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Abstract: In this paper, we discuss the cumulative measure of inaccuracy in k-lower record values
and study characterization results of dynamic cumulative inaccuracy. We also present some properties
of the proposed measures, and the empirical cumulative measure of inaccuracy in k-lower record
values. We prove a central limit theorem for the empirical cumulative measure of inaccuracy under
exponentially distributed populations. Finally, we analyze the mutual information for measuring the
degree of dependency between lower record values, and we show that it is distribution-free.
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1. Introduction and Background

The Information Theory provides various concepts of broad use in Probability and Statistics
which are finalized to measure the information content of stochastic models. Apart from the classical
differential entropy, which constitutes a useful tool for the analysis of absolutely continuous random
variables, some information measures based on cumulative notions have been attracting an increasing
amount of attention in the recent literature. Among such measures, in this paper we focus on the
cumulative (past) inaccuracy of bivariate random lifetimes, which is a suitable extension of the
cumulative entropy. We also deal with the mutual information, which is strictly related to the Shannon
entropy, and is one of the most commonly adopted notions for bivariate random variables. Indeed,
the mutual information is a measure of the mutual dependence of two random variables, and can be
evaluated by means of the joint (and marginal) distributions.

We recall some recent papers dealing with stochastic models and information measures of interest
in the reliability theory. Navarro et al. [1] presented some stochastic ordering and properties of aging
classes of dynamic cumulative residual entropy, where Psarrakos and Navarro [2] generalized the
concept of cumulative residual entropy by relating this concept to the mean time between record
values, and also considered the dynamic version of this new measure. Moreover, Tahmasebi and
Eskandarzadeh [3] proposed a new extension of the cumulative entropy based on k-th lower record
values. Sordo [4] provided comparison results for the cumulative residual entropy of systems and
their dynamic versions.

Motivated by some of the articles mentioned above, in this paper we aim to investigate some
applications of the previously mentioned information measures to the k-lower record values. Record
values are widely studied in the literature as a suitable tool to convey essential information in
stochastic models. More recently, they have also been attracting attention in applied contexts related to
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high-dimensional data, where it is computationally more convenient to determine the rank rather than
the specific values of the observations under investigation.

More specifically, within the scope of this paper, we propose to study the cumulative measure of
inaccuracy in k-lower record values and the parent random variable of a random sample. The context
of dynamic observations will be also considered by analyzing the dynamic cumulative inaccuracy and
related characterization results. We present some properties of the proposed measures, as well as the
empirical cumulative measure of inaccuracy in k-lower record values. Moreover, the investigation
focuses also on the mutual information measure, finalized to measure the degree of dependency
between lower record values.

In the remaining part of this section, we recall the relevant notions that will be used in the
following, and provide the plan of the paper. Specifically, we discuss the basic definitions and
properties of the information measures mentioned above, i.e., the cumulative inaccuracy and the
mutual information. Then, we mention the essential results on the lower record values and recall
certain useful stochastic orders. We shall look into nonnegative random variables, with the case of
truncated support being treatable in a similar way.

Throughout the paper, “log” means natural logarithm, prime denotes derivative, and the terms
“increasing” and “decreasing” are used in a non-strict sense. Finally, as is customary, we assume that
0 log 0 is vanishing.

1.1. Notions of Information Theory

Consider an absolutely continuous random vector (X, Y) having nonnegative components.
We denote by f (x, y) the joint probability density function (PDF) by f (x) and g(x), the marginal
PDFs, and by F(x) and G(x), the cumulative distribution functions (CDFs) of X and Y, respectively.

Bearing in mind the applications in the reliability theory, we assume that X and Y denote random
lifetimes of suitable systems having support (0, ∞). Let

H(X) = −E[log( f (X))] = −
∫ ∞

0
f (x) log( f (x)) dx (1)

be the (Shannon) differential entropy of X. H(Y) is defined similarly, and the bivariate entropy
of (X, Y) is given by H(X, Y) = −E[log( f (X, Y))] = −

∫ ∞
0 dx

∫ ∞
0 f (x, y) log( f (x, y)) dy. Moreover,

the conditional entropy of Y given by X is expressed by:

H(Y|X) = −
∫ ∞

0
dx
∫ ∞

0
f (x, y) log

(
f (x, y)
f (x)

)
dy, (2)

whereas the mutual information of (X, Y) is defined as:

MX,Y =
∫ ∞

0
dx
∫ ∞

0
f (x, y) log

(
f (x, y)

f (x) g(y)

)
dy. (3)

We recall that MX,Y is a measure of dependence between X and Y, with MX,Y = 0 if, and only
if X and Y are independent. Furthermore, MX,Y is largely adopted to assess the information
content in a variety of applied fields, such as signal processing and pattern recognition. Due to (3),
the mutual information can be expressed in terms of suitable entropies as follows (see, for example,
Ebrahimi et al. [5]):

MX,Y = H(X) + H(Y)− H(X, Y) = H(Y)− H(Y|X). (4)

See also Ebrahimi et al. [6] and Ahmadi et al. [7] for various results of interest in the reliability
theory involving dynamic measures for multivariate distributions based on the mutual information.
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Among the notions involving cumulative versions of information measures, we now recall the
cumulative (past) inaccuracy of (X, Y), given by:

I(X, Y) = −
∫ ∞

0
F(x) log(G(x)) dx. (5)

As specified in Section 1 of Kundu et al. [8], the measure given in (5) can be viewed as
the cumulative analogue of the Kerridge inaccuracy measure of X and Y, which is expressed as
−
∫ ∞

0 f (x) log(g(x)) dx (cf. Kerridge [9]). The relevant difference is that Equation (5) involves the
CDFs instead of the PDFs. In many real situations, it is more convenient to deal with distribution
functions which carry information about the fact that an event occurs prior or after the current
time. Moreover, the measure given in (5) provides information content when using G(x), the CDF
asserted by the experimenter due to missing or incorrect information in experiments, instead of the
true distribution F(x). Clearly, if F and G are identical, then I(X, Y) identifies with the cumulative
entropy studied by Di Crescenzo and Longobardi [10] and by Navarro et al. [1]. See Section 5 of
Kumar and Taneja [11] for various results involving (5) and the related dynamic version, i.e., the
dynamic cumulative past inaccuracy measure. We finally recall that the cumulative inaccuracy (5)
and the cumulative entropy are also involved in the definition of other information measures of
interest (see, for instance, Park et al. [12], and Di Crescenzo and Longobardi [13] for the cumulative
Kullback-Leibler information).

