensor
nodes some new features emerge. For instance, in the coal mine tunnel, the nodes are distributed in
narrow tunnels that are interlaced, and the nodes are densely distributed. This requires the algorithm
to have a good positioning effect when the number of nodes and the number of beacon nodes are large.
However, in the lake terrain, the nodes are distributed around the lake, which leads to communication
difficulty when the communication radius is small. Therefore, the algorithm is required to have a
strong positioning capability when the communication radius is small and the number of nodes is
small. And in the canyons terrain, the nodes are distributed in the canyon among several mountains.
In this case, the algorithm is required to have better stable positioning accuracy when the radius and the
beacon nodes are small. So, in this paper, we propose a multi-objective DV-Hop localization algorithm
based on NSGA-II. The biggest highlight of this paper is to abandon the idea that scholars blindly
improve the algorithm search strategy, and change the objective function model in the algorithm to
achieve more precise positioning of unknown nodes. A constraint strategy based on all beacon nodes
is proposed based on the three beacon nodes constraint strategy.
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3. DV-Hop Algorithm and NSGA-II Algorithm

3.1. DV-Hop Algorithm

In this subsection, we will detail the specific implementation process of the DV-Hop algorithm.
Phase 1: Communication detection and broadcasting phase.
At this stage, it is mainly to detect whether direct communication between any two nodes is

possible, and also to record the minimum hops count that nodes can communicate with each other.
The specific process is that each beacon node broadcasts a packet to the network (the packet includes
its location and its own minimum hop count information to other nodes), and the initialization value of
each node hop count information is 0. Each time the packet is forwarded, the number of hop count is
increased by one. Among them, each node only records the minimum hop count information between
it and other nodes.

Phase 2: Distance estimation phase.
Since the position information of the beacon node is known, the Hopsizei (the average distance

per hop between any two beacon nodes) can be obtained by Equation (1).

HopSizei =

∑
j 6=i

√
(xi − xj)

2 + (yi − yj)
2

∑
j 6=i

hij
(1)

where (xi, yi), (xj, yj) are the coordinates of beacon nodes i and j respectively, and hij is the minimum
hop count between the beacon nodes which is calculated by Phase 1.

And then, the dik (the distance between beacon node i and unknown node k) is estimated by
Equation (2).

dik = Hopsizei × hik (2)

where hik is the minimum hop count between the beacon node i and unknown node k.
Phase 3: Unknown node coordinate estimation phase.
For the unknown node k, if more than three distances have been estimated by Equation (2), the

position of the unknown node k can be calculated mathematically, such as the trilateral measuring
method. The computational equation is

(x1 − x)2 + (y1 − y)2 = d2
1

· · ·
(xn − x)2 + (yn − y)2 = d2

n

(3)

where (x, y) represents the unknown nodes’ coordinates, (xn, yn) denotes the coordinates of beacon
node n, and dn denotes the distance estimated by Equation (2).

Convert Equation (3) to a matrix form AX = b, where A, b, and X are described as the following
Equations (4) and (5), respectively.

A =

 2(x1 − xn)

· · ·
2(xn−1 − xn)

2(y1 − yn)

· · ·
2(yn−1 − yn)

, X =

(
x
y

)
(4)

b =

 x2
1 − x2

n + y2
1 − y2

n + d2
n − d2

1
. . .

x2
n−1 − x2

n + y2
n−1 − y2

n + d2
n − d2

n−1

 (5)
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Based on Equations (4) and (5), the location of the unknown node can be obtained by the least
square method. The calculation equation can be expressed as Equation (6).

X̂ = (AT A)
−1

ATb (5)

The flowchart of DV-Hop algorithm is introduced in Figure 1.
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3.2. NSGA-II Algorithm

A non-dominated sorting genetic algorithm II (NSGA-II) was first proposed in [48] as a biological
heuristics algorithm which usually used to solve complex industrial optimization problems. The
algorithm has been widely concerned by scholars since its invention due to its faster convergence
speed, stronger robustness, and better draw near the true Pareto-optimal front. In NSGA-II algorithm,
its core operation contains two parts. One part includes the three traditional operation processes in
GA, such as crossover, selection, and mutation; the other part refers to the unique non-dominated
sorting operation in the multi-objective optimization algorithm. Therein, the selection operation will
retain some of the better individuals with their fitness values (which refer to the non-dominated sorted
value). The mutation operation is designed according to the genetic mutation in the biology, in order
to ensure that the algorithm has strong global convergence ability. Conversely, the crossover operation
is designed based on the principle that homologous chromosomes cross to generate new species to
improve the algorithm search ability.

