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Abstract: Recently, it was observed that the concentration/heat transfer of pure/nano fluids are
finally governed by singular second-order boundary value problems with exponential coefficients.
These coefficients were transformed into polynomials and therefore the governing equations become
singular in a new independent variable. Unfortunately, the published approximate solutions in the
literature suffer from some weaknesses as showed by one of the present coauthors. Hence, the exact
solution for such types of problems becomes a challenge. In this paper, a straightforward approach
is presented to obtaining the exact solution for such class of singular second-order boundary
value problems. The results are also applied to some selected problems within the literature.
Accordingly, the published solutions are recovered as special cases of the present ones.

Keywords: ordinary differential equation; hypergeometric series; singular boundary value problem;
Laplace transform; nanofluid

1. Introduction

The field of boundary value problems frequently arises in many real-life applications.
Recently, it was shown that the flow and heat transfer of nanofluids are governed by a system of
partial differential equations which are often transformed to a set of ordinary differential equations by
using a similarity variable η [1–8]. This set of ordinary differential equations is originally subjected to
boundary conditions at infinity. Over the past few decades, many authors [9–12] resorted to numerical
and semi-analytical methods to treat various problems in the finite and infinite domain. The main
difficulty that they have faced was the boundary condition at infinity. The solution to these types of
BVPs (boundary value problems) is therefore a challenge.

However, the series methods suffer some weakness because the conditions at infinity cannot be
directly imposed into the series solution. Therefore, many authors have applied the Pade technique
as a method of solution, however, it needs massive computational work to obtain accurate solutions.
Additionally, it has recently been shown by one of the present coauthors [13–15] that some of the
approximate methods in the literature suffer from some weaknesses and inaccuracy. It should be
noted that, the boundary conditions at infinity can be transformed to new finite ones by applying
a substitution such as t = e−βη , β > 0 [16]. With this substitution, the coefficients in the original
ordinary differential equations (of exponential orders e−βη , β > 0) are transformed to polynomial ones.
Therefore, the coefficients of the final governing ordinary differential equations become polynomials.
For example, Hamad [7] derived the ODE (ordinary differential equation):

τy′′ (η) +
1
β

(
1− e−βη

)
y′(η) = 0, (1)
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subject to the boundary conditions:

y = 1 at η = 0, and y = 0 at η → ∞ (2)

to describe the heat transfer of carbon nanotubes over a stretching sheet. Interpretations of the
parameters β and τ, were given in [1]. On using the new variable t = e−βη , Equation (1) is reduced to
an ODE of polynomial coefficients:

y′′ (t) +
(

m− 1
mt

+
1
m

)
y′(t) = 0, m = β2τ. (3)

subject to:
y(0) = 0, y(1) = 1. (4)

An additional example was discussed by Kameswaran et al. (Equations (32) and (33) in
Reference [2]) in which the following ODE of polynomial coefficients was obtained for the temperature
of nanofluids:

y′′ (t) +
(

1− λ1Pr∗

t
− λ1

)
y′(t) +

(
2λ1

t

)
y(t) = −λ2Ecs2

Pr∗
, (5)

subject to:
y(0) = 0, y(−Pr∗) = 1, (6)

where the parameters λ1, λ2, Pr∗, Ec and s have been addressed in Reference [2]. Hence, the nanofluids
temperature and the nanoparticles concentration are usually special cases of the present generalized
class of second-order singular BVPs, given as:

y′′ (t) +
(

P
t
+ Q

)
y′(t) +

(
R
t

)
y(t) = αtn−1, n > −1, α ∈ R, (7)

subject to the generalized boundary conditions:

y(0) = 0, y(δ) = 1 + ξy′(δ), δ, ξ ∈ R, (8)

at prescribed values for the involved parameters. P, Q, and R are physical parameters which are
related to the densities, the thermal conductivities, and the heat capacitances of base fluids and
nanofluids [1–8]. The parameter ξ is often used to describe convective heat condition and it takes some
particular values according to the physical problem, while δ depends on the final boundary condition
of the temperature/concentration of the studied model. Moreover, Equations (7) and (8) reduces to the
one studied in Reference [16] at ξ = 0 (as a special case). Hence, the exact solution that will be obtained
is more general than those previously published by the authors [16], which is the main objective of this
paper. Furthermore, the analytical solution will be obtained in general form which means that it will be
valid without any restrictions on the coefficients P, Q, and R, and α. Moreover, the analytical solutions
of ODEs arise in real-life applications related to fluid temperature/concentration that can be directly
obtained via our solution when the coefficients P, Q, and R, and α are assigned. Accordingly, the results
may be useful for researchers in this field.

The objective of this paper is to derive a general exact solution for Equations (7) and (8). The paper
is organized as follows. In Section 2, the solution of Equations (7) and (8) will be introduced in terms of
the hypergeometric function. Section 3 is devoted to obtaining a useful theorem to express the solution
in terms of the generalized incomplete gamma function. In Section 4, some applications are discussed
in which the current general solution reduces those in the literature as special cases. An example for
numerical validation are introduced in Section 5. The conclusion of this paper is presented in Section 6.
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2. Analytic Solution

An analytical procedure is presented in this section to solve class (7) and (8). Two separate cases
will be considered: the first case is the homogenous BVP (7) and (8), i.e., at α = 0, while the second is
the in homogenous BVP (7) and (8), i.e., at α 6= 0.

2.1. At α = 0

This case requires to solve the homogenous equation:

y′′ (t) +
(

P
t
+ Q

)
y′(t) +

(
R
t

)
y(t) = 0, (9)

which can be written as:
ty′′ (t) + (P + Qt)y′(t) + Ry(t) = 0, (10)

subject to the BCs (boundary conditions) (8). Following [16], we have:

y(t) =
ctµ1+µ2−1

Γ(µ1 + µ2)
1F1[µ1, µ1 + µ2,−Qt], µ1 > 0, µ1 + µ2 > 1, (11)

where c is a constant, 1F1 is Kummer’s function, and µ1 and µ2 are given in terms of P, Q, R by:

µ1 = 1− P +
R
Q

, µ2 = 1− R
Q

. (12)

Applying the second BC in Equation (8) on Equation (11), yields:

c =
δ1−µ1−µ2 Γ(µ1 + µ2)

(1− ξ/δ(µ1 + µ2 − 1)/δ)1F1[µ1, µ1 + µ2,−Qδ] + (ξQµ1)1F1[1 + µ1, 1 + µ1 + µ2,−Qδ]
, (13)

where:
d
dt
(1F1[µ1, µ1 + µ2,−Qt]) = −(Qµ1)1F1[1 + µ1, 1 + µ1 + µ2,−Qt], (14)

was used to determine c in Equation (13). Inserting Equation (13) into Equation (11), we obtain:

y(t) =
(t/δ)µ1+µ2−1

1F1[µ1, µ1 + µ2,−Qt]
(1− ξ(µ1 + µ2 − 1)/δ)1F1[µ1, µ1 + µ2,−Qδ] + (ξQµ1)1F1[1 + µ1, 1 + µ1 + µ2,−Qδ]

. (15)

Later, it will show that solution (15) is equivalent to the existing results in the literature at
prescribed values of the parameter δ and the coefficients P, Q, and R.

2.2. At α 6= 0

In this general case, the BVP (7) and (8) becomes in homogenous and therefore requires a particular
solution in addition to the complementary solution (11). Assuming that yc(t) and yp(t) are respectively
a complementary solution and the particular solution for Equation (7), then:

y(t) = yc(t) + yp(t), (16)

where the particular solution yp(t) of Equation (7) was obtained as (see [16])

yp(t) =
αtn+1

(n + 1)(n + P)
, (17)

provided that:
R = −(n + 1)Q, (n + P) 6= 0. (18)
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Accordingly, µ1 and µ2 in Equation (12) becomes:

µ1 = −(n + P), µ2 = n + 2. (19)

From Equation (11) and Equations (16)–(19), y(t) reads:

y(t) =
αtn+1

(n + 1)(n + P)
+

ct1−P

Γ(2− P) 1F1[−(P + n), 2− P,−Qt], (20)

where −1 < n < −P admits y(0) = 0. At this point, we have the solution (14) for the following new
form of Equation (7):

y′′ (t) +
(

P
t
+ Q

)
y′(t)−

(
(n + 1)Q

t

)
y(t) = αtn−1, (21)

which arises in many real physical problems at certain values of n (> −1), P, and Q, as will be
discussed in a later section. The constant c should be calculated again by applying the second BC in
Equation (8) on Equation (20) and this gives c as:

c =
δ−1+P

(
1 + αδn

n+P

(
ξ − δ

n+1

))
Γ(2− P)

(1− ξ(1− P)/δ)1F1[−(P + n), 2− P,−Qδ]− ξQ(n + P)1F1[1− (P + n), 3− P,−Qδ]
. (22)

It was verified by using a direct substitution of the analytic solution (20) along with (22) to satisfy
Equation (21) and the BCs (Equation (8)). Furthermore, Section 4 proves that such analytic solution
agree with the existing results in the literature as special cases.

3. Analysis

Here, it should be noted that the current solutions can be expressed in terms of a standard special
function, the generalized incomplete gamma function, defined by:

Γ(a, τ0, τ1) =
∫ τ1

τ0

σa−1e−σdσ. (23)

To achieve this task, we introduced the following theorem that relates Kummer’s function with
the generalized incomplete gamma function.

Theorem 1

For b = a + 3, we have:

1F1[a, b, τ] =
(−1)aΓ(a + 3)

2τa+2Γ(a)

(
τ2Γ(a, 0,−τ) + 2τΓ(a + 1, 0,−τ) + Γ(a + 2, 0,−τ)

)
, a > 0. (24)

Proof. Using the definition of Kummer’s function, we have:

1F1[a, b, τ] = Γ(b)
Γ(a)Γ(b−a)

∫ 1
0 µa−1(1− µ)b−a−1eτµdµ,

= Γ(a+3)
2Γ(a)

∫ 1
0 µa−1(1− µ)2eτµdµ, b = a + 3,

= (−1)aΓ(a+3)
2τa+2Γ(a)

∫ −τ
0 σa−1(τ + σ)2e−σdσ, σ = −τµ,

= (−1)aΓ(a+3)
2τa+2Γ(a)

(
τ2Γ(a, 0,−τ) + 2τΓ(a + 1, 0,−τ) + Γ(a + 2, 0,−τ)

)
,

(25)

Through this theorem, some existing results in the literature will be recovered as special cases of
the present ones. �
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4. Applications

4.1. No Convective Heat Condition: ξ = 0 at α 6= 0

In Reference [16], the class (7) and (8) were analyzed when the convective heat condition was
absent, i.e., at ξ = 0. In this case, the constant c in Equation (22) reduces to:

c =
δ−1+P

(
1− αδn+1

(n+P)(n+1)

)
Γ(2− P)

1F1[−(P + n), 2− P,−Qδ]
. (26)

Implementing Equation (26) into Equation (20), then the solution takes the final form:

y(t) =
αtn+1

(n + 1)(n + P)
+

(t/δ)1−P
(

1− αδn+1

(n+P)(n+1)

)
1F1[−(P + n), 2− P,−Qt]

1F1[−(P + n), 2− P,−Qδ]
, (27)

which is the same solution obtained very recently by Ebaid et al. [16].

4.2. Convective Heat Condition: ξ 6= 0 at α = 0 and δ = 1

Here, the given system (7) and (8) reduces to the following homogenous boundary value problem
which was analyzed by Ebaid et al. [17]:

y′′ (t) +
(

P
t
+ Q

)
y′(t) +

(
R
t

)
y(t) = 0, y(0) = 0, y