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Abstract

:

This article is devoted to the investigation of dual and annihilator normed algebras. Their structure is studied in the paper. Extensions of algebras and fields are considered and by using them, core radicals and radicals are investigated. Moreover, for this purpose ∗-algebras and finely regular algebras are also studied. Relations with operator theory and realizations of these algebras by operator algebras are outlined.
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1. Introduction


Algebras and operator algebras over the real field R and the complex field C were intensively studied. They have found many-sided applications. For these a lot of results already were obtained (see, for example, [1,2,3,4] and references therein). Among them, dual algebras and annihilator algebras play very important roles. However, for such algebras over ultranormed fields, comparatively little is known because of their specific features and additional difficulties arising from structure of fields [5,6,7,8,9,10,11,12].



Many results in the classical case use the fact that the real field R has the linear ordering compatible with its additive and multiplicative structure and that the complex field C is algebraically closed, norm complete and locally compact and is the quadratic extension of R, also that there are not any other commutative fields with archimedean multiplicative norms and complete relative to their norms besides these two fields.



For comparison, in the non-archimedean case the algebraic closure of the field Qp of p-adic numbers is not locally compact. Each ultranormed field can be embedded into a larger ultranormed field. There is not any ordering of an infinite ultranormed field such as Qp, Cp or Fp(t) compatible with its algebraic structure.



In their turn, non-archimedean analysis, functional analysis and representations theory of groups over non-archimedean fields developed fast in recent years [11,13,14,15,16,17,18]. This is motivated not only by the needs of mathematics, but also their applications in other sciences such as physics, quantum mechanics, quantum field theory, informatics, etc. (see, for example, [19,20,21,22,23,24,25,26] and references therein).



This article is devoted to dual algebras and annihilator algebras over non-archimedean fields. Their structure is studied in the paper. Preliminary results on operator algebras are given in Section 2. Extensions of algebras and fields are considered and using them core radicals and radicals are investigated in Section 3 (see Propositions 1–4 and Theorem 4). It appears to be a specific ultrametric feature to refine to a new notion of a core radical and investigate it. Moreover, for this purpose also ∗-algebras and finely regular algebras are studied. Theorems 5, 7, 8, Propositions 8–11 about ideals, idempotents of algebras and their orthogonality are proven. Division subalgebras related with idempotents are investigated (see Theorem 9). Relations with operator theory and realizations of these algebras by operator algebras are outlined.



In this article a definition or a proposition or a theorem number m in the same section number n is referred to as m, in another section as n.m. A formula number (m) in a subsection number k is referred to as (m), in another subsection as k(m), etc.



All main results of this paper are obtained for the first time. They can be used for further studies of ultranormed algebras and operator algebras on non-archimedean Banach spaces, their cohomologies, spectral theory of operators, the representation theory of groups, algebraic geometry, PDE, applications in the sciences, etc.




2. Normed Algebras and ∗-Algebras


To avoid misunderstandings we first give our definitions and notations (which are used in this paper), because they slightly vary in the literature. Although, a reader familiar with books [8,11,18,27] may skip Section 2.1 and Section 2.2.



2.1. Notation


Let F be an infinite field supplied with a multiplicative non-trivial ultranorm |·|F relative to which it is complete, so that F is non-discrete and ΓF⊂(0,∞)={r∈R:0<r<∞}, where ΓF:={|x|F:x∈F∖{0}}, whilst as usually |x|F=0 if and only of x=0 in F, also |x+y|F≤max(|x|F,|y|F) and |xy|F=|x|F|y|F for each x and y in F. We consider fields with multiplicative ultranorms if something other will not be specified.



If F is such a field, we denote by En(F) the class containing F and all ultranormed field extensions G of F so that these G are norm complete and |·|G|F=|·|F. By En we denote the class of all infinite non-trivially ultranormed fields F which are norm complete.



Henceforward, the terminology is adopted that a commutative field is called shortly a field, while a noncommutative field is called a skew field or a division algebra.




2.2. Definitions


By c0(α,F) is denoted a Banach space consisting of all vectors x=(xj:∀j∈αxj∈F) satisfying the condition



card{j∈α:|xj|>ϵ}<ℵ0 for each ϵ>0



and furnished with the norm



(1)|x|=supj∈α|xj|,



where α is a set. For locally convex spaces X and Y over F the family of all linear continuous operators A:X→Y we denote by L(X,Y). For normed spaces X and Y the linear space L(X,Y) is supplied with the operator norm



(2)|A|:=supx∈X∖{0}|Ax|/|x|.



For locally convex spaces X and Y over F the space L(X,Y) is furnished with a topology induced by a family of semi-norms



(3)|A|p,q:=supx∈X,p(x)>0q(Ax)/p(x)



for all continuous semi-norms p on X and q on Y.



Speaking about Banach spaces and Banach algebras, we stress that a field over which it is defined is ultranorm complete.



If X=c0(α,F), then to each A∈L(X,X) an infinite matrix (Ai,j:i∈α,j∈α) corresponds in the standard basis {ej:j∈α} of X, where



(4)x=∑jxjej



for each x∈X=c0(α,F).



For a subalgebra V of L(X,X) an operation B↦Bt from V into L(X,X) will be called a transposition operation if it is induced by that of its infinite matrix such that (aA+bB)t=aAt+bBt and (AB)t=BtAt and (At)t=A for every A and B in V and a and b in F, that is (At)i,j=Aj,i for each i and j in α. Then Vt:={A:A=Bt,B∈V}.



An operator A in L(X,X) is called symmetric if At=A.



By L0(X,X) is denoted the family of all continuous linear operators U:X→X matrices (Ui,j:i∈α,j∈α) of which fulfill the conditions



(5)∀i∃limjUj,i=0 and ∀j∃limiUj,i=0.



For an algebra A over F, F∈En, it is supposed that an ultranorm |·|A on A satisfies the conditions:



|a|A∈(ΓF∪{0}) for each a∈A, also



|a|A=0 if and only if a=0 in A,



|ta|A=|t|F|a|A for each a∈A and t∈F,



|a+b|A≤max(|a|A,|b|A) and



|ab|A≤|a|A|b|A for each a and b in A.