The pseudo-code of NSGA-II algorithm is introduced in Algorithm 1.
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4. The Proposed Multi-Objective Algorithm

In this paper, we propose a multi-objective DV-Hop localization algorithm based on NSGA-II,
which achieves the purpose of improving the positioning accuracy by adopting multi-objective
improvement on the original objective.

4.1. The Multi-Objective Model

In the traditional DV-Hop algorithm based on optimization algorithm, Equation (7) is recognized
as the most typical objective function.

f itness1 = min(
m

∑
i=1
|
√
(xi − x)2 + (yi − y)2 − di|) (7)

where di denotes the estimated distance in the simulation experiment between beacon node i and
an unknown node, (xi, yi) represents the location of the beacon node i, (x, y) denotes the location of
the unknown node, f itness1 denotes the objective (which refers to one of the objective functions in
this paper).

However, this objective function is determined by Equation (8), and Equation (8) is the core theory
of the combination of the optimization algorithm and the DV-Hop algorithm. For unknown node j,
assume (x, y) is the actual location, and the estimated distances are d1, d2, . . . , dn in the simulation
experiment for all beacon nodes, the corresponding errors are δ1, δ2, . . . , δn. Then, the relationship

among them can be expressed as follows: under the premise that the value of
√
(xn − x)2 + (yn − y)2

is constant, the smaller δ1, δ2, . . . , δn, the more accurate the positioning accuracy. Therefore, convert
Equation (8) to a function form y = ax, the objective function is expressed as Equation (7).
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

√
(x1 − x)2 + (y1 − y)2 = d1 + δ1√
(x2 − x)2 + (y2 − y)2 = d2 + δ2

· · ·√
(xn − x)2 + (yn − y)2 = dn + δn

(8)

Nevertheless, (x, y) is the unknown node estimated position rather than the actual position, and
d1, d2, . . . , dn are obtained in the second phase of the DV-Hop algorithm, and are constant. This means
that the position obtained by Equation (7) (the objective function) is closer to the position under the
estimated distance, rather than the true exact position. Based on this phenomenon, we present to add
an objective function to strengthen the search constraint on the exact position.

Suppose there are some sensor nodes in the detected area, which contain the beacon nodes and
unknown nodes, such as Figure 2. In Figure 2, BN denotes the beacon node; UN1, UN2, UN3 denote
the unknown nodes, respectively; R denotes the communication radius; and Disi is the actual distance
between UNi and BN; the circular area is the communication area of the BN. When the number of
unknown nodes is enough to fill the entire the circular area, the average distance between UNi and
BN is calculated as Equation (9).

avg_dis =
r R

0 2πr2dr
r R

0 2πrdr
=

2
3

R (9)

avg_dis denotes the average distance between UNi and BN, and also represents the average
distance per hop between sensor nodes. Particularly, different from HopSizei is that the calculation
result of avg_dis is the theoretical value of the average distance from the unknown node to the beacon
node in per hop. Therefore, the theoretical distance disik from the unknown node k to each beacon
node i is calculated as Equation (10).

disik = avg_dis× hik (10)

where hik is the minimum hop count between the beacon node i and unknown node k.
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Similarly, we define the second objective function as follows:

f itness2 = min(
m

∑
i=1
|
√
(xi − x)2 + (yi − y)2 − disi|) (11)
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For the sake of clarity, we will elaborate on the difference between our proposed multi-objective
and traditional single-objective (We use three beacon nodes BN1, BN2, BN3 and one unknown node
UN for analysis). Figure 3 shows the constraint principle of the objective function in ideal conditions.
At the moment, the unknown node i in the population finally converges the location of the UN, and
this location is the exact position.

