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1. Introduction

Consider the parabolic operator

L = L(x, t, ∂/∂x, ∂/∂t)

=
∂

∂t
−

n

∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n

∑
i=1

ai(x, t)
∂

∂xi
+ a0(x, t) (1)

Let all coefficients of the operator L be defined in the domain D(T)
n+1 = Rn × (0, T). Denote by A(x, t)

the coefficient matrix of the highest derivatives of the operator L and suppose that A(x, t) is symmetric
matrix. Suppose that all eigenvalues of the matrix A(x, t) belong to the fixed interval [ν, µ], where ν > 0.

Consider the Cauchy problem in the domain D(T)
n+1

L(x, t, ∂/∂x, ∂/∂t)u(x, t) = f (x, t),

u|t=0 = ϕ(x). (2)

A Random variable ξ(x, t) is called an unbiased estimator for a function u(x, t) if mathematical
expectation Eξ(x, t) is equal to u(x, t). Every unbiased estimator gives a stochastic numerical method
for evaluation of the function u(x, t). Now we briefly discuss some known stochastic methods for
solving the Cauchy problem.

Let 0 < α < 1 and the coefficients of the parabolic operator are elements of the Hölder class

Hα, α
2 (D(T)

n+1), then Equation (2) has a fundamental solution Z(x, y, t, τ) [1]. Let the function f (x, t) satisfy
the Hölder condition with respect to all of its arguments, and let the function ϕ(x) be continuous
function. Let in addition f (x, t) and ϕ(x) grow no faster than ea|x|2 , as |x| → ∞. Then, the solution of
the Cauchy problem can be written in the following form

u(x, t) =
∫ t

0
dτ
∫

Rn
Z(x, y, t, τ) f (y, τ)dy +

∫
Rn

Z(x, y, t, 0)ϕ(y)dy. (3)

If a0(x, t) ≡ 0 then the fundamental solution Z(x, y, t, τ) is a probability density (as a function of
y). So, if the fundamental solution is known one can construct the corresponding unbiased estimator.
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Particularly, if the coefficients of the equation are constant, it is enought to generate a normally
distributed random vector in Rn for the evaluation of u(x, t). In the general case, Z(x, y, t, τ) is a
transition density of a stochastic process Xt, which started from a point x at time τ = 0. Hence,

u(x, t) = E
∫ t

0
f (Xs, t− s)ds + Eϕ(Xt), (4)

and random variable η = t f (Xtθ , t(1− θ)) + ϕ(Xt) is an unbiased estimator for u(x, t), where the
variable θ is uniformly distributed in [0, 1]. Then we can use this estimator in the Monte Carlo
procedure if we can generate the process Xt. The process Xt is a solution of the respective stochastic
differential equation, and we can approximate it by another process Yt, using, for example, the Euler
scheme. Let 0 = t0 < t1 < . . . < tm = t, and Yt0 = x, Yt1 , . . . , Ytm be the Euler approximation for
the corresponding values of Xs, s ∈ [0, t]. After replacing X by Y, the estimator η became the biased
one. Let pX(y1, . . . , ym) and pY(y1, . . . , ym) be the densities of m−dimentional distributions for the X
and Y processes, respectively. The estimator pX(Yt1 , . . . , Ytm)ϕ(Ytm)/pY(Yt1 , . . . , Ytm) is an unbiased
estimator for Eϕ(Xt). Finally, if random variable ζ is an unbiased estimator for pX(Yt1 , . . . , Ytm), then

Eζϕ(Ytm)/pY(Yt1 , . . . , Ytm) = Eϕ(Xt). (5)

The first factor ζ in the formula (5) was constructed by W. Wagner in his papers [2]. It was shown
that the fundamental solution is a functional of the solution of some integral Volterra equation.
The von-Neumann–Ulam scheme [3] was applied for estimation of the fundamental solution. Monte
Carlo algorithms for evaluation of some other functionals can be found in the works [4–6].