For short it also will be written |·| instead of |·|F or |·|A.



A subset V of a Banach space X over F is called a compactoid, if for each ϵ>0 there exists a finite subset Y in X such that V⊂B(X,0,ϵ)+Co¯(Y), where B(X,w,r):={x∈X:|x−w|≤r} denotes a closed ball in X containing a point w∈X and of a radius r>0, Co¯(U)={x∈X:x=a1u1+…+ajuj+…,∀jaj∈F,|aj|≤1,uj∈U,limjajuj=0}, where j∈N.



Theorem 1.

Let V be a subalgebra in L(X,X) such that Vt=V. Then J is a left or right ideal in V if and only if Jt is a right or left respectively ideal in V.





Proof. 

For each A and B in V we get (ABt)t=BAt and Bt∈V and At∈V, since Vt=V. Therefore, for a right ideal J we deduce that ∀A∈J∀B∈V(ABt∈J)⇔(BAt∈Jt). Moreover, ∀B∈V∃U∈V,Ut=B. The similar proof is for a left ideal J. □





Theorem 2.

Let X=c0(α,F), where F∈En. Then the class Lc(X,X) of all compact operators T:X→X is a closed ideal in L(X,X), also Lt,c(X,X):={A:A∈Lc(X,X)&At∈Lc(X,X)} is a closed ideal in L0(X,X).





Proof. 

By the definition of a compact operator T∈Lc(X,X) if and only if for the closed unit ball B (of radius 1 and with 0∈B) in X its image TB is a compactoid in X (see Ch. 4 in [11]). Therefore, if A∈L(X,X), then AB is bounded and convex in X, consequently, TA∈Lc(X,X). On the other hand, if C is a compactoid in X, then AC is a compactoid in X, hence AT∈Lc(X,X). Thus Lc(X,X) is the ideal in L(X,X).



Suppose that Tn is a fundamental sequence in Lc(X,X) relative to the operator norm topology. Then its limit T=limnTn exists in L(X,X), since L(X,X) is complete relative to the operator norm topology. Let ϵ>0. There exists m∈N such that |T−Tn|<ϵ for each n>m. Since Tn is the compact operator, there exists a finite set a1,…,al in X such that (TnB)⊆B(X,0,ϵ)+Co¯(a1,…,al), where



Co(a1,…,al)={x∈X:x=t1a1+…+tlal,t1∈B(F,0,1,),



…,tl∈B(F,0,1)} and B(X,y,r):={z∈X:|z−y|≤r},



0<r, U¯ denotes the closure of a set U in a topological space. Therefore, if x∈TB, then there exists y∈TnB such that |x−y|<ϵ, consequently, x∈B(X,0,ϵ)+Co¯(a1,…,al) due to the ultrametric inequality, hence



TB⊆B(X,0,ϵ)+Co¯(a1,…,al).



This means that the operator T is compact. Thus Lc(X,X) is closed in L(X,X).



The mapping U↦Ut is continuous from L(X,X) into L(X,X), since |U|=|Ut|=supi∈α,j∈α|Ui,j| for each U∈L(X,X). In view of Theorem 4.39 in [11] for each A∈Lt,c(X,X) and ϵ>0 operators S and R in L(X,X) exist such that SX and RX are finite dimensional spaces over F and |A−S|<ϵ and |At−R|<ϵ. Therefore, Lt,c(X,X)⊂L0(X,X) and Lt,c(X,X) is the ideal in L0(X,X). On the other hand, L0(X,X) is closed in L(X,X), consequently, Lt,c(X,X) is closed in L0(X,X). □





Definition 1.

Suppose that F is an infinite field with a nontrivial non-archimedean norm such that F is norm complete, F∈En and of the characteristic char(F)≠2 and B2=B2(F) is the commutative associative algebra with one generator i1 such that i12=−1 and with the involution (vi1)*=−vi1 for each v∈F. Let A be a subalgebra in L(X,X) such that A is also a two-sided B2-module, where X=c0(α,F) is the Banach space over F, α is a set. We say that A is a ∗-algebra if there is

	(1)

	
a continuous bijective surjective F-linear operator I:A→A such that




	(2)

	
I(ab)=(Ib)(Ia) and




	(3)

	
I(ga)=(Ia)g* and I(ag)=g*(Ia)




	(4)

	
IIa=a




	(5)

	
(θ(y))(ax)=(θ((Ia)y))(x)






for every a and b in A and g∈B2 and x and y in X, where θ:X↪X′ is the canonical embedding of X into the topological dual space X′ so that θ(y)x=∑j∈αyjxj. For short we can write a* instead of Ia. The mapping I we call the involution. An element a∈A we call self-adjoint if a=a*.





Lemma 1.

Let A be a subalgebra of L(X,X) with transposition and At=A, where X=c0(α,F), F∈En, char(F)≠2. Then the minimal ∗-algebra K generated by A and B2 has an embedding ψ into L(U,U) such that ψ(B2) is contained in the center Z(K) of K, where U=X⊕X.





Proof. 

We put ψ(a):=a00a and ψ(ai1):=0a−a0 and (ψ(a))*:=at00at and (ψ(ai1))*:=0−atat0 for each a∈A, since at∈A. Therefore, the minimal algebra containing ψ(A) and ψ(Ai1) is the ∗-subalgebra in L(U,U). Then (ψ(i1))2=−IU and ψ(i1)=0IX−IX0, where IX is the unit operator on X. Thus ψ(ai1)=ψ(a)ψ(i1)=ψ(i1)ψ(a)=ψ(i1a) for each a∈A and hence ψ(B2)⊂Z(K), where Z(K) denotes the center of the algebra K. □





Lemma 2.

Let A be a ∗-algebra over F (see Definition 1), then each element a∈A has the decomposition a=a0+a1i1 with a0*=a0 and a1*=a1 in A.