However, the estimated distance is usually accompanied by errors. Therefore, the single-objective
function constraint principle in the estimated distance is shown in Figure 4. Where, UN is defined as
the actual location of the unknown node, BN1, BN2 indicate the beacon nodes, d1, d2 are calculated
by Equation (2), UN∗1 , UN∗2 represent the estimated location of the unknown node which calculated
with Equation (7) in ideal circumstances. It is not difficult to see that the error between the potential
optimal solution set found by the single-objective function model and the real position is still large.
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For the defects of single-objective optimization, we propose to use the multi-objective optimization
method to reduce the error, such as Figure 5. Figure 5 is composed of two parts, one part is the decision
space on the left side and the other part is the objective space on the right side. Where, f1, f2 respectively
represent two contradictory objective function models that we proposed, dis1, dis2 are calculated by
Equation (10). As can be seen from the Figure 5, a solution in the objective space corresponds to
multiple potential optimal solutions in the decision space. That means that multi-objective models can
find more potential optimal solutions in the decision space than the single objective model. Meanwhile,
it contains the potential optimal solution that the single-objective model can find. According to this
theory, the error of the estimated position obtained by using the multi-objective model must be less
than or equal to the single-objective model.
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4.2. Population Constraint Strategy

In addition to improvements to the model, this paper also improves the algorithm’s search strategy.
In reference [34], the author proposed a population constraint strategy based on three beacon nodes
to solve the feasible domain of the population, such as Figure 6a (where BN1, BN2, BN3 denote the
beacon nodes, UN is the unknown node, H1, H2, H3 represent the minimum hop count, R represents
the radius and the shadow area is the feasible domain). The expression is as follows: max

i=1,2,3
(xi − RHi) ≤ xUN ≤ min

i=1,2,3
(xi + RHi)

max
i=1,2,3

(yi − RHi) ≤ yUN ≤ min
i=1,2,3

(yi + RHi)
(12)

However, when the distance among the three beacon nodes is relatively close and they are
located on the same side of the unknown node, the feasible domain of the population is still larger.
In this situation, the robustness of the positioning accuracy deteriorates. In this paper, we propose
a population constraint strategy based on all beacon nodes, such as Figure 6b. The expression is
as follows:  max

i=1,2,...,n
(xi − RHi) ≤ x′UN ≤ min

i=1,2,...,n
(xi + RHi)

max
i=1,2,...,n

(yi − RHi) ≤ y′UN ≤ min
i=1,2,...,n

(yi + RHi)
(13)

As the number of beacon nodes increases, the probability of the beacon nodes being on the same
side of the unknown node decreases correspondingly. This means that the constraint enhancement
from the beacon nodes has different directions, and thus the population feasible region decreases.
As shown in Figure 6b, the feasible domain of population is significantly reduced compared to
Figure 6a. By reducing the feasible region of the population, the convergence speed of the algorithm
can be accelerated and the positioning accuracy improved.
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The construction process of the multi-objective model was introduced before. In this section, the 
solution process of the model will be introduced. NSGA-II is considered by this paper to be a feasible 
and reliable algorithm for solving multi-objective models. The pseudo-code of NSGA-II-DV-Hop is 
introduced in Algorithm 2. 

Algorithm 2:The pseudo-code of NSGA-II-DV-Hop 
Begin 
Input: Communication radius, number of nodes, beacon nodes, and the location of 
beacon nodes; Population: NP; Dimension: D; Maximum Generation: Gmax; Cross 
probability: Pc; mutation probability: Pm. 
DV-Hop algorithm with Figure 1.  
Initialization: Compute objective values with Equation (7) and Equation (11), fast 

non-dominated sort, selection, crossover and mutation. 

Figure 6. Population constraint strategy. (a) Population constraint based on three beacon nodes;
(b) Population constraint based on all beacon nodes.
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4.3. NSGA-II-DV-Hop Algorithm

The construction process of the multi-objective model was introduced before. In this section, the
solution process of the model will be introduced. NSGA-II is considered by this paper to be a feasible
and reliable algorithm for solving multi-objective models. The pseudo-code of NSGA-II-DV-Hop is
introduced in Algorithm 2.
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4.3. NSGA-II-DV-Hop Algorithm 

The construction process of the multi-objective model was introduced before. In this section, the 
solution process of the model will be introduced. NSGA-II is considered by this paper to be a feasible 
and reliable algorithm for solving multi-objective models. The pseudo-code of NSGA-II-DV-Hop is 
introduced in Algorithm 2. 