In paper [7], the von-Neumann–Ulam scheme was used for constructing another class of
estimators for u(x, t) without using a grid. A conjugate (dual) scheme of construction of unbiased
estimators for functionals of the solutions of an integral equation, which is equivalent to the Cauchy
problem, was considered in [8]. This scheme simplifies the modeling procedure, because boundaries
of the spectrum for the matrix A(x, t) are not required to be known.

Finally, if the operator L has differentiable coefficients, then we can obtain an integral equation
for u(x, t) by using the Green formula and solve this equation via the Monte Carlo method.
Such algorithms were considered in [9,10] for equations whose principal part one is the Laplace
operator. We obtain a Volterra equation for the Cauchy problem solution u(x, t) in the general case.
In this paper we investigate the von-Neumann–Ulam scheme for regular and conjugate cases.

It is necessary to note that the Multilevel Monte Carlo Method [11,12] is often used for evaluation
of the functional Eϕ(Xt), where process Xt is a solution of the respective stochastic differential equation.
This approach is not covered in this paper.

This paper does not contain any results of numerical experiments. Numerical experiments and
the efficiency of various stochastic algorithms for solving the Cauchy problem will be the subject of
the separate paper.

2. Integral Representation

Let all coefficients of the operator L be elements of the Hölder class and let there exist continuous
and bounded derivatives

∂2aij(x, t)/∂xi∂xj, ∂aij(x, t)/∂xj, ∂ai(x, t)/∂xi

for i, j = 1, 2, . . . , n.
We also suppose that the Cauchy problem solution is continuous and bounded. We define ‖u‖

by equality
‖u‖ = sup

(x,t)∈D(T)
n+1

|u(x, t)|.
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Take a point (x, t). Let A(i,j)(x, t) be the elements of the inverse matrix A−1(x, t). Let us define a
function σ(y, x, t) by equality

σ(y, x, t) =

(
n

∑
i,j=1

A(i,j)(x, t)(yi − xi)(yj − xj)

) 1
2

. (6)

Define the function Z0 for t > τ by equality

Z0(x, y, t, τ) =
1

[4π(t− τ)]
n
2 (det A(x, t))

1
2
· exp

(
−σ2(y, x, t)

4(t− τ)

)
. (7)

For t < τ we set Z0(x, y, t, τ) = 0. We denote Z0(x, y, t, τ) by v0(y, τ) if the point (x, t) is fixed.
For ρ > 0, we define a function v(y, τ) by equality

v(y, τ) =
1

[4π(t− τ)]
n
2 (det A(x, t))

1
2

×
(

exp
(
−σ2(y, x, t)

4(t− τ)

)
− exp

(
− ρ2

4(t− τ)

))
.

Using a Green formula, it is easy to prove that

u(x, t) =
∫ t

0

∫
Dρ

[v(y, τ)Lu(y, τ)− u(y, τ)Mv(y, τ)] dydτ

+
∫

Dρ

u(y, 0)v(y, 0)dy

+
∫ t

0

∫
∂Dρ

[(y− x)T A−1(x, t)A(y, τ)A−1(x, t)(y− x)]
2(t− τ)‖A−1(x, t)(y− x)‖

×Z0(x, y, t, τ)u(y, τ)dySdτ, (8)

where the inner integral in the third term is a surface integral on the boundary of the domain
Dρ ⊂ Rn, which is defined by Dρ = {y ∈ Rn|σ(y, x, t) < ρ}. Let M be a conjugate operator for
L = L(y, τ, ∂/∂y, ∂/∂τ) :

Mv(y, τ) = −∂v(y, τ)

∂τ
−

n

∑
i,j=1

∂2

∂yi∂yj

(
aij(y, τ)v(y, τ)

)
−

n

∑
i=1

∂

∂yi
(ai(y, τ)v(y, τ)) + a0(y, τ)v(y, τ). (9)

Using the Cauchy inequality we have

[(y− x)T A−1(x, t)A(y, τ)A−1(x, t)(y− x)] ≤ ‖A(y, τ)‖ · ‖A−1(x, t)(y− x)‖2.