Proof. 

Put a0=(a+a*)/2, a1=(ai1*+i1a*)/2, since char(F)≠2. Then a0 and a1 are in A, since A is the two-sided B2-module and a*∈A and 1∈B2 and i1∈B2 and i1*=−i1. The algebra A is associative. Therefore, aj*=aj and (i1aj)*i1=aj*i1*i1=aj=i1(aji1)* for j=0 and j=1.



Consider the particular case:



if a=a*, then a0=a and (a1i1)*=(a+i1ai1)*/2=a1i1.



The latter together with a1*=a1 implies that −i1a1=a1i1 if a=a*. On the other hand, a=2a1i1−i1ai1 and a*=−2a1i1−i1ai1 if a=a*. Thus 4a1i1=0 and hence a1=0, that is, ai1=i1a if a=a*, since a1=a1i1i1* and char(F)≠2. This implies that a1i1=i1a1 for each a∈A, consequently, the decomposition is valid a=a0+a1i1 with the self-adjoint elements a0*=a0 and a1*=a1 in A. □







3. Dual and Annihilator Normed Algebras


At first, necessary definitions are given in this section and then propositions and theorems are proven. Definitions 2, 3, 4 and 5 follow main lines of that of in [4,8,11,28,29,30], but they are added in order to avoid any misunderstanding and because they contain some specific ultranormed features.



Definition 2.

Let A be a topological algebra over a field F and let S be a subset of A. The left annihilator is defined by L(A,S):={x∈A:xS=0} and the right annihilator is R(A,S):={x∈A:Sx=0}, shortly they also will be denoted by Al(S):=L(A,S) and Ar(S):=R(A,S).





Definition 3.

An algebra A is called an annihilator algebra if conditions (1−3) are fulfilled:



(1) Al(A)=Ar(A)=0 and



(2) Al(Jr)≠0 and



(3) Ar(Jl)≠0



for all closed right Jr and left Jl ideals in A.



If for all closed (proper or improper) left Jl and right Jr ideals in A



(4) Al(Ar(Jl))=Jl and



(5) Ar(Al(Jr))=Jr



then A is called a dual algebra.



If A is a ∗-algebra (see Definition 1) and for each x∈A elements a∈A and a1∈A exist such that an ultranorm on A for these elements satisfies the following conditions



(6) |axx*a1*|=|x|2 and |a||a1*|≤1,



then the algebra A is called finely regular.





Theorem 3.

If A is an ultranormed annihilator finely regular Banach algebra, then A is dual.





Proof. 

Consider arbitrary x∈A and take elements a∈A and a1∈A fulfilling conditions (6) of Definition 3, then |x|2=|axx*a1*|≤|a||x||x*||a1*|≤|x||x*|, hence |x|≤|x*|. Substituting x by x* we deduce analogously that |x*|≤|x|, consequently, |x|=|x*|.



For a closed left ideal Jl in A if x∈Jl∩(Ar(Jl))*, then xx*=0, consequently, x=0 by Formula (6) in Definition 3 and hence Jl∩(Ar(Jl))*=0. Then Vl:=Jl⊕(Ar(Jl))* is a left ideal in A, since Ar(Jl) is the closed right ideal in A and (Ar(Jl))* is the closed left ideal in A.



For an arbitrary x∈Vl there exist elements y∈Jl and z∈(Ar(Jl))* such that x=y+z. Therefore, xz*=zz* and xy*=yy*. Using conditions (6) of Definition 3 we choose elements a∈A, a1∈A, b∈A and b1∈A with |a||a1*|≤1 and |b||b1*|≤1 such that |azz*a1*|=|z|2 and |byy*b1*|=|y|2 and hence |x||z*|≥|a||x||z*||a1*|≥|axz*a1*|=|azz*a1*|=|z|2 and |x||y*|≥|b||x||y*||b1*|≥|bxy*b1*|=|byy*b1*|=|y|2. Therefore, |x|≥|z| and |x|≥|y|. Thus Vl is the closed left ideal in A.



From Condition (3) of Definition 3 it follows that a nonzero element a∈A exists such that Vla=(0), consequently, Jla=(0) and (Ar(Jl))*a=(0). Then from the inclusion a∈Ar(Jl) and hence a*∈(Ar(Jl))* it follows that a*a=0. The latter contradicts the supposition that the algebra A is completely regular. Thus Vl=A and analogously for each closed right ideal Jr in A the equality A=Vr is valid, where Vr=Jr⊕(Al(Jr))*.



Particularly, for Jr=Ar(Jl) it implies that A=Ar(Jl)⊕(Al(Ar(Jl)))*. The involution of both sides of the latter equality gives A=(Ar(Jl))*⊕Al(Ar(Jl)), since Jl⊆Al(Ar(Jl)). Thus Jl=Al(Ar(Jl)) for each closed left ideal Jl in A and the involution leads to the equality Jr=Ar(Al(Jr)) for each closed right ideal Jr in A. Thus, conditions (4,5) of Definition 3 are fulfilled. □





Definition 4.

If idempotents w1 and w2 of an algebra A satisfy the conditions w1w2=0 and w2w1=0, then it is said that they are orthogonal. A family {wj:j} of idempotents is said to be orthogonal, if and only if every two distinct of them are orthogonal. An idempotent p is called irreducible, if it cannot be written as the sum of two mutually orthogonal idempotents.





Definition 5.

For two Banach algebras A and B over an ultranormed field F, F∈En, we consider the completion A⊗^FB relative to the projective tensor product topology (see [11,31]) of the tensor product A⊗FB over the field F such that A⊗^FB is also a Banach algebra into which A and B have natural F-linear embeddings π1 and π2 correspondingly.





For a Banach algebra B over an ultranormed field F, F∈En, and an element x∈B we say that x has a left core quasi-inverse y if for each H∈En(F) an element y∈BH exists satisfying the equality x+y+yx=0, where BH=B⊗^FH. A right core quasi-inverse is defined similarly. Particularly, if only H=F is considered they are shortly called a left quasi-inverse and a right quasi-inverse correspondingly.