Algorithm 2: The pseudo-code of NSGA-II-DV-Hop 
Begin 
Input: Communication radius, number of nodes, beacon nodes, and the location of 
beacon nodes; Population: NP; Dimension: D; Maximum Generation: Gmax; Cross 
probability: Pc; mutation probability: Pm. 
DV-Hop algorithm with Figure 1.  
Initialization: Compute objective values with Equation (7) and Equation (11), fast 

non-dominated sort, selection, crossover and mutation. 
Population constraint strategy with Equation (13). 
Generation = 1; 
While Generation < Gmax do 
Combine parent and offspring population; compute objective values with Equation 
(7), Equation (11), and fast non-dominated sort. 
Selection operation. 

If rand() < Pc  
Perform cross-operations on the positions of different individuals in the 

population; 
End  
If rand() < Pm  

Randomly generate a position that satisfies the boundary condition; 
End  
If (the position is contradictory with the boundary condition) 

Randomly generate a position that satisfies the boundary condition. 
end 
Generation = Generation+1; 

End 
Calculate average localization error with Equation (14). 
Output: The best location and average localization error. 
End 

5. Experimental Results and Analysis 

5.1. Experimental Environment and Evaluation Criteria 

5. Experimental Results and Analysis

5.1. Experimental Environment and Evaluation Criteria

To verify the effectiveness of NSGA-II-DV-Hop, extensive experiments were conducted in
MATLAB 2016a. Experimental results will be compared with other three algorithms, including
the DV-Hop, CS-DV-Hop, OCS-LC-DV-Hop, and MODE-DV-Hop. Experiment content tests the
four different complex networks, including the Random, C-shaped random, O-shaped random, and
X-shaped random, as shown in Figure 7. These different network topologies represent different
application backgrounds, including plain terrain, canyons terrain, lake terrain, and coal mine tunnels
(where all nodes are randomly employed). In addition, the detected area is a 100× 100 m square
region, and other parameters are listed in Table 1.
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Table 1. Parameter settings.

Parameter Value

Pc 1
Pm 1/c (c refers to the variable dimension)

Population 20
Largest iterations 500

R(m) 25
Nodes 100

Beacon nodes 20

In order to compare the positioning performance of different algorithms more fairly, the average
localization error (ALE) of unknown nodes is employed as the evaluation criterion. The specific
calculation formula is as follows:

ALE =
100

M× R

M

∑
i=1

√
(x′i − xi)

2 + (y′i − yi)
2 (14)

where M and R note the number of unknown nodes and communication radius respectively; (x′i , y′i)
represents the estimated location and (xi, yi) denotes the exact location.

5.2. Two Objective Function Relationships

In order to verify whether the multi-objective DV-Hop localization algorithm based on NSGA-II
proposed in this paper is feasible, we performed the relationship between two objective functions in
different network topologies. The results are shown in Figure 8. In Figure 8a–d respectively show the
relationship between the two objective functions in four network topologies, and these relationships
are contradictory. The experimental results also demonstrate that the method we proposed is feasible.
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In addition, in multi-objective optimization, the solutions obtained after the optimization
completed are the Pareto-optimal solutions. These equivalent solutions can be selected according to
the actual situation. In this paper, to make the operation simpler, the minimum value of the sum of the
two objective values in the solution set is identified as the optimal solution for comparison.

5.3. Influence of Communication Radius

In this experimental phase, the influences of different communication radius on the localization
performance are performed. And the communication radius will change from 15 to 40, when the
number of nodes and the beacon nodes remain unchanged. The simulation results are shown in Table 2
and Figure 9a–d.

Figure 9a shows the ALE of four algorithms in random topology, and in this topology,
NSGA-II-DV-Hop is slightly inferior to the CS-DV-Hop and OCS-LC-DV-Hop algorithm, but
significantly better than the DV-Hop algorithm. However, in the other three network topologies
(Figure 9b–d, the ALE of NSGA-II-DV-Hop always has the lowest localization error no matter what
kind of communication radius.

From Table 2, compared with DV-Hop, NSGA-II-DV-Hop can reduce a maximum of 21.91%,
114.77%, 69.71%, and 39.29% on localization errors, respectively. In particular, in the C-shaped random
network topology, compared with CS-DV-Hop and OCS-LC-DV-Hop, the positioning accuracy of
the NSGA-II-DV-Hop algorithm is improved by 26.74% and 24.42%, respectively. In addition, the
performance of MODE-DV-Hop is similar to NSGA-II-DV-Hop.
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Table 2. Average localization error (ALE) of different algorithms in different network topologies and
communication radius.