1.2. Lower Record Values

Record values are often studied in various fields due to their relevance in specific applications.
If statistical observations are difficult to obtain, or when experimental observations are destroyed and
access to them is not available, then the researchers are forced to make inference about the distribution
of the observations of used record amounts. Suppose, for example, that it is required to estimate the
water level of a river solely based on the available records of previous flooding. Similarly, consider
variables such as record rainfall, record temperature, wind speed record, and other quantities of
interest in meteorology. In such cases, the analysis of statistical observations, if performed by resorting
to lower or upper record values.

Let us now recall some basic notions about lower record values that will be used in this paper.
Let X be an absolutely continuous nonnegative random variable with CDF F(x) and PDF f (x),
and let {Xn, n ≥ 1} be a sequence of independent random variables, distributed identically as X.
An observation Xj, j ≥ 1, will be called a lower record value if its value is less than the values of all
previous observations. Thus, Xj is a lower record value if Xj < Xi for every i < j. For a fixed positive
integer k, similarly to Dziubdziela and Kopociński [14], we define the sequence {Tn(k), n ≥ 1} of k-th
lower record times for the sequence {Xn, n ≥ 1} as follows:

T1(k) = 1, Tn+1(k) = min
{

j > Tn(k) : Xk:Tn(k)+k−1 > Xk:k+j−1

}
, (6)

where Xj:m denotes the j-th order statistic in a sample of size m (see also Malinowska and
Szynal [15]). Then,

Ln(k) := Xk:Tn(k)+k−1,

is called a sequence of k-th lower record values of {Xn, n ≥ 1}. Since the ordinary record values are
contained in the k-records, the results for usual records can be obtained as a special case by setting
k = 1. The PDF of Ln(k), for n ≥ 1 and k ≥ 1, is given by:

fn(k)(x) =
kn

(n− 1)!
[F(x)]k−1[Λ̃(x)]n−1 f (x), (7)
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and the joint PDF of (Lm(k), Ln(k)), for 1 ≤ m < n, k ≥ 1, is:

fm(k),n(k)(x, y) =
kn

(m− 1)!(n−m− 1)!
[Λ̃(y)− Λ̃(x)]n−m−1

× [Λ̃(x)]m−1h(x)[F(y)]k−1 f (y), x > y,
(8)

where

Λ̃(x) = − log F(x) and h(x) = −Λ̃′(x) =
f (x)
F(x)

, x > 0, (9)

are the cumulative reversed hazard rate and the reversed hazard rate of X, respectively. Hence,
the conditional PDF of Ln(k) given Lm(k), 1 ≤ m < n, is given by:

fn|m(y|x) =
kn[Λ̃(y)− Λ̃(x)]n−m−1 f (y)[F(y)]k−1

km(n−m− 1)![F(x)]k
, x > y. (10)

By using the well-known relation

∫ ∞

z

λn

(n− 1)!
xn−1e−λxdx =

n−1

∑
i=0

[λz]i

i!
e−λz,

we see that the CDF corresponding to Equation (7) can be obtained as:

Fn(k)(x) =
∫ x

0
kn

(n− 1)!
[F(y)]k−1[Λ̃(y)]n−1 f (y)dy

= [F(x)]k ∑n−1
i=0

[kΛ̃(x)]i

i!
.

(11)

We note that the sequence of k-th upper record times is denoted as {Un(k), n ≥ 1}. It is
defined similarly to Tn(k) by reverting the last inequality in (6) (see, for instance, Dziubdziela and
Kopociński [14] or Tahmasebi et al. [16]). Record values apply in problems such as industrial stress
testing, meteorological analysis, hydrology, sport, and economics. In reliability theory, record values
are used to study things such as technical systems which are subject to shocks, e.g., peaks of voltages.
For more details about records and their applications, one may refer to Arnold et al. [17]. Several
authors investigated measures of inaccuracy for ordered random variables. Thapliyal and Taneja [18]
proposed the measure of inaccuracy between the i-th order statistic and the parent random variable.
Moreover, Thapliyal and Taneja [19] developed measures of dynamic cumulative residual and past
inaccuracy. They studied characterization results of these dynamic measures under a proportional
hazard model and proportional reversed hazard model. The same authors introduced the measure
of residual inaccuracy of order statistics and proved a related characterization result (cf. Thapliyal
and Taneja [20]). Equality of Rényi entropies of upper and lower k-records is also known to provide a
characteristic property of symmetric distributions (see Fashandi and Ahmadi [21]). Furthermore, it is
worth mentioning that the analysis of lower record values is related to the generalized cumulative
entropy. For instance, its role in the study of a new measure of association based on the log-odds rate
has recently been pinpointed by Asadi [22]. Finally, recent contributions on a measure of past entropy
for nth upper k-record values can be found in Goel et al. [23].

1.3. Stochastic Orders and Related Notions

Aiming to use stochastic orders to perform suitable comparisons, here we recall some relevant
definitions. Let X and Y be random variables, where X is said to be smaller than Y, according to the

- usual stochastic ordering (denoted by X ≤st Y) if P(X ≥ x) ≤ P(Y ≥ x) for all x ∈ R; it is known
that X ≤st Y ⇔ E(φ(X)) ≤ E(φ(Y)) for all increasing functions φ;



Mathematics 2019, 7, 175 5 of 19

- likelihood ratio ordering (denoted by X ≤lr Y) if
g(x)
f (x)

is increasing in x;

- decreasing convex order, denoted by X ≤dcx Y, if E(φ(X)) ≤ E(φ(Y)) for all decreasing convex
functions φ, such that the expectations exist.