Define a new scalar product [v, w] by equality [v, w] = vT A−1(x, t)w. Then

[y− x, y− x] = σ2(x, y, t), [w, w] ≤ ‖A−1(x, t)‖‖w‖2.

Using the Cauchy inequality we have

‖A−1(x, t)(y− x)‖4 = [(y− x), A−1(x, t)(y− x)]2,
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‖A−1(x, t)(y− x)‖4 ≤ [A−1(x, t)(y− x), A−1(x, t)(y− x)] · σ2(x, y, t).

Hence,
‖A−1(x, t)(y− x)‖2 ≤ ‖A−1(x, t)‖ · σ2(x, y, t).

Now, we can evaluate the last integral in formula (8):

∫ t

0

∫
∂Dρ

[(y− x)T A−1(x, t)A(y, τ)A−1(x, t)(y− x)]
2(t− τ)‖A−1(x, t)(y− x)‖

×Z0(x, y, t, τ)u(y, τ)dySdτ

≤ µ

ν

∫ t

0

∫
∂Dρ

ρ

2(t− τ)

1

[4π(t− τ)]
n
2 (det A(x, t))

1
2

× exp
(
− ρ2

4(t− τ)

)
u(y, τ)dySdτ

≤ ‖u‖
Γ( n

2 )

µ

ν

∫ t

0

ρn

(t− τ)

1

[4(t− τ)]
n
2
· exp

(
− ρ2

4(t− τ)

)
dτ

≤ ‖u‖
Γ( n

2 )

µ

ν

∫ ∞

ρ2
4t

s
n
2−1 · exp (−s) ds.

Hence, the last integral in formula (8) converges to zero as ρ → ∞. For the function v we have
inequality v(y, τ) ≤ v0(y, τ). Moreover, v(y, τ)→ v0(y, τ) as ρ→ ∞. So, using the equality∫

Rn
v0(y, τ)dy = 1,

we have ∫
Dρ

u(y, 0)v(y, 0)dy→
∫

Rn
u(y, 0)v0(y, 0)dy

and ∫ t

0

∫
Dρ

v(y, τ)Lu(y, τ)dydτ →
∫ t

0

∫
Rn

v0(y, τ)Lu(y, τ)dydτ.

It is easy to see that
Mv(y, τ)−Mv0(y, τ) =

= (
∂

∂τ
− d0)

(
1

[4π(t− τ)]
n
2 (det A(x, t))

1
2

exp
(
− ρ2

4(t− τ)

))

=

(
n

2(t− τ)
− ρ2

4(t− τ)2 − d0

)
1

[4π(t− τ)]
n
2 (det A(x, t))

1
2

exp
(
− ρ2

4(t− τ)

)
,

where

d0 = −
n

∑
i,j=1

∂2aij(y, τ)

∂yi∂yj
−

n

∑
j=1

∂aj(y, τ)

∂yj
+ a0(y, τ)

is a coefficient of the function u in the operator Mu. The inequalities

∫ t

0

∫
Dρ

|u(y, τ)Mv(y, τ)− u(y, τ)Mv0(y, τ)| dydτ

≤ const · ‖u‖
∫ t

0

(
n

2(t− τ)
+

ρ2

4(t− τ)2 + ‖d0‖
)
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× ρn

Γ( n+1
2 ) [4(t− τ)]

n
2

exp
(
− ρ2

4(t− τ)

)
dτ

≤ const · ‖u‖
(

1 +
2t‖d0‖

n

)
1

Γ
( n

2
) ∫ ∞

ρ2
4t

s
n
2−1 · exp (−s) ds

+const · ‖u‖ 1

Γ
(

n+1
2

) ∫ ∞

ρ2
4t

s
n
2 · exp (−s) ds

show that ∫ t

0

∫
Dρ

u(y, τ)Mv(y, τ)dydτ →
∫ t

0

∫
Rn

u(y, τ)Mv0(y, τ)dydτ.