Communication Radius 15 20 25 30 35 40

random
topology

DV-Hop 65.24 46.14 33.25 28.92 27.59 26.54
CS-DV-Hop 48.17 26.52 23.58 22.15 21.44 18.54

OCS-LC-DV-Hop 38.52 24.58 21.83 20.84 19.01 17.65
MODE-DV-Hop 52.71 24.84 21.30 20.32 19.93 18.13
NSGAII-DV-Hop 52.57 24.23 22.09 21.46 20.19 18.06

C-shaped
random
topology

DV-Hop 172.33 112.53 63.73 49.78 44.81 41.62
CS-DV-Hop 84.30 62.38 38.17 31.25 31.42 29.93

OCS-LC-DV-Hop 81.98 58.59 37.35 30.46 32.09 29.36
MODE-DV-Hop 66.80 51.23 34.20 30.44 27.74 28.72
NSGAII-DV-Hop 57.56 49.54 32.89 28.89 28.87 28.37

O-shaped
random
topology

DV-Hop 117.88 56.50 44.77 39.39 29.24 31.28
CS-DV-Hop 48.27 30.51 31.83 26.72 20.44 21.38

OCS-LC-DV-Hop 49.32 31.05 23.77 26.86 20.85 21.98
MODE-DV-Hop 47.81 27.44 23.67 23.24 18.48 19.97
NSGAII-DV-Hop 48.17 25.78 22.59 22.96 17.80 19.06

X-shaped
random
topology

DV-Hop 80.18 54.22 43.49 39.39 37.15 36.29
CS-DV-Hop 42.84 32.54 34.51 30.46 30.55 26.28

OCS-LC-DV-Hop 45.68 33.60 35.84 32.43 30.41 26.60
MODE-DV-Hop 43.04 31.37 29.65 27.88 24.93 26.38
NSGAII-DV-Hop 40.89 32.49 29.18 29.39 27.30 25.93
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Figure 9. The ALE of four network topologies in different communication radius. (a) The random
topology; (b) The C-shaped random topology; (c) The O-shaped random topology; (d) The X-shaped
random topology.

5.4. Influence of Nodes

The number of nodes incrementally increases from 50 to 100 in this simulation phase, and the
number of beacon nodes and communication radius stay the same. The experiment results are given
in Table 3 and Figure 10.
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Table 3. ALE of different algorithms in different network topologies and number of nodes.

Number of Nodes 50 60 70 80 90 100

random
topology

DV-Hop 51.70 43.60 30.56 32.57 33.13 33.25
CS-DV-Hop 26.98 25.65 24.94 24.78 24.99 23.58

OCS-LC-DV-Hop 24.35 24.17 23.57 23.39 22.43 21.83
MODE-DV-Hop 27.41 27.83 26.98 23.29 21.89 21.30
NSGAII-DV-Hop 27.95 25.82 26.31 22.84 22.64 22.09

C-shaped
random
topology

DV-Hop 76.27 75.39 70.34 66.42 65.12 63.73
CS-DV-Hop 46.12 45.19 41.73 41.18 39.21 38.17

OCS-LC-DV-Hop 43.98 43.07 40.63 39.64 38.68 37.35
MODE-DV-Hop 39.05 42.74 36.04 36.01 36.18 34.20
NSGAII-DV-Hop 34.01 37.24 34.56 34.92 33.52 32.89

O-shaped
random
topology

DV-Hop 33.92 40.59 40.82 41.80 42.46 44.77
CS-DV-Hop 22.54 21.16 22.20 22.66 22.06 31.83

OCS-LC-DV-Hop 21.63 23.48 23.12 23.31 22.84 23.77
MODE-DV-Hop 20.18 20.47 22.60 22.75 23.56 23.67
NSGAII-DV-Hop 18.79 21.78 22.03 21.70 22.16 22.59

X-shaped
random
topology

DV-Hop 34.16 36.47 38.00 40.31 40.30 43.49
CS-DV-Hop 33.98 31.64 32.58 33.74 33.68 34.51

OCS-LC-DV-Hop 35.34 34.21 35.27 35.86 35.13 35.84
MODE-DV-Hop 29.03 27.90 29.21 28.20 27.52 29.65
NSGAII-DV-Hop 30.07 27.27 28.55 28.25 27.54 29.18
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5.5. Influence of Beacon Nodes 

In this simulation phase, the number of beacon nodes incrementally increases from 5 to 20, and 
the number of nodes and communication radius remain the same. The experiment results are given 
in Table 4 and Figure 11. 
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Figure 10. The ALE of four network topologies in different number of nodes. (a) The random
topology; (b) The C-shaped random topology; (c) The O-shaped random topology; (d) The X-shaped
random topology.