For a unital Banach algebra A over F, where F∈En, if an element x∈A has the property: for each field extension G∈En(F) the left inverse (1+yx)l−1 exists in AG for each y∈AG, then we call x a generalized core nil-degree element. The family of all generalized core nil-degree elements of A we call a core radical and denote it by Rc(A).



Proposition 1.

Let A be a unital Banach algebra over F, where F∈En. Then



Rc(A)=⋂{A∩Jl:G∈En(F)&Jl is a proper maximal left ideal in AG}.





Proof. 

Consider an element x∈A such that for each G∈En(F) (see Notation 2.1) and each maximal left ideal Jl in AG the inclusion x∈Jl is valid. If an element y∈AG is such that (1+yx)l−1 does not exist, then an element z=1+yx belongs to some left ideal J in AG. Since AG is the unital algebra, then z belongs to some proper maximal left ideal M such that J⊂M. But yx also belongs to M, since x belongs to each maximal left ideal, consequently, 1=z−yx∈M. The latter is impossible, since M is the proper left ideal in AG. This means that the left inverse (1+yx)l−1 exists for every G∈En(F) and y∈AG. Thus x belongs to the core radical.



Vice versa. Let now x∈Rc(A). Suppose the contrary that a field extension G∈En(F) and a proper maximal left ideal Jl in AG exist such that x∉Jl. Consider the set V of all elements z=b−yx with b∈Jl and y∈AG. Evidently V is the left ideal in AG containing Jl, but Jl is maximal, consequently, V=AG. This implies that 1=b−yx for some b∈Jl and y∈AG. Therefore, the element b=1+yx has not a left inverse. However, this contradicts the supposition made above. □





Proposition 2.

Suppose that A is a unital Banach algebra over F, where F∈En. Then



(x∈Rc(A))⇔(∀G∈En(F)∀y∈AG∃(1+yx)−1∈AG).





Proof. 

If ∀G∈En(F)∀y∈AG∃(1+yx)−1∈AG, then ∀G∈En(F)∀y∈AG∃(1+yx)l−1∈AG, consequently, x∈Rc(A), where as usually (1+yx)−1 notates the inverse of 1+yx.



Vice versa. Let x∈Rc(A). Then by the definition of the core radical ∀G∈En(F)∀y∈AG∃(1+yx)l−1∈AG. For G∈En(F) denote by 1+b a left inverse of 1+yx in AG, that is (1+b)(1+yx)=1. This implies that 1+yx is the right inverse of 1+b in AG and b=−byx−yx. From x∈Rc(A) it follows that b∈Rc(AG), since x∈Jl and hence y∈Jl for each proper maximal left ideal Jl in AH and each H∈En(G). This means that for every H∈En(G) and z∈AH a left inverse (1+zb)l−1 exists in AH, particularly, for z=1 also. On the other hand, the right inverse is (1+zb)r−1=1+yx as it was already proved above. Therefore, the inverse (i.e., left and right simultaneously) (1+b)−1=1+yx exists. Thus 1+b is the inverse of 1+yx in AG. □





Proposition 3.

Let A be a unital Banach algebra over F, where F∈En. Then



Rc(A)=⋂{A∩Jr:G∈En(F)&Jr is a proper maximal right ideal in AG}. Moreover, Rc(A) is the two-sided ideal in A.





Proof. 

Consider the class Qe(A) of all elements x∈A such that for each field extension G∈En(F) the right inverse (1+xy)r−1 exists in AG for each y∈AG. Analogously to the proof of Proposition 1 we infer that



Qe(A)=⋂{Jr:G∈En(F)&Jr is a proper maximal right ideal in AG}.



Similarly to the proof of Proposition 2 we deduce that



(x∈Qe(A))⇔(∀G∈En(F)∀y∈AG∃(1+xy)−1∈AG).



Suppose that G∈En(F), x∈A, y∈AG and the inverse element exists (1+yx)−1=1+b in AG. Then (1+xy)(1−xy−xby)−1=−x((1+yx)(1+b)−1)y=0 and (1−xy−xby)(1+xy)−1=−x((1+b)(1+yx)−1)y=0, consequently, 1−xy−xby=(1+xy)−1. Analogously if the inverse element (1+yx)−1 exists, then (1+xy)−1 also exists. This implies that Qe(A)=Rc(A) and hence the core radical is the two-sided ideal in A. □





Proposition 4.

Suppose that A is a unital Banach algebra over F, where F∈En. Then an extension field H=HF∈En(F) exists such that Rc(A)=A∩R(AH), where R(AH) denotes the radical of the algebra AH over H. Moreover, H can be chosen algebraically closed and spherically complete.





Proof. 

Consider an arbitrary element x∈A∖Rc(A). This means that a field extension G=Gx∈En(F) and an element y∈AG exist such that the element (1+yx) has not the left inverse in AG. For the family G:={Gx:x∈A∖Rc(A),Gx∈En(F)} a field H=HF∈En(F) exists such that Gx⊆H for each x∈A∖Rc(A) due to Proposition V.3.2.2 [29] and since the multiplicative ultranorm |·|F can be extended to a multiplicative ultranorm |·|H on H (see Proposition 5 in Section VI.3.3 [30], Krull’s existence theorem 14.1 and Theorem 14.2 in [18] or 3.19 in [11], Lemma 1 and Proposition 1 in [32])).



If HF is not either algebraically closed or spherically complete, one can take the spherical completion of its algebraic closure H¯F (see Corollary 3.25, Theorem 4.48 and Corollary 4.51 in [11]). Then also H¯F∈En(F). Denote shortly H¯F by H.



Therefore, if G∈G, then from y∈AG it follows that y∈AH. For each x∈A∖Rc(A) an element y∈AG exists such that AG(1+yx) is a left proper ideal in AG, consequently, AG(1+yx)⊗^GH=AH(1+yx) is a left proper ideal in AH, since H⊂Z(AH). Therefore, (1+yx) has not a left inverse in AH.