Putting ρ → ∞ in the formula (8), we have the following integral representation of the Cauchy
problem (2)

u(x, t) =
∫ t

0

∫
Rn

[v0(y, τ) f (y, τ)− u(y, τ)Mv0(y, τ)] dydτ

+
∫

Rn
ϕ(y)v0(y, 0)dy. (10)

3. Von-Neumann–Ulam Scheme

Now we investigate some properties of the integral operator

Ku(x, t) = −
∫ t

0

∫
Rn

u(y, τ)Mv0(y, τ)dydτ (11)

in Equation (10). The matrix A(x, t) of the coefficients of higher derivatives is symmetric.
So, from the equation

n

∑
i,j=1

aij(x, t)
∂2

∂yi∂yj
v0(y, τ) = −∂v0(y, τ)

∂τ
,

we have

Mv0(y, τ) =
n

∑
i,j=1

[aij(x, t)− aij(y, τ)]
∂2

∂yi∂yj
v0(y, τ)

+
n

∑
i=1

di(y, τ)
∂

∂yi
v0(y, τ) + d0(y, τ)v0(y, τ), (12)

where di(y, τ) = −2 ∑n
j=1 ∂aij(y, τ)/∂yj − ai(y, τ) are bounded.

The expression (12) has the same structure and properties as the kernel K(x, y, t, λ) in formula
(11.12) in ([1], Sec. IV). It follows from inequalities (11.3) and (11.17) in ([1], Sec. IV) that there exist
positive constants C and c, such that

|Mv0(y, τ)| ≤ c(t− τ)−
n+2−α

2 exp
(
−C
|y− x|2

t− τ

)
, (13)

for 0 ≤ τ < t.
Examples of constants c, C and further discussion can be found in [7]. In particular, it is shown

in [7] that the inequality (13) implies uniform convergence of the von-Neumann series for Equation (10),
if f (x, t) and ϕ(x) are bounded functions. We have

u(x, t) =
∞

∑
i=0

KiF(x, t), (14)



Mathematics 2019, 7, 177 6 of 10

F(x, t) = F1(x, t) + F2(x, t)

=
∫ t

0

∫
Rn

v0(y, τ) f (y, τ)dydτ +
∫

Rn
ϕ(y)v0(y, 0)dy. (15)

We can apply methods of [7] for constructing unbiased estimators for u(x, t). To realize the
von-Neumann–Ulam scheme, it is sufficient to choose a transition probability density for a Markov
chain consistent with the kernel K1(x, y, t, τ) of the operator K. For instance, we can take a density in
the form

p((x, t)→ (y, τ)) =
α(1− q)

2t
α
2

(t− τ)
α
2−1Z1(x− y, t− τ), (16)

where 0 < q < 1 is the probability of absorption at a current step and

Z1(x− y, t− τ) =

(
C

π(t− τ)

) n
2

exp
(
−C
|x− y|2

t− τ

)
(17)

for 0 ≤ τ < t and Z1(x− y, t− τ) = 0 for τ > t.
The constant C in these formulas is the same as in inequality (13). We can take any constant such

that 4µC < 1. Hence, we have the compatibility of the density and the kernel of the integral equation.
The probability of absorption at each step is a constant. Therefore, the time of the absorption (N) has
a geometric probability distribution with a parameter q: P(N = m) = q(1− q)m for m = 0, 1, 2, . . . .
Random variable N and the trajectory are independent random elements and EN = q−1. We can
use procedure described in [7] for generating a Markov chain {(xm, tm)}∞

m=1 which starts at the point
(x0, t0) = (x, t).