From Figure 10, we can see that in C-shaped and X-shaped random network topologies, the
localization accuracy of NSGA-II-DV-Hop and MODE-DV-Hop algorithms are significantly superior
to CS-DV-Hop, OCS-LC-DV-Hop, and DV-Hop algorithms. And in the Random or O-shaped
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network topologies, the performance of NSGA-II-DV-Hop is slightly better than the CS-DV-Hop
and OCS-LC-DV-Hop, but always superior to the DV-Hop algorithm.

As depicted in Table 3, NSGA-II-DV-Hop has excellent positioning performance. Compared
with the DV-Hop localization algorithm, the ALEs of NSGA-II-DV-Hop are less than 4.25–23.75%,
30.84–42.26%, 15.13–22.18%, and 4.09–14.31% respectively. The most conspicuous improvement occurs
in X-shaped and C-Shaped topologies, and the ALEs are reduced by 7.61% and 9.97% more than
OCS-LC-DV-Hop algorithm, respectively. Compared with the MODE-DV-Hop, the precision of the
NSGA-II-DV-Hop is slightly better.

5.5. Influence of Beacon Nodes

In this simulation phase, the number of beacon nodes incrementally increases from 5 to 20, and
the number of nodes and communication radius remain the same. The experiment results are given in
Table 4 and Figure 11.

Table 4. ALE of different algorithms in different network topologies and number of beacon nodes.

Number of Baecon Nodes 5 10 15 20 25 30

random
topology

DV-Hop 49.21 38.21 38.77 33.25 28.31 32.48
CS-DV-Hop 38.76 29.67 28.59 23.58 22.88 20.94

OCS-LC-DV-Hop 36.98 28.72 26.80 21.83 21.01 19.22
MODE-DV-Hop 35.99 24.41 23.62 21.30 20.11 17.49
NSGAII-DV-Hop 34.74 23.25 21.90 22.09 20.81 19.43

C-shaped
random
topology

DV-Hop 88.45 67.42 69.45 63.73 64.88 69.80
CS-DV-Hop 101.44 48.14 42.49 38.17 49.41 53.24

OCS-LC-DV-Hop 102.36 49.62 41.73 37.35 51.77 52.90
MODE-DV-Hop 74.48 37.55 40.08 34.20 37.43 36.11
NSGAII-DV-Hop 67.25 34.78 36.83 32.89 35.34 34.63

O-shaped
random
topology

DV-Hop 98.08 79.95 38.47 44.77 38.28 40.49
CS-DV-Hop 42.65 36.22 30.35 31.83 34.84 37.10

OCS-LC-DV-Hop 45.15 36.60 33.17 23.77 34.99 35.72
MODE-DV-Hop 42.59 35.76 23.97 23.67 23.86 21.88
NSGAII-DV-Hop 41.14 30.23 23.46 22.59 23.38 21.47

X-shaped
random
topology

DV-Hop 58.46 59.14 47.89 43.49 46.66 48.57
CS-DV-Hop 51.90 40.74 41.54 34.51 47.54 44.36

OCS-LC-DV-Hop 48.83 39.74 46.47 35.84 45.32 45.87
MODE-DV-Hop 45.76 34.70 32.19 29.65 28.96 25.75
NSGAII-DV-Hop 42.74 35.03 30.81 29.18 29.29 27.25

As shown in Figure 11, we can see that the positioning accuracy of NSGA-II-DV-Hop always has
an advantage over the other three localization algorithms no matter which topologies. Furthermore,
as the number of beacon nodes increases, the ALEs of NSGA-II-DV-Hop present a declining trend,
but the ALE of the other three algorithms fluctuate upwards and downwards. The reason causing
this kind of phenomenon is that in the complex network topology, the unknown nodes at the edge
of the detected area increases, and the feasible domain of the unknown node satisfies the probability
increase of Figure 6a, so that the positioning performance deteriorates. Inversely, the NSGA-II-DV-Hop
algorithm proposed in this paper adopts the principle of Figure 6b, which reduces the feasible domain
of the unknown node, so that the algorithm has more reliable positioning performance.