Moreover, we say that X has a decreasing reversed hazard rate (DRHR) if h(x) =
f (x)
F(x)

is decreasing

in x. For specific details on these notions, see, for instance, Shaked and Shanthikumar [24], and for
applications of the decreasing convex order, see Ma [25].

1.4. Plan of the Paper

In this investigation, we propose the cumulative measure of inaccuracy and study characterization
results of a dynamic cumulative inaccuracy measure. Also, we study the degree of dependency among
the sequence of k-th lower record values through the mutual information of record values.

The paper is organized as follows: In Section 2, we consider a measure of inaccuracy associated
with Ln(k) and X. We provide some results and properties of such a measure, including an application
to the proportional reversed hazards model. In Section 3, we propose the dynamic version of inaccuracy
associated with Ln(k) and X, and provide a characterization result. In Section 4, we study the problem
of estimating the cumulative measure of inaccuracy by means of the empirical cumulative inaccuracy
in k-lower record values. The rest of the section is devoted to a simple application to real data, with the
discussion of some special cases, and a central limit theorem for the empirical cumulative measure of
inaccuracy in the case of exponentially distributed random samples. Finally, in Section 5 we investigate
the mutual information between sequences of lower record values, aiming to measure their degree of
dependency. Specifically, we show that this measure is distribution-free and can be computed by using
the distribution of the k-th lower record values of the sequence from the uniform distribution.

2. Cumulative Measure of Inaccuracy

Let us now consider the cumulative measure of inaccuracy between Ln(k) and the parent
non-negative random variable, say X. Recalling (5) and (11), we have:

I(Ln(k), X) = −
∫ ∞

0 Fn(k)(x) log (F(x)) dx

= ∑n−1
i=0

ki

i!
∫ ∞

0 [F(x)]k[Λ̃(x)]i+1dx,
(12)

with Λ̃(x) given in (9). According to the comments given in Section 1.1, I(Ln(k), X) can be used to
gain information concerning an experiment for which the distribution of the k-lower record values is
compared with the parent distribution. Noting that, due to (7), Li+2(k) being a random variable with
density function

fi+2(k)(x) =
ki+2

(i + 1)!
[F(x)]k−1[Λ̃(x)]i+1 f (x),

and recalling that h(x) is the reversed hazard rate of X (see (9)), from (12) we obtain:

labelequ11I(Ln(k), X) = ∑n−1
i=0

i + 1
k2

∫ ∞
0

ki+2

(i + 1)!
[F(x)]k[Λ̃(x)]i+1dx

= ∑n−1
i=0

i + 1
k2 E

[
1

h(Li+2(k))

]
.

(13)
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Remark 1. Making use of the generalized cumulative entropy introduced in Definition 1.1 of Tahmasebi and
Eskandarzadeh [3], given by:

CE i+1,k(X) =
∫ ∞

0

ki+2

(i + 1)!
[F(x)]k[Λ̃(x)]i+1dx ≡ E

[
1

h(Li+2(k))

]
, (14)

from (13) one has that the cumulative measure of inaccuracy between Ln(k) and X can be expressed: as a
size-biased combination of generalized cumulative entropies through the following weighted sum with linearly
increasing weights:

I(Ln(k), X) =
1
k2

n

∑
i=1

i CE i,k(X). (15)

Furthermore, from (11) and (12) we obtain an alternative expression, that is:

I(Ln(k), X) =
n−1

∑
i=0

∫ ∞

0
Λ̃(x)[Fi+1(k)(x)− Fi(k)(x)]dx.

In the following proposition we provide another form of I(Ln(k), X).

Proposition 1. Let X be a nonnegative random variable with cdf F; for the cumulative measure of inaccuracy
between Ln(k) and X, we have:

I(Ln(k), X) =
n−1

∑
i=0

ki

i!

∫ +∞

0
h(z)

{∫ z

0
[F(x)]k[Λ̃(x)]idx

}
dz. (16)

Proof. By (12) and the relation − log F(x) =
∫ ∞

x h(z)dz, we have:

I(Ln(k), X) =
n−1

∑
i=0

ki

i!

∫ +∞

0

∫ ∞

x
h(z)[F(x)]k[Λ̃(x)]idzdx.

By using Fubini’s theorem, we get:

I(Ln(k), X) =
n−1

∑
i=0

ki

i!

∫ +∞

0

∫ z

0
h(z)[F(x)]k[Λ̃(x)]idxdz,

and the result thus follows.

Hereafter, we present some examples and properties of I(Ln(k), X).

Example 1.

(i) If X is uniformly distributed in [0, θ], then:

I(Ln(k), X) =
θ

k2

n−1

∑
i=0

(i + 1)
(

k
k + 1

)i+2
.

(ii) If X is exponentially distributed with mean
1
λ

, then:

I(Ln(k), X) =
1
λ

n−1

∑
i=0

(i + 1)ki
∞

∑
j=0

( 1
j + k + 1

)i+2
.
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(iii) If X has an inverse Weibull distribution with cdf F(x) = exp{−(α

x
)β}, x > 0, with α > 0 and

β > 1, then:

I(Ln(k), X) =
α

β
k

1
β
−1 n−1

∑
i=0

1
i!

Γ
(
(i + 1)β− 1

β

)
.

For suitable choices of n and k, such inaccuracy measures are plotted in Figure 1, where the parameters
are chosen so that the considered distributions have a unity mean, i.e., (i) θ = 2, (ii) λ = 1, and (iii)
α = 1/Γ(1− β−1), recalling that the mean of an inverse Weibull distribution is E(X) = αΓ(1− β−1) (see de
Gusmão et al. [26]). In all cases, I(Ln(k), X) is decreasing in k and increasing in n.