For constructing unbiased estimators for the solution of Equation (10), we use the formulas

η(x, t) =
N

∑
m=0

W(m)F(xm, tm), (18)

ζ(x, t) =
W(N)F(xN , tN)

q
(19)

We define weight functions as W(0) = 1,

W(m) = W(m−1) K1(xm−1, xm, tm−1, tm)

p((xm−1, tm−1)→ (xm, tm))
, (20)

for m = 1, 2, . . .. Final unbiased estimators for u(x, t) are obtained after replacement of F(xm, tm) by
their unbiased estimators

F̂m = tm f (xm +
√

2tm(1− θ)Y, tmθ) + ϕ(xm +
√

2tmY),

where the random variable θ is uniformly distributed on the interval [0, 1], and a random vector Y has
a normal distribution with mean 0 and covariance matrix A(xm, tm). They are independent.

It is proved in [7] that the estimators have finite variances.

Numerical Algorithm

The numerical algorithm is based on the Monte Carlo method for calculating the mathematical
expectation of a random variable.

Consider as an example the following unbiased estimator ζ̂(x, t) = W(N) F̂N/q for u(x, t).
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Let ζ̂1, ζ̂2, . . . , ζ̂k, be independent realizations of the estimator ζ̂(x, t). Then we can approximate
u(x, t) by the sample average ζ̄ = (ζ̂1 + ζ̂2 + . . . + ζ̂k)/k. The approximation error is calculated as
3
√

S2/k, where S2 = (ζ̂2
1 + ζ̂2

2 + . . . + ζ̂2
k)/k− ζ̄2 is the sample variance.

For simulating a Markov chain {(xm, tm)}N
m=0, we can use the formulas

x0 = x, t0 = t, xm+1 = xm +
√

tmϑm/(2C)Ym, tm+1 = tm(1− ϑm) (21)

where the random variables {ϑ}∞
m=0 and the random vectors {Ym}∞

m=0 are stochastically independent.
The variables ϑm are distributed on the interval (0, 1) and have a distribution density (α/2)sα/2−1.
All the components of the vector Ym are stochastically independent and have a standard
normal distribution.

4. Conjugate Scheme

Now we apply the technique developed in [8] to Equation (10). Fix a number q (0 < q < 1) and
generate a random variable N having a geometric distribution (P(N = m) = q(1− q)m, m = 0, 1, . . .).
The random variables

ξ1(x, t) =
KN F(x, t)
q(1− q)N , ξ2(x, t) =

N

∑
m=0

KmF(x, t)
(1− q)m

are unbiased estimators for u(x, t). We execute m times the procedure of evaluation of the integral in
(11) to determine the unbiased estimator for KmF(x, t). This procedure is similar to the procedure of
evaluation of the integral (3.8) in [8]. Namely, let S0

1(x, t) =
{

ω ∈ Rn|ω′A−1(x, t)ω = 1
}

be an ellipsoid
centered at zero, and let σn = 2π

n
2 /Γ( n

2 ) be an area of the sphere of radius 1 in Rn. The random vector
Ω is distributed on S0

1(x, t) with density

p(x, t, ω) =
1

σn
√

det(A(x, t))|A−1(x, t)ω|
. (22)

After the calculation of the kernel K1(x, y, t, τ) = −Mv0(y, τ), we have

Ku(x, t) = −
∫ t

0
dτ
∫ ∞

0
drE

n− Tr
(

A(x + rΩ, τ)A−1(x, t)
)

(t− τ)Γ( n
2 )(4(t− τ))

n
2

× exp
(
− r2

4(t− τ)

)
rn−1u(x + rΩ, τ)

+
∫ t

0
dτ
∫ ∞

0
drE

2r2 [Ω′A−1(x, t)A(x + rΩ, τ)A−1(x, t)Ω− 1
]

4(t− τ)2Γ( n
2 )(4(t− τ))

n
2

× exp
(
− r2

4(t− τ)

)
rn−1u(x + rΩ, τ)

+
∫ t

0
dτ
∫ ∞

0
drE(

rd′(x + rΩ, τ)A−1(x, t)Ω
(t− τ)Γ( n

2 )(4(t− τ))
n
2

× exp
(
− r2

4(t− τ)