As shown in Table 4, the original DV-Hop always has the worst localization performance;
and NSGA-II-DV-Hop algorithm has the greatest degree of enhancement no matter which network
topologies. Especially, compared with the OCS-LC-DV-Hop, NSGA-II-DV-Hop positioning accuracy
increased by up to 35.11% and 18.62% respectively in C-shaped and X-shaped network topologies.
And the minimum ALEs always are in NSGA-II-DV-Hop and MODE-DV-Hop.
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Figure 11. The ALE of four network topologies in different number of beacon nodes. (a) The random
topology; (b) The C-shaped random topology; (c) The O-shaped random topology; (d) The X-shaped
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5.6. The Standard Deviation and the Confidence Intervals

As can be seen from Table 5, the standard deviations of the NSGA-II-DV-Hop and MODE-DV-Hop
are larger than the CS-DV-Hop and OCS-LC-DV-Hop, which is because the multi-objective model
has more potential optimal solutions, such as Figure 5. However, it is worth paying attention that
the confidence intervals of NSGA-II-DV-Hop and MODE-DV-Hop are less than the CS-DV-Hop and
OCS-LC-DV-Hop in most cases, which means that the performance of the multi-objective model
is reliable.

Table 5. The standard deviation and confidence intervals of different algorithms in four
network topologies.

Random
Topology

C-Shaped
Random Topology

O-Shaped
Random Topology

X-Shaped
Random Topology

the standard
deviation and
the confidence

intervals
(probably at

95%)

CS-DV-Hop

0.5636 0.5241 0.1390 0.2150
[0.46, 0.67] [0.41, 0.70] [0.11, 0.19] [0.17, 0.29]

23.5816 38.1680 31.8336 34.5050
[23.12, 24.03] [37.97, 38.36] [31.78, 31.89] [34.42, 34.59]

OCS-LC-DV-Hop

0.9243 0.4277 0.6448 0.1736
[0.67, 1.31] [0.34, 0.58] [0.51, 0.87] [0.13, 0.23]

21.8342 37.3458 23.7727 35.8445
[21.04, 22.21] [37.19, 37.51] [23.53, 24.01] [35.77, 35.91]

MODE-DV-Hop

1.2770 0.7446 0.6658 1.1133
[1.02, 1.71] [0.59, 1.00] [0.53, 0.89] [0.88, 1.49]

21.3018 34.2048 23.6688 29.6472
[20.82, 21.77] [33.92, 34.48] [23.42, 23.91] [29.23, 30.06]

NSGA-II-DV-Hop

0.7005 0.4887 0.4911 0.8246
[0.55, 0.94] [0.38, 0.66] [0.39, 0.66] [0.65, 1.11]

22.0850 32.8934 22.5942 29.1820
[21.82, 22.35] [32.71, 33.08] [22.41, 22.77] [28.87, 29.48]
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6. Conclusions

This paper proposes a multi-objective DV-Hop localization algorithm based on NSGA-II called
NSGA-II-DV-Hop. To further reduce the positioning error, the traditional DV-Hop localization
algorithm based on single-objective optimization algorithm is transformed into a multi-objective
DV-Hop localization algorithm. We use the multi-objective constraint approach to reduce the
convergence domain of unknown nodes and achieve the purpose of improving positioning accuracy.
In addition, we also improve the search strategy of the algorithm, changing the population constraint
strategy based on three beacon nodes to the population constraint strategy based on all beacon nodes.
The simulation results demonstrate that this improved strategy can effectively reduce the sensitivity of
the algorithm positioning performance to the number of beacon nodes. Furthermore, this paper also
tests four complex network topologies in different backgrounds, and the experimental results show
that NSGA-II-DV-Hop significantly outperforms original DV-Hop, CS-DV-Hop, OCS-LC-DV-Hop,
and MODE-DV-Hop in all topologies, which also validates the practicability and reliability of this
multi-objective model.

And in the future, we will continue to study the error distribution characteristics of the estimated
distance in different network topologies and the construction of multi-objective models when there are
obstacles in the network.
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