Figure 1. The values of I(Ln(k), X) related to Example 1; (a) for 1 ≤ k ≤ 30 and n = 10, from
top to bottom near the origin: cases (i), (ii), (iii) with (α, β) = (0.816049, 4), and (iii) with (α, β) =

(0.935779, 10); (b) for 1 ≤ n ≤ 60 and k = 10, from top to bottom for large n in the same cases as (a).

Let us now discuss the effect of identical linear transformations on I(Ln(k), X).

Proposition 2. Let a > 0 and b ≥ 0; for n ∈ N, it holds that:

I(aLn(k) + b, aX + b) = aI(Ln(k), X). (17)

Proof. From (15), we have:

I(aLn(k) + b, aX + b) =
1
k2

n

∑
i=1

i CE i,k(aX + b).

Recalling (14), it is not hard to see that: CE i,k(aX + b) = a CE i,k(X), so that the proof
immediately follows.

Remark 2. Let X be a symmetric random variable with respect to the finite mean µ = E(X), i.e., F(x + µ) =

1− F(µ− x) for all x ∈ R. Then the following relation holds:

I(Ln(k), X) = I(Rn(k), X) := −
∫ ∞

0
Fn(k)(x) log

(
F(x)

)
dx,

where, similarly to (12), the latter term defines the cumulative residual measure of inaccuracy between the k-th
upper record value and X. Here, as usual, F(x) = 1− F(x) denotes the survival function of X, and Fn(k)(x)
denotes the survival function of the k-th upper record value Rn(k).

Hereafter, we obtain an upper bound for I(Ln(k), X).
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Proposition 3. Let X be an absolutely continuous non-negative random variable with a cumulative reversed
hazard rate Λ̃(x), such that the following function is finite:

h?i+1(t) =
∫ ∞

t
[Λ̃(x)]i+1dx, t > 0. (18)

Then, for n ∈ N we have:

I(Ln(k), X) ≤
n−1

∑
i=0

ki

i!
E
[
h?i+1(X)

]
.

Proof. By (12), from [F(x)]k ≤ F(x)] and Fubini’s theorem, we obtain:

I(Ln(k), X) ≤
n−1

∑
i=0

ki

i!

∫ ∞

0
[Λ̃(x)]i+1

∫ x

0
f (t)dtdx

=
n−1

∑
i=0

ki

i!

∫ ∞

0
f (t)

∫ ∞

t
[Λ̃(x)]i+1dxdt

=
n−1

∑
i=0

ki

i!
E
[
h∗i+1(X)

]
,

thus completing the proof.

Now we can prove a property of the considered inaccuracy measure by means of stochastic
orderings. For that, we use the notions recalled in Section 1.3.

Theorem 1. Suppose that the non-negative random variable X is DRHR. Then, for n ∈ N, one has:

I(Ln+1(k), X)− I(Ln(k), X) ≤ 1
k2

n+1

∑
m=1

E
[

1
h(Lm(k))

]
. (19)

Proof. Recalling that fn(k)(x) is the PDF of Ln(k), provided in Equation (7), then the ratio
fn(k)(x)

fn+1(k)(x)
=

−n
k log F(x)

is increasing in x. Therefore, Ln+1(k) ≤lr Ln(k), and this implies that Ln+1(k) ≤st Ln(k), i.e.,

E[φ(Ln+1(k))] ≤ E[φ(Ln(k))] for all increasing functions φ such that these expectations exist. (For more
details, see Shaked and Shanthikumar [24]). Thus, since X is DRHR and h(x) is its reversed hazard

rate, then
1

h(x)
is increasing in x. As a consequence, from (13) we have:

I(Ln+1(k), X) =
n

∑
i=0

i + 1
k2 E

[
1

h(Li+2(k))

]

≤
n

∑
i=0

i + 1
k2 E

[
1

h(Li+1(k))

]

=
n−1

∑
j=−1

j + 2
k2 E

[
1

h(Lj+2(k))

]

=
n−1

∑
j=0

j + 2
k2 E

[
1

h(Lj+2(k))

]
+

1
k2 E

[
1

h(L1(k))

]

= I(Ln(k), X) +
1
k2

n+1

∑
i=1

E
[

1
h(Li(k))

]
,

where I(Ln(k), X) is expressed in (13). The proof is thus completed.
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Theorem 2. Let X and Y be two non-negative random variables, such that X ≤dcx Y; then we have:

I(Ln(k), X) ≤ I(LG
n(k), Y) := −

∫ ∞

0
Gn(k)(y) log(G(y))dy.

Here, similarly to (6), LG
n(k) denotes the k-th lower record times for the sequence {Yn, n ≥ 1} with

distribution function Gn(k)(y), and G(y) is the distribution function of Y.

Proof. Due to (18), h?j+1(x) is a decreasing convex function in x. The proof then immediately follows
from Proposition 3.

Let us now investigate the cumulative measure of inaccuracy within the proportional reversed
hazards model (PRHM). We recall that two random variables X and X∗θ satisfy the PRHM if their
distribution functions are related by the following identity, for θ > 0:

F∗θ (x) = [F(x)]θ , x ∈ R. (20)

For some properties of such a model associated with aging notions and the reversed relevation
transform, see Gupta and Gupta [27] and Di Crescenzo and Toomaj [28], respectively.

In this case, we assume that X and X∗θ are non-negative, absolutely continuous random variables.
Due to Equation (20) and making use of (5) and (11), and noting that Λ̃∗θ (x) = θΛ̃(x), we obtain the
cumulative measure of inaccuracy between L∗n(k) and X∗θ as follows, for θ > 0:

I(L∗n(k), X∗θ ) = −
∫ +∞

0 F∗n(k)(x) log
(

F∗θ (x)
)

dx

= ∑n−1
i=0 kiθi+1

∫ +∞
0

[Λ̃(x)]i+1

i!
[F(x)]kθdx,

(21)

with Λ̃(x) expressed in (9). Moreover, if θ is a positive integer, then the last expression can be rewritten
in terms of the generalized cumulative entropy (14) as follows:

I(L∗n(k), X∗θ ) =
1

k2θ

n−1

∑
i=0

(i + 1) CE i+1,kθ(X).