)
rn−1u(x + rΩ, τ)−

∫ t

0
dτ
∫ ∞

0
drEd0(x + rΩ, τ)

×u(x + rΩ, τ)
2rn−1

Γ( n
2 )(4(t− τ))

n
2

exp
(
− r2

4(t− τ)

)
, (23)

where d′ denotes the transposed vector d> = (d1, d2, . . . , dn) and Tr(A) denotes the trace of the matrix
A. E is the mathematical expectation of the function of random variable Ω.

All coefficients in the Equation (2) belong to the Hölder class. Hence, we can simplify the
expressions in (23):
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n− Tr
(

A(x + rΩ, τ)A−1(x, t)
)

= Tr
(
[A(x, t)− A(x + rΩ, t)] A−1(x, t)

)
+Tr

(
[A(x + rΩ, t)− A(x + rΩ, τ)] A−1(x, t)

)
= g̃1(x + rΩ, x, t)rα + g̃2(x + rΩ, x, τ, t)(t− τ)

α
2 , (24)

[
Ω′A−1(x, t)A(x + rΩ, τ)A−1(x, t)Ω− 1

]
= Ω′A−1(x, t) [A(x + rΩ, t)− A(x, t)] A−1(x, t)Ω

+Ω′A−1(x, t) [A(x + rΩ, τ)− A(x + rΩ, t)] A−1(x, t)Ω

= h̃1(x + rΩ, x, t)rα + h̃2(x + rΩ, x, τ, t)(t− τ)
α
2 , (25)

where g̃1, g̃2, h̃1, h̃2 are bounded functions.
Substituting these expressions into (23) and putting s = r2/4(t− τ), we obtain the following

representation for Ku(x, t) :

Ku(x, t) =
∫ t

0
dτ(t− τ)

α
2−1

∫ ∞

0
ds

2α

2Γ( n
2 )

s
n+α

2 −1 exp(−s)

×E
(

g̃1(x + 2
√

s(t− τ)Ω, x, t)u(x + 2
√

s(t− τ)Ω, τ)

)
+
∫ t

0
dτ(t− τ)

α
2−1

∫ ∞

0
ds

1
2Γ( n

2 )
s

n
2−1 exp(−s)

×E
(

g̃2(x + 2
√

s(t− τ)Ω, x, τ, t)u(x + 2
√

s(t− τ)Ω, τ)

)
+
∫ t

0
dτ(t− τ)

α
2−1

∫ ∞

0
ds

2α

Γ( n
2 )

s
n+2+α

2 −1 exp(−s)

×E
(

h̃1(x + 2
√

s(t− τ)Ω, x, t)u(x + 2
√

s(t− τ)Ω, τ)

)
+
∫ t

0
dτ(t− τ)

α
2−1

∫ ∞

0
ds

1
Γ( n

2 )
s

n+2
2 −1 exp(−s)

×E
(

h̃2(x + 2
√

s(t− τ)Ω, x, τ, t)u(x + 2
√

s(t− τ)Ω, τ)

)
+
∫ t

0
dτ(t− τ)−

1
2

∫ ∞

0
ds

1
Γ( n

2 )
s

n+1
2 −1 exp(−s)

×E
(

d′(x + 2
√

s(t− τ)Ω, τ)A−1(x, t)Ωu(x + 2
√

s(t− τ)Ω, τ)

)
−
∫ t

0
dτ
∫ ∞

0
ds

1
Γ( n

2 )
s

n
2−1 exp(−s)

×E
(

d0(x + 2
√

s(t− τ)Ω, τ)u(x + 2
√

s(t− τ)Ω, τ)

)
. (26)
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The unbiased estimator η̃(x, t) for Ku(x, t) has the form:

η̃(x, t) = t
α
2

2αΓ( n+α
2 )

αΓ( n
2 )

g̃1

(
x + 2

√
γ

(
n + α

2

)
tϑΩ, x, t

)

×u

(
x + 2

√
γ

(
n + α

2

)
tϑΩ, t− tϑ

)

+t
α
2

1
α

g̃2

(
x + 2

√
γ
(n

2

)
tϑΩ, x, t− tϑ, t

)
×u
(

x + 2
√

γ
(n

2

)
tϑΩ, t− tϑ

)
+t

α
2

2α+1Γ( n+2+α
2 )

αΓ( n
2 )

h̃1

(
x + 2

√
γ

(
n + 2 + α

2

)
tϑΩ, x, t

)

×u

(
x + 2

√
γ

(
n + 2 + α

2

)
tϑΩ, t− tϑ

)

+t
α
2

n
α
× h̃2

(
x + 2

√
γ

(
n + 2

2

)
tϑΩ, x, t− tϑ, t

)

×u

(
x + 2

√
γ

(
n + 2

2

)
tϑΩ, t− tϑ

)

+t
1
2

2Γ( n+1
2 )

Γ( n
2 )

d′
(

x + 2

√
γ

(
n + 1

2

)
tδΩ, t− tδ

)
A−1(x, t)Ω

×u

(
x + 2

√
γ

(
n + 1

2

)
tδΩ, t− tδ

)

−td0

(
x + 2

√
γ
(n

2

)
tθΩ, t− tθ

)
u
(

x + 2
√

γ
(n

2

)
tθΩ, t− tθ

)
, (27)

where the random variables ϑ, δ, θ are distributed on the interval [0, 1]. The variables ϑ and δ have
densities (α/2)sα/2−1 and 1/(2

√
s), respectively, and θ is distributed uniformly. The variable γ(m) has

a gamma distribution with a density sm−1e−s/Γ(m).
Choosing one of the summands in (27) with probability 1

6 and multiplying it by 6, we obtain the
final unbiased estimator ζ̃(x, t) for Ku(x, t).

The unbiased estimators ψm for KmF(x, t) can be constructed on trajectories of the inhomogeneous
Markov chain {(xk, tk)}∞

k=0 with initial point (x, t). Consider stochastically independent random
elements {ϑk}∞

k=0, {δk}∞
k=0, {θk}∞

k=0, {Ωk}∞
k=0. The initial value of the variable ψm is 1. At step k we

consider ζ̃(xk−1, tk−1) and multiply the variable ψm by the corresponding weight factor. The arguments
of the function u determine the next state of the Markov chain. For example, if the first summand of
the estimator (27) was chosen at step k, then we multiply variable ψm by

6t
α
2
k−1

2αΓ( n+α
2 )

αΓ( n
2 )

g̃1

(
xk−1 + 2

√
γk−1

(
n + α

2

)
tk−1ϑk−1Ωk−1, xk−1, tk−1

)

and define the next point (xk, tk) by formulas:

xk = xk−1 + 2

√
γk−1

(
n + α

2

)
tk−1ϑk−1Ωk−1,

tk = tk−1 − tk−1ϑk−1.
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After m steps, we multiply the variable ψm by an estimator for F(xm, tm) which is equal to

tm f
(

xm + 2
√

γm

(n
2

)
tmθmΩm, tm − tmθm

)
+ ϕ

(
xm + 2

√
γm

(n
2

)
tmΩm

)
.

So, the random variables

ξ̃1(x, t) =
ψN

q(1− q)N , ξ̃2(x, t) =
N

∑
m=0

ψm

(1− q)m

are unbiased estimators for u(x, t). Repeating the arguments of the proof of Theorem 1 in [8], it is easy
to prove that constructed estimators have finite variances.

Remark 1. The unbiased estimators constructed above and the algorithm for calculating them can be used in
the Monte Carlo method to find u(x, t). This computational algorithm is more complex than the algorithm in
Section 3. On the other hand this algorithm does not require an estimate of spectrum of matrix A(x, t).
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