Thus for each x∈A∖Rc(A) and G=Gx∈G and element y∈AH exists such that (1+yx) has not a left inverse in AH. Therefore, A∩R(AH)⊂Rc(A). On the other hand, if x∈Rc(A), then x∈R(AH) according to the definition of Rc(A) in Definition 5. Thus Rc(A)=A∩R(AH) for the fields H constructed above. □





Theorem 4.

Let A be a unital Banach algebra over F, where F∈En. Then an extension field K=KF∈En(F) exists such that



(1)Rc(AK)=R(AK).



Moreover, K can be chosen algebraically closed and spherically complete.





Proof. 

Put K1=H, where H=HF is given by Proposition 4. Then by induction take Kn+1=HKn for each natural number n=1,2,3,…. There are isometric embeddings Kn↪Kn+1 for each n. Let K be the norm completion of K∞:=⋃n=1∞Kn, hence K∈En(F). In addition, each field Kl can be chosen algebraically closed and spherically complete due to Proposition 4. Moreover, it is possible to take as K the spherical completion of the algebraic closure of K∞ (see Corollary 3.25, Theorem 4.48 and Corollary 4.51 in [11]).



In view of Proposition 4 Rc(AKl)=AKl∩R(AKl+1) for each natural number l. Let x∈Rc(AK), that is for each G∈En(K) and y∈AK a left inverse (1+yx)l−1 exists in AK. The algebra A⊗FK∞ over the field K∞ is everywhere dense in AK=A⊗^FK. Therefore, there exist sequences xn and yn in AK such that xn∈AKn and yn∈AKn for each n and limnxn=x and limnyn=y. Since (1+z) is invertible in AK for each z∈AK with |z|<1, then a natural number m exits such that a left inverse (1+ynxn)l−1 exists for each n>m.



From G∈En(K) and Kl∈En(F), Kl⊆K it follows that G∈En(Kl) for each l=1,2,3,…. On the other hand, an element y∈AK can be any marked element in particularly belonging to AKl. Thus ⋃lRc(AKl) is dense in Rc(AK). Similarly, considering G=K one gets that ⋃lR(AKl) is dense in R(AK). Mentioning that ⋃lAKl is dense in A⊗FK∞ one gets that ⋃lAKl is dense in AK. Therefore, we infer that


Rc(AK)=clAK(⋃lRc(AKl))=clAK(⋃l(AKl∩R(AKl+1)))










=clAK(⋃lR(AKl+1))=R(AK),








where clAKB denotes the closure of a subset B, B⊂AK, in AK. □





Proposition 5.

Let A be a Banach algebra over F, F∈En, also let a field K fulfill Condition (1) of Theorem 4 for A1, where A1=A if 1∈A, while A1=A⊕1F if 1∉A. Then an element x∈AK is not core left quasi-invertible if and only if Jl,G:={z+zx:z∈AG} is a proper left ideal in AG for each G∈En(K). If so Jl,G is a proper regular left ideal in AG such that x∉Jl,G.





Proof. 

By virtue of Theorem 4 Rc(A1,K)=R(A1,K). Hence for each G∈En(K) an element x∈AK is not core left quasi-invertible in AG if and only if it does not belong to R(A1,K). If u=y+yx and v=z+zx belong to Jl,G, b and c are in G, where y and z belong to AG, then bu+cv=(by+cz)+(by+cz)x, consequently, cu+bv∈Jl,G. That is AGJl,G⊆Jl,G. If Jl,G is not a proper left ideal, then Jl,G=AG. This implies that an element z∈AG exists such that x+zx=−x. The latter is equivalent to the equality x+zx+x=0. Thus z is a left quasi-inverse of x.



Vise versa if x has a left quasi-inverse in AG, then x∈Jl,G, hence −zx∈Jl,G. Therefore, z=(z+zx)−zx∈Jl,G for each z∈AG, consequently, AG=Jl,G. Thus if Jl,G is a proper left ideal, then x∉Jl,G. Mention that the element w=−x is unital modulo the proper left ideal Jl,K, consequently, this ideal is regular. □





Proposition 6.

Suppose that A is a Banach algebra over F, F∈En, also a field K satisfies Condition (1) of Theorem 4 for A1. Then the following conditions are equivalent:



(1) an element x∈AK possesses a left quasi-inverse in AG for each G∈En(K);



(2) for every G∈En(K) and a maximal regular proper left ideal Ml,G in AG an element y∈AG exists such that x+y+yx∈Ml,G.





Proof. 

If an element x∈AK possesses a left quasi-inverse yG in AG for each G∈En(K), then x+yG+yGx∈Ml,G for each maximal regular proper left ideal Ml,G in AG due to Theorem 4.



Vise versa suppose that Condition (2) is fulfilled, but x is not left quasi-invertible in AG for some G∈En(K). Then Jl,G is a regular proper left ideal in AG according to Proposition 5. Therefore, a maximal regular proper left ideal Ml,G in AG exists containing Jl,G. Thus an element y∈AG exists such that x+y+yx∈Ml,G. On the other hand, the inclusion y+yx∈Jl,G is accomplished, consequently, y∈Ml,G and hence −zx∈Ml,G for each z∈AG. This implies that z∈Ml,G for each z∈AG, since z=−zx+(z+zx). However, this leads to the contradiction AG=Ml,G. Thus (2)⇒(1). □





Proposition 7.

Suppose that A is a Banach annihilator algebra over an ultranormed field F, F∈En. Then a field extension K, K∈En(F), exists such that if an element −p∈AK is not core left quasi-invertible, then a nonzero element x∈AK∖{0} exist satisfying the equation px=x.





Proof. 

We take a field K, K∈En(F), given by Theorem 4 for a unital algebra E=A1, where E=A⊕1F if 1∉A, while E=A if 1∈A. Therefore, Rc(EK)=R(EK).



By virtue of Proposition 5 Jl,K:={yp−p:y∈AK} is a regular proper left ideal in AK. Since EK is the unital Banach algebra over K, then it is with continuous inverse. Hence if A is not unital, then AK is with the continuous quasi-inverse. Mention that an element v is a left quasi-inverse of q in AK if and only if 1+v is a left inverse of 1+q in EK.



Therefore, if 1∉A, then a bijective correspondence exists: Q is a left (maximal) ideal of EK which is not contained entirely in A if and only if Q∩AK is a regular (maximal respectively) left ideal of AK. If 1∈A, then each left ideal in AK is regular.



Recall that a ring B satisfying the identities



(1)L(B,B)=(0) and R(B,B)=(0) is called annihilator, where



(2)L(B,S)={x∈B:xS=(0)} and R(B,S)={x∈B:Sx=(0)}



denote a left annihilator and a right annihilator correspondingly of a subset S in B. Thus



(3)L(AK,AK)=(0) and R(AK,AK)=(0),



since AK=A⊗^FK, since by the conditions of this proposition L(A,A)=(0) and R(A,A)=(0), also A and AK are Banach algebras. Next we take the closure clAK(Jl,K) of Jl,K in AK. Therefore, R(AK,clAK(Jl,K)) is not nil, R(AK,clAK(Jl,K))≠(0).



Suppose that x is a nonzero element in R(AK,clAK(Jl,K)), consequently, x∈R(AK,Jl,K).



If z∈R(AK,Jl,K), then y(pz−z)=(yp−y)z=0 for each y∈AK. From L(AK,AK)=(0) and R(AK,AK)=(0) it follows that pz−z=0. Vice versa, if pz−z=0 for some z∈AK, then (yp−y)z=y(pz−z)=0 and hence z∈R(AK,Jl,K). Therefore,



(4)R(AK,Jl,K)={z∈AK:pz=z}.



Thus px=x. □





Theorem 5.

Suppose that A is a Banach annihilator algebra over a field F∈En such that Rc(A)=R(A) and Mr is a proper maximal closed right ideal in A satisfying the condition L(A,Mr)∩R(A)=(0). Then L(A,Mr) contains an idempotent p and



(1)L(A,Mr)=Ap and



(2)Mr={z−pz:z∈A}.





Proof. 

A nonzero element b in L(A,Mr) exists, since L(A,Mr)≠(0), since Mr is a proper right ideal in A. Therefore, Mr⊂R(A,{b})≠A and consequently,



(3)R(A,{b})=Mr,



since the right ideal Mr is maximal. The element b does not belong to R(A), since L(A,Mr)∩R(A)=(0) by the conditions of this theorem.



In view of Theorem 4 and Propositions 5 and 6 a scalar t∈F and an element y∈A exist such that the element −p=tb+yb has not a left quasi-inverse in AG for each G∈En(F). Thus p≠0 and p∈L(A,Mr). By virtue of Proposition 7 a nonzero element x∈A∖(0) exists such that px=x, consequently, (p2−p)x=0.



Suppose that p2−p is not nil, p2−p≠0. We have p2−p∈L(A,Mr). Taking b=p2−p in (3) one gets R(A,p2−p)=Mr, consequently, (p2−p)x∈Mr and inevitably x=px=0. This leads to the contradiction. Thus p2=p.



On the other hand, p∈L(A,Mr) and p is not nil. Taking b=p in (3) provides Mr=R(A,{p}) and R(A,{p})={z−pz:z∈A}, since p(y−py)=py−p2y=0, also if pz=0, then z=z−pz. Therefore, L(A,Mr)=Ap due to formula (4) of Proposition 7 and since p is the idempotent. □





Corollary 1.

If conditions of Theorem 5 are fulfilled, then Mr is a maximal right ideal and L(A,Mr) is a minimal left ideal, also pA is a minimal right ideal and L(A,pA) is a maximal left ideal.





Theorem 6.

Let A be a Banach annihilator algebra over a field F∈En such that Rc(A)=R(A), let also Jl be a minimal left (may be closed) ideal which is not contained in R(A), Jl∖R(A)≠∅. Then Jl contains an idempotent p for which Jl=Ap and R(A,Ap)={x−px:x∈A}.





Proof. 

Take x∈Jl∖R(A). From Propositions 5 and 6 it follows that b∈F and y∈A exist such that the element −p=bx+yx has not a left quasi-inverse, consequently, p≠0.



In view of Proposition 7 an element v∈A exists having the property pv=v. Therefore, Yl:={z∈Jl:xv=0} is a left ideal such that it is contained in Jl and Jl≠Yl, since p∈Jl∖Yl. This ideal Yl is closed, if Jl is closed. The ideal Jl is minimal, hence Yl=(0). This implies that zv≠0 if z∈Jl∖{0}. On the other hand, p2−p∈Jl and (p2−p)v=0, hence p2−p=0. Thus p is the idempotent.



For each z∈Ap the condition z=zp is valid, consequently, Ap is a closed left ideal contained in Jl and hence Ap=Jl, since the left ideal Jl is minimal. Therefore, R(A,Jl)={x−px:x∈A}. □





Lemma 3.

If A is a Banach annihilator semi-simple algebra over a field F∈En with Rc(A)=R(A) and J is a left (or right, or two-sided) ideal in A such that J2=(0), then J=(0).





Proof. 

Suppose that J is a left ideal in A with J2=(0). Therefore, (tx+yx)2=0 for every t∈F, x∈J and y∈A, since tx+yx∈J. In this case the element z=tx+yx has the left quasi-inverse −z. By virtue of Propositions 5 and 6 x∈R(A), since Rc(A)=R(A) by the conditions of this lemma. The algebra A is semi-simple, consequently, J=(0). □





For a right ideal or a two-sided ideal the proof is analogous.



Lemma 4.

If A is a Banach annihilator semi-simple algebra over a field F∈En with Rc(A)=R(A) and Jr is a right minimal ideal in A, then a closed two-sided ideal Y=Y(Jr) generated by Jr is minimal and closed in A.





Proof. 

If X is a closed two-sided ideal contained in Y, then Jr∩X is a right ideal contained in Jr, consequently, either Jr∩X=Jr or Jr∩X=(0), since Jr is minimal. If Jr∩X=Jr, then Y⊂X, hence Y=X.



If Jr∩X=(0), then JrX⊂Jr∩X=(0), consequently, Jr⊂L(A,X). Then L(A,X) is the closed two-sided ideal, consequently, Y⊂L(A,X). Therefore, X⊂L(A,X) and consequently, X2=(0). Applying Lemma 3 we get that X=(0).



Thus Y is minimal. □





Theorem 7.

Let A be a Banach annihilator semi-simple algebra over a field F∈En with Rc(A)=R(A). Then the sum of all left (or right) ideals of A is dense in A.





Proof. 

Suppose that U is a sum of all minimal right ideals and U¯ is its closure in A. If U¯≠A, then U¯ is the closed right ideal in A, consequently, a nonzero element y in A exists such that yU¯=(0). This implies that y belongs to all left annihilators of all minimal right ideals and hence it belongs to the intersection V of all maximal left regular ideals. In view of Proposition 3 one gets that this intersection is Rc(A). By the conditions of this theorem Rc(A)=R(A), hence V is zero, since A is semi-simple. Thus y=0 providing the contradiction. Thus U¯=A. □





Proposition 8.

Let conditions of Theorem 7 be fulfilled and let J be a right ideal in A. Then J contains a minimal right ideal and an irreducible idempotent s.





Proof. 

Suppose that J does not contain a minimal right ideal and sA is a minimal right ideal for some irreducible idempotent s in A. This implies that J∩(sA)=(0). Hence for each a∈A either asA=(0) or asA is also a minimal right ideal, consequently, (asA)∩J=(0) for all a∈A and hence (as)∩J=(ass)∩J⊂(asA)∩J=(0) for all a∈A. Thus (aS)∩J=(0). Therefore JAs=(0), since JAs⊂(As)∩J. This means that JAs=(0) for all minimal left ideals As. In view of Theorem 7 JA=(0), consequently, J=(0). □





Proposition 9.

If conditions of Theorem 7 are satisfied and s is an irreducible idempotent in A, then sA and As are minimal right and left ideals correspondingly.





Proof. 

Suppose that sA is not minimal. By virtue of Proposition 8 it contains a minimal right ideal rA such that rA≠sA, rA⊂sA. Then an element a∈A exists such that r=sa, consequently, rs=sas∈rA. This implies that t is a nonzero idempotent contained in rA such that the element t=rs satisfies the equalities st=ts=t and s−t is also a nonzero idempotent providing the contradiction, since s=t+(s−t) and t(s−t)=(s−t)t=0, but s is irreducible by the conditions of this proposition. Thus sA is minimal. □





Proposition 10.

If conditions of Theorem 7 are satisfied and J is a closed two-sided ideal in A, then L(A,J)=R(A,J) and J+R(A,J) is dense in A.





Proof. 

In view of Lemma 3 J∩R(A,J)=(0), since J∩R(A,J)=:V is the right ideal possessing the property V2=V. Therefore, R(A,J)J=(0) and hence R(A,J)⊂L(A,J). Similarly L(A,J)⊂R(A,J), consequently, L(A,J)=R(A,J).



If J+R(A,J) would be not dense in A, then its closure should be a proper ideal in A, consequently, a nonzero element x in A exists such that (J+R(A,J))x=(0). Therefore J(αx+xy)=(0) and R(A,J)(αx+xy)=(0) for each y∈A and α∈F, hence (αx+xy)∈R(A,J) and consequently, (αx+xy)2=0 for each y∈A and α∈F. However, in the semi-simple algebra A with Rc(A)=R(A) this is impossible for x≠0. □





Proposition 11.

If conditions of Theorem 7 are met and J is a minimal closed two-sided ideal in A, then J is an annihilator algebra with Rc(J)=R(J). If in addition A is dual, then J is also dual.





Proof. 

If x∈J and Jx=(0), then x=0, since J∩R(A,J)=(0) due to Proposition 10. Analogously if xJ=(0) and x∈J, then x=0. Thus L(A,J)=R(A,J)=(0).



If Vl is a closed left ideal in J, then (J+L(A,J))Vl=JVl⊂Vl, hence AVl⊂Vl, since J+L(A,J) is dense in A by Proposition 10. Thus Vl is the closed left ideal in A.



Put Hl=Vl+R(A,J). Then either Hl is dense in A or R(A,Hl)≠(0). From Lemmas 3, 4 and Proposition 8 one gets J∩R(A,Hl)≠(0) and hence J∩R(A,Vl)≠(0). Analogously J∩L(A,Vr)≠(0) for a closed right ideal Vr in J.



Suppose now that the algebra A is dual. In view of Lemma 3 and Proposition 10 if x∈J and [L(A,Vr)∩J]x=(0), then x∈R(A,L(A,Vr)∩J)=clA(R(L(A,Vr))+R(A,J))=clA(Vr+R(A,J))=clA(Vr+L(A,J)). Then (Vr+L(A,J))J=VrJ⊂Vr, since Vr is a right ideal in J, consequently, clA(Vr+L(A,J))J⊂Vr, hence xJ⊂Vr and consequently, L(A,Vr)xJ⊂L(A,Vr)Vr=(0). On the other hand, L(A,Vr)xR(A,J)=(0), since x∈J, consequently, L(A,Vr)x(J+R(A,J))=(0). We have that J+R(A,J) is dense in A due to Proposition 10, hence L(A,Vr)xA=(0) and consequently, L(A,Vr)x⊂L(A,A)=(0). From the duality of A it follows that x∈Vr. Therefore, R(J,L(J,Vr))=Vr and similarly L(J,R(J,Vl))=Vl. Thus J is also dual. □





Theorem 8.

Let A be a Banach semi-simple annihilator algebra over F∈En with Rc(A)=R(A). Then A is the completion of the direct sum of all its minimal closed two-sided ideals Hk, each of which is a simple annihilator algebra over F. Moreover, if A is dual, then each Hk is simple and dual.





Proof. 

By virtue of Proposition 8 each closed minimal two-sided ideal J in A contains a minimal right ideal Vr, hence J=Vr according to Lemma 4. Then the closure clAVr is a closed minimal two-sided ideal for each minimal right ideal Vr due to the same lemma. According to Proposition 11 clAVr is the annihilator algebra, which is also dual if A is dual. If H is a closed two-sided ideal in clAVr, then it is such in A also. However, clAVr is minimal, hence the algebra clAVr is simple.



By virtue of Theorem 7 the sum of all minimal right ideals Vr is dense in A. Let K and M be two minimal closed two-sided ideals which are different, K≠M. Therefore KM⊂K∩M=(0), since K∩M is the closed two-sided ideal contained in minimal closed two-sided ideals K and in M and different from them. If x+y=0 for some x∈K and y∈M, then Kx=(0) and My=(0), consequently, (xA)2⊂K(xA)=(0) and analogously (yA)2=(0). Therefore xA=(0) and yA=(0), since A is semi-simple, consequently, x=0 and y=0. Thus the considered sum is direct. □





Theorem 9.

If A is a Banach simple annihilator algebra over a field F∈En with Rc(A)=R(A), if also p is an irreducible idempotent, then pAp=:H is an ultranormed division algebra over F. Moreover, if A and F are ultranormed and A is commutative, then a multiplicative ultranorm |·|H on H exists extending that of F such that it induces a topology on H not stronger than the topology inherited from A.





Proof. 

From the conditions of this proposition it follows that pH=Hp=H, since p2=p and the algebra A is associative. Evidently, H is the algebra over F, since A is the algebra over F. The restriction of p to H is the identity on H, since ps=p2s=p(ps) for each s∈A and hence pr=r for each r∈H, similarly rp=r for each r∈H and hence pr=rp=r=prp. For each nonzero element r in H the set Ar is a left ideal in A and Ar≠(0) due to Condition (1) in Definition 3. In view of Propositions 8 and 9 Ar⊂Ap and Ap is a minimal left ideal, since p is the irreducible idempotent. Thus Ar=Ap and hence an element y∈A exists such that yr=p2=p, consequently, pyr=py(pr)=(pyp)r. Therefore, (pyp)r=(pyp)(prp)=pyprp=pyr=pp=p, consequently, pyp is a left inverse of r in H. Similarly r has a right inverse in H. Thus H is the division algebra such that F is isomorphic with Fp and Fp⊂H. From the continuity of the algebraic operations on A it follows that they are continuous on H. The norm on A induces a norm on H, since H⊂A. Since H is the topological ring with the continuous quasi-inverse and H possesses the unit, then H is with the continuous inverse.



If A and F are ultranormed and A is commutative, then the ultranorm |·|A on A induces the ultranorm on H and H is also commutative. Therefore, |p|A=|p2|A≤|p|A2 and hence 1≤|p|A. On the other hand, on H as the field extension of F there exists a multiplicative ultranorm |·|H extending |·|F that of the field F (see Proposition 5 in Section VI.3.3 [30], Krull’s existence theorem 14.1 and Theorem 14.2 in [18] or 3.19 in [11]). We have that |1|F=1, 1≤|p|A, also p plays the role of the unit in H, while |bx|A=|b|F|x|A for each b∈F and x∈A.



If A is not unital, we consider the algebra A1 obtained from it by adjoining the unit. The norms on A and F induce the norm on A1=A⊕F. Therefore, it is sufficient to consider the case of the unital algebra A. Mention that (1−p)2=1−p and A(1−p) is the ideal in A such that A=Ap+A(1−p) with Ap∩A(1−p)=(0). Moreover, Ap=pAp=Ap2, since A is commutative. This implies that H is isomorphic with the quotient algebra J=A/(A(1−p)). Then the ultranorm on A induces the quotient ultranorm on J such that |xy|J≤|x|J|y|J and |xyp|J≤|xp|J|yp|J for each x and y in J, since pxp=xp and xpyp=xyp for each of elements x and y in the commutative algebra A. At the same time, |xyp|H=|pxppyp|H=|xp|H|yp|H for each x and y in A.



The ultranorm |·|A on Fp induced from A is equivalent with the multiplicative ultranorm |·|F on F, since Fp is isomorphic with F and consequently, |xpypz|A=|xp|A|yp|A|z|A for every xp∈Fp, yp∈Fp and z in A, since |xp|F=|xp|A. Then |xyp|J=|xp|J|yp|J if xp∈Fp and yp∈Fp, where x and y are in A. The inequality |p|J−1|xp|J≤|x|J is also fulfilled for each x∈A. Therefore, H can be supplied with a multiplicative norm |·|H extending that of F and satisfying the inequality |x|H≤|x|J for each x∈H according to Theorems 1.15 and 1.16 [7]. □






4. Conclusions


It is worth mentioning the following. Several applications were mentioned in the introduction. Besides these applications, the results of this article can be used for further studies in different areas of fundamental mathematics. Among them are topological algebra, non-archimedean functional analysis, representation theory of totally disconnected topological groups, operator theory in ultranormed spaces. It is also interesting to mention possible applications in mathematical coding theory and its technical applications [33,34,35,36,37,38,39,40,41], because frequently codes are based on binary systems and algebras over non-archimedean fields.



For example, the obtained results (see Theorems 4, 5, 7 and 9 in Section 3) on annihilator algebras can be used for subsequent investigations of invariant subspaces of operator algebras in ultranormed spaces. Moreover, they can also be used for studies of decompositions of totally disconnected topological group representations by operators in ultranormed spaces into irreducible representations (see also Propositions 5, 6, 8–10 in Section 3).



On the other hand, it can also serve for advances in non-archimedean quantum field theory and quantum mechanics. This is natural, because they are based on algebras and operator algebras over ultranormed fields.
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