We recall that in this case, i.e., when θ ∈ N, the PRHM expresses that X∗θ is distributed as the
first-order statistics of a random sample having size θ and taken from the distribution of X.

Let us now obtain suitable bounds under the PRHM.

Proposition 4. Let X and X∗θ be non-negative, absolutely continuous random variables satisfying the PRHM
as specified in (20), with θ > 0. If θ ≥ (≤)1, then for any n ∈ N we have:

I(L∗n(k), X∗θ ) ≤ (≥) θi+1

k2

n−1

∑
i=0

(i + 1) CE i+1,k(X).

Proof. Clearly, for θ ≥ (≤)1 it is [F(x)]kθ ≤ (≥)[F(x)]k for all x ≥ 0, and then the thesis immediately
follows from (14) and (21).

We conclude this section with a remark on the cumulative measure of inaccuracy for bivariate
first lower record values.
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Remark 3. Consider two identically distributed sequences of random variables {Xn, n ≥ 1} and {Ym, m ≥ 1},
and denote by Ln,X = Ln(1),X and Lm,Y = Lm(1),Y the corresponding first lower record times. Then, for k = 1
and making use of (11) it is not hard to see that the cumulative measure of inaccuracy between Ln,X and Lm,Y is
given by:

I(Ln,X, Lm,Y) = −
∫ +∞

0
Fn(x) log(Fm(x))

=
n−1

∑
i=0

(i + 1)E
(

1
h(Li+1(x))

)
−

n−1

∑
i=0

∫ +∞

0

F(x)[Λ̃(x)]i

i!
log

(
m−1

∑
i=0

[Λ̃(x)]i

i!

)
,

where h(x) is the reversed hazard rate of the underlying distribution.

3. Dynamic Cumulative Measure of Inaccuracy

In this section, we study the dynamic version of the inaccuracy measure I(Ln(k), X). Let X be
the random lifetime of a brand new system that begins to work at time 0 and is observed only at
deterministic inspection times. Clearly, if the system is found failed at time t, then the conditional

distribution function of [X|X ≤ t], known as the past lifetime, is given by
F(x)
F(t)

, 0 ≤ x ≤ t. In a

sequence of i.i.d. failure times having the same distribution as X, if the information about the k-th

lower failure times is available, then
Fn(k)(x)
Fn(k)(t)

is the conditional probability that the k-th lower failure

time is smaller that x, given that it is smaller than t, for 0 ≤ x ≤ t, where Fn(k)(x) is the CDF given in
(11). Hence, the dynamic cumulative measure of inaccuracy between Ln(k) and X is expressed by the
inaccuracy measure between the corresponding past lifetimes, i.e.,:

I(Ln(k), X; t) = −
∫ t

0

Fn(k)(x)
Fn(k)(t)

log
(

F(x)
F(t)

)
dx

= µn(k)(t) log(F(t))− 1
Fn(k)(t)

∫ t
0 Fn(k)(x) log(F(x))dx

= µn(k)(t) log(F(t)) +
1

Fn(k)(t)
∑n−1

i=0

∫ t
0

ki

i!
[F(x)]k[Λ̃(x)]i+1dx,

(22)

where

µn(k)(t) =
∫ t

0

Fn(k)(x)
Fn(k)(t)

dx

is the mean inactivity time of the random variable [t− Ln(k) | Ln(k) < t]. Clearly, recalling (12) and
assuming that X is a bona fide random variable, from (22) we have limt→∞ I(Ln(k), X; t) = I(Ln(k), X).
Moreover, if F(t) > 0 for all t > 0, since log F(t) ≤ 0, we immediately have:

I(Ln(k), X; t) ≤
I(Ln(k), X)

Fn(k)(t)
.

We can now obtain a characterization result for I(Ln(k), X; t).

Theorem 3. Let X be a non-negative, absolutely continuous random variable with distribution function F(x).
If the dynamic cumulative inaccuracy (22) is finite for all t > 0, then I(Ln(k), X; t) characterizes the distribution
function of X.
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Proof. Differentiating both sides of (22) with respect to t, we obtain:

d
dt

I(Ln(k), X; t) = h(t)µn(k)(t)− hn(k)(t)I(Ln(k), X; t)

= h(t)
[
µn(k)(t)− c(t)I(Ln(k), X; t)

]
,

where h(t) =
f (t)
F(t)

and hn(k)(t) =
fn(k)(t)
Fn(k)(t)

are the reversed hazard rates, and where we have set

c(t) =
kn[Λ̃(t)]n−1

(n− 1)! ∑n−1
i=0

ki

i!
[Λ̃(t)]i

.

Taking again the derivative with respect to t, we get:

h′(t) =
(h(t))2

[
c′(t)I(Ln(k), X; t) + c(t)

d
dt

I(Ln(k), X; t)− 1 + c(t)h(t)µn(k)(t)
]

d
dt

I(Ln(k), X; t)
. (23)

Suppose that there are two CDFs, F and F̂, such that for all t,

I(Ln(k), X; t) = I(L̂n(k), X̂; t) = z(t),

and having reversed hazard rates h(t) and hF̂(t), respectively. Then, from (23) we get, for all t:

h′(t) = ϕ(t, h(t)), h′F̂(t) = ϕ(t, hF̂(t)),

where

ϕ(t, y) :=
y2 [c′(t)z(t) + c(t)z′(t)− 1 + c(t)yw(t)]

z′(t)
,

for w(t) := µn(k)(t) and y := h(t). By using Theorem 2.1 and Lemma 2.2 of Gupta and Kirmani [29],
we obtain h(t) = hF̂(t), for all t. Since the reversed hazard rate function characterizes the distribution
function uniquely, the proof is completed.

4. Empirical Cumulative Measure of Inaccuracy

In this section, we address the problem of estimating the cumulative measure of inaccuracy by
means of the empirical cumulative inaccuracy in lower record values. Let X1, X2, . . . , Xm be a random
sample of size m from an absolutely continuous CDF F(x). Then, according to (12), the empirical
cumulative measure of inaccuracy is defined as:

Î(Ln(k), X) =
n−1

∑
i=0

ki

i!

∫ ∞

0
[F̂m(x)]k

[
− log

(
F̂m(x)

)]i+1
dx, (24)

where

F̂m(x) =
1
m

m

∑
i=1

1{Xi≤x}, x ∈ R.

is the empirical distribution of the sample, 1{·} being the indicator function. Let X(1) ≤ X(2) ≤ . . . ≤
X(m) denote the order statistics of the sample. Then, (24) can be written as:

Î(Ln(k), X) =
n−1

∑
i=0

ki

i!

m−1

∑
j=1

∫ X(j+1)

X(j)

[F̂m(x)]k
[
− log

(
F̂m(x)

)]i+1
dx. (25)
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Finally, recalling that:

F̂m(x) =


0, x < X(1),
j

m
, X(j) ≤ x < X(j+1), j = 1, 2, . . . , m− 1

1, x ≥ X(m),

from Equation (25) we see that the empirical cumulative measure of inaccuracy can be expressed as:

Î(Ln(k), X) =
n−1

∑
i=0

ki

i!

m−1

∑
j=1

Uj+1

(
j

m

)k [
− log

(
j

m

)]i+1
, (26)

where
Uj+1 = X(j+1) − X(j), j = 1, 2, . . . , m− 1 (27)

are the sample spacings.
The following example provides an application of the empirical cumulative measure of inaccuracy

to real data.

Example 2. Consider the sample data by Abouammoh and Abdulghani [30] concerning the lifetimes (in days)
of m = 40 patients suffering from blood cancer. The evaluation of the corresponding empirical cumulative
measure of inaccuracy, obtained by means of Equation (26), shows that the values of Î(Ln(k), X) are decreasing
in k and increasing in n (see Figure 2).

Figure 2. The values of Î(Ln(k), X) concerning Example 2, (a) for 1 ≤ k ≤ 15 and n = 1, 2, 3, 4, 5
(from bottom to top), and (b) for 1 ≤ n ≤ 15 and k = 1, 2, 3, 4, 5 (from top to bottom).

Let us now discuss two special cases concerning populations from the uniform distribution and
the exponential distribution.

Example 3. Consider the random sample X1, X2, . . . , Xm from a population uniformly distributed in [0, 1].
In this case, the sample spacings (27) are independent and follow the beta distribution with parameters 1 and
m (for more details, see Pyke [31]). Hence, making use of (26), the mean and the variance of the empirical
cumulative measure of inaccuracy are, respectively:

E
[

Î(Ln(k), X)
]
=

n−1

∑
i=0

m−1

∑
j=1

ki

i!(m + 1)

(
j

m

)k [
− log

(
j

m

)]i+1
, (28)

and

Var
[

Î(Ln(k), X)
]
=

n−1

∑
i=0

m−1

∑
j=1

m
m + 2

[
ki

i!(m + 1)

(
j

m

)k [
− log

(
j

m

)](i+1)
]2

. (29)



Mathematics 2019, 7, 175 13 of 19

Table 1 shows the values of the mean (28) and the variance (29) for k = 2, and for sample sizes
m = 10, 15, 20, with n = 2, 3, 4, 5. We note that E[ Î(Ln(2), X)] is increasing in m and n.

Table 1. Computed values of E[ Î(Ln(2), X)] and Var[ Î(Ln(2), X)] for the uniform distribution.

E[ Î(Ln(2), X)] Var[ Î(Ln(2), X)]

m n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

10 0.23 0.37 0.48 0.57 0.003 0.006 0.008 0.010
15 0.24 0.38 0.50 0.59 0.002 0.004 0.006 0.008
20 0.25 0.39 0.51 0.61 0.002 0.003 0.005 0.006

Example 4. Let X1, X2, . . . , Xm be a random sample drawn from the exponential distribution with parameter
λ. Then, from (26) we see that the empirical cumulative measure of inaccuracy can be expressed as the following
sum of independent and exponentially distributed random variables:

Î(Ln(k), X) =
m−1

∑
j=1

Yj, where Yj := Uj+1

n−1

∑
i=0

ki

i!

(
j

m

)k [
− log

(
j

m

)]i+1
. (30)

Indeed, in this case, the sample spacings Uj+1 defined in (27) are independent and exponentially distributed with

mean
1

λ(m− j)
(for more details, see Pyke [31]), so that the mean and the variance of Î(Ln(k), X) are given by:

E
[

Î(Ln(k), X)
]
=

m−1

∑
j=1

µj, Var
[

Î(Ln(k), X)
]
=

m−1

∑
j=1

s2
j , (31)

where

µj := E[Yj] =
1
λ

n−1

∑
i=0

ki

i!(m− j)

(
j

m

)k [
− log

(
j

m

)]i+1
,

and

s2
j := Var

[
Yj
]
=

1
λ2

n−1

∑
i=0

{
ki

i!(m− j)

(
j

m

)k [
− log

(
j

m

)]i+1
}2

.

In Table 2, for k = 2, we show the values of the mean and the variance (31) for sample sizes m = 10, 15, 20,
with λ = 0.5, 1, 2 and n = 2, 3, 4, 5. One can easily see that E[ Î(Ln(2), X)] is increasing in m, whereas
Var[ Î(Ln(2), X)] is decreasing in m.

Table 2. Computed values of E[ Î(Ln(2), X)] and Var[ Î(Ln(2), X)] for the exponential distribution.

E[ Î(Ln(2), X)]

λ 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

m n = 2 n = 3 n = 4 n = 5

10 1.30 0.65 0.33 1.77 0.89 0.44 2.12 1.063 0.53 2.37 1.19 0.59
15 1.33 0.67 0.33 1.81 0.91 0.45 2.17 1.086 0.54 2.43 1.22 0.61
20 1.35 0.68 0.34 1.83 0.92 0.46 2.19 1.096 0.55 2.46 1.23 0.62

Var[ Î(Ln(2), X)]

λ 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

m n = 2 n = 3 n = 4 n = 5

10 0.13 0.032 0.008 0.16 0.04 0.009 0.18 0.046 0.011 0.20 0.050 0.012
15 0.09 0.022 0.005 0.11 0.028 0.007 0.12 0.031 0.008 0.14 0.035 0.008
20 0.07 0.017 0.004 0.08 0.021 0.005 0.09 0.024 0.006 0.11 0.026 0.007
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Hereafter, we show a central limit theorem for the empirical cumulative measure of inaccuracy in
the same case as Example 4.

Theorem 4. If X1, X2, . . . , Xm is a random sample drawn from the exponential distribution with parameter
λ, then:

Î(Ln(k), X)−E[ Î(Ln(k), X)]

(Var[ Î(Ln(k), X)])1/2
≡

∑m−1
j=1 (Yj − µj)

(∑m−1
j=1 s2

j )
1/2

d→ N (0, 1).

Proof. With reference to the notation adopted in Example 4, by setting αj,r = E[|Yj −E(Yj)|r], r = 2, 3,
for large m, we have:

m−1

∑
j=1

αj,2 =
m−1

∑
j=1

s2
j =

1
λ2

n−1

∑
i=0

(
ki

i!

)2 1
m2

m−1

∑
j=1

{
1

(1− j/m)

(
j

m

)k [
− log

(
j

m

)]i+1
}2

≈ 1
λ2m

n−1

∑
i=0

(
ki

i!

)2

c(i,k)2

and recalling that E[|Yj −E(Yj)|3] = 2(6− e)[E(Yj)]
3/e for the exponential distribution:

m−1

∑
j=1

αj,3 =
2(6− e)

e

m−1

∑
j=1

µ3
j =

2(6− e)
e

m−1

∑
j=1

{
1
λ

n−1

∑
i=0

ki

i!(m− j)

(
j

m

)k [
− log

(
j

m

)]i+1
}3

≈ 2(6− e)
eλ3m2

{
n−1

∑
i=0

ki

i!
c(i,k)1

}3

,

where

c(i,k)h :=
∫ 1

0

[
xk

1− x
(− log x)i+1

]h

dx, h = 1, 2.

Hence, for a suitable function C(λ, i, k), for large m, it holds that:(
∑m−1

j=1 αj,3

)1/3

(
∑m−1

j=1 αj,2

)1/2 ≈ C(λ, i, k)m−1/6 → 0 as m→ ∞.

The Lyapunov’s condition of the central limit theorem is thus fulfilled, this giving the proof.

5. Mutual Information of Lower Record Values

In this section, we study the degree of dependency between the sequences of lower record values
by means of the mutual information. Recall the basic relations given in Equations (3) and (4).

First, with reference to (1), in the following theorem we obtain the entropy of k-th lower
record values.

Theorem 5. Let {Xn, n ≥ 1} be a sequence of IID random variables having finite entropy. The entropy of Ln(k)
for all n ≥ 2 is given by:

H(Ln(k)) = − log k− (n− 1)ψ(n) + log((n− 1)!) + n
(

1− 1
k

)
− kn ϕ f (n− 1), (32)



Mathematics 2019, 7, 175 15 of 19

where ψ(n) = Γ′(n)/Γ(n) is the digamma function, and:

ϕ f (n− 1) :=
∫ +∞

0

zn−1

(n− 1)!
e−zk log( f (F−1(e−z)))dz. (33)

Proof. As customary, we denote by f (x) and F(x) the PDF and CDF of X1. By (7), we have:

H(Ln(k)) = −
∫ +∞

−∞
fn(k)(x) log( fn(k)(x))dx

= −
∫ +∞

−∞

kn

(n− 1)!
[F(x)]k−1[Λ̃(x)]n−1 f (x) log

(
kn

(n− 1)!
[F(x)]k−1[Λ̃(x)]n−1 f (x)

)
dx

= − kn

(n− 1)!

∫ +∞

−∞

{
n[Λ̃(x)]n−1[F(x)]k−1 f (x) log k + (n− 1)[Λ̃(x)]n−1[F(x)]k−1 f (x) log(Λ̃(x))

+ (k− 1)[Λ̃(x)]n−1[F(x)]k−1 f (x) log(F(x)) + [Λ̃(x)]n−1[F(x)]k−1 f (x) log( f (x))

− [Λ̃(x)]n−1[F(x)]k−1 f (x) log((n− 1)!)
}

dx.

By taking z = Λ̃(x), we get:

H(Ln(k)) = −kn
∫ +∞

0

[
n

zn−1

(n− 1)!
e−zk log k +

zn−1

(n− 2)!
e−zk log z

− (k− 1)
zn

(n− 1)!
e−zk +

zn−1

(n− 1)!
e−zk log( f (F−1(e−z)))− zn−1

(n− 1)!
e−zk log((n− 1)!)

]
dz.

Hence, making use of Equation (A.8) of Zahedi and Shakil [32], after some calculations we finally
get: Equation (32).

It is worth noting the analogies between Equation (33) and the function φ f (n) considered by
Baratpour et al. [33] for the analysis of the upper record values.

In the following lemma we express the mutual information between Zm(k) and Zn(k) in terms of
the digamma function.

Lemma 1. Let Zn(k) be the k-th lower record values from the uniform distribution over interval (0, 1). Then,
the mutual information between Zm(k) and Zn(k), for n > m, is given by:

M(Zm(k), Zn(k)) = m + log((n− 1)!)− log((n−m− 1)!)

+ (n−m− 1)ψ(n−m)− (n− 1)ψ(n).

Proof. In this case, recalling (9), we have Λ̃(x) = − log x, 0 < x < 1. Hence, making use of
Equations (2), (4), (8) and (10), for n > m we get:

H(Zn(k)|Zm(k)) = −
∫ 1

0

∫ x

0

kn[− log(y) + log(x)]n−m−1[− log(x)]m−1yk−1

(m− 1)!(n−m− 1)!x

× log

[
knyk−1

kmxk
[− log(y) + log(x)]n−m−1

(n−m− 1)!

]
dydx

=
5

∑
r=1

Ir,

(34)
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where

I1 := −(n−m) log(k)
∫ 1

0

∫ x

0
fm(k),n(k)(x, y)dydx = (n−m) log(k),

I2 := log[(n−m− 1)!]
∫ 1

0

∫ x

0
fm(k),n(k)(x, y)dydx = log[(n−m− 1)!],

I3 :=
∫ 1

0

∫ x

0

kn+1[− log(y) + log(x)]n−m−1[− log(x)]m−1yk−1

(m− 1)!(n−m− 1)!x
log(x)dydx = −m,

I4 := −
∫ 1

0

∫ x

0

kn[− log(y) + log(x)]n−m−1[− log(x)]m−1yk−1

(m− 1)!(n−m− 1)!x
log[− log(y) + log(x)]n−m−1dydx

= −(n−m− 1)[ψ(n−m)− log(k)],

I5 := −
∫ 1

0

∫ x

0

(k− 1)kn[− log(y) + log(x)]n−m−1[− log(x)]m−1yk−1

(m− 1)!(n−m− 1)!x
log(y)dydx = n

(
1− 1

k

)
.

Hence, by straightforward calculations we obtain:

H(Zn(k)|Zm(k)) = log((n−m− 1)!)− (n−m) log(k)− (n−m− 1)[ψ(n−m)− log k] +
k− 1

k
(n− 2m)−m, (35)

where ψ(n−m) =
∫ +∞

0 tn−me−t log(t) dt. Similarly, by (32) we have

H(Zn(k)) = − log k− (n− 1)ψ(n) + log((n− 1)!) + n
(

1− 1
k

)
. (36)

Recalling (4), the thesis thus follows from (35) and (36).

Let us now come to the main result of this section. Recall that the mutual information of (X, Y) is
defined in (3).

Theorem 6. Under the assumptions of Theorem 5, the following result holds:

(i) The mutual information between the m-th and the n-th k-lower records is distribution-free, and is given by:

M(Lm(k), Ln(k)) = m + log((n− 1)!)− log((n−m− 1)!)

+ (n−m− 1)ψ(n−m)− (n− 1)ψ(n).
(37)

(ii) The mutual information M(Lm(k), Lm+1(k)) is increasing in m.

Proof.

(i) Let Zm(k) = F−1(Lm(k)) and Zn(k) = F−1(Ln(k)), where F−1 denotes the pseudo-inverse function
of F, i.e., the quantile function of X. Then, Zm(k) and Zn(k) are the m-th and n-th k-lower records
of the uniform distribution over the interval (0, 1). By the invariance property of mutual
information, we have: M(Lm(k), Ln(k)) = M(Zm(k), Zn(k)), thus the result follows from Lemma 1.

(ii) By taking n = m + 1 in (37), we get:

M(Lm(k), Lm+1(k)) = m + log(m!)−mψ(m + 1),

so that

M(Lm+1(k), Lm+2(k))−M(Lm(k), Lm+1(k)) = log((m + 1)!)− log(m!)

+ mψ(m + 1)− (m + 1)ψ(m + 2) + 1.



Mathematics 2019, 7, 175 17 of 19

It is not hard to see that the right-hand-side is positive, and the proof thus follows.

It is useful to assess the mutual information between the k-th lower record values, such as when
such values correspond to successive failures of a repairable system. Hence, the information provided
in Theorem 6 is useful for constructing suitable replacement criteria of components, in order to avoid
failures and to improve system availability.

The mutual information between the m-th and the n-th k-lower records, determined in
Equation (37), is shown in Figure 3 for different choices of m and n. For fixed values of m, such
an information measure is decreasing in n, whereas for fixed n, it is increasing in m.

Finally, Figure 4 shows that M(Lm(k), Lm+1(k)) is increasing in m, in agreement with the point (ii)
of Theorem 6.

Figure 3. The values of M(Lm(k), Ln(k)) are shown (a) for m = 1, 2, 3, 4, 5 (from bottom to top) and
m < n ≤ 20, and (b) for n = 20, 25, 30, 35, 40 (from top to bottom, near the origin) and 1 ≤ m < n.

Figure 4. Values of M(Lm(k), Lm+1(k)) for 1 ≤ m ≤ 200.

6. Conclusions

In this paper, we discussed the concept of inaccuracy between Ln(k) and X in a random
sample generated by X. We proposed a dynamic version of cumulative inaccuracy and studied
a related characterization result. We also proved that I(Ln(k), X; t) can uniquely determine the parent
distribution F. Moreover, we constructed bounds for characterization results of I(Ln(k), X). Also, we
estimated the cumulative measure of inaccuracy by means of the empirical cumulative inaccuracy
in lower record values. These concepts can be applied in measuring the inaccuracy contained in the
associated past lifetime. Finally, we studied the degree of dependency among the sequence of k-th lower
record values in terms of mutual information. We showed that M(Lm(k), Ln(k)) is distribution-free and
can be computed by using the distribution of the k-th lower record values of the sequence from the
uniform distribution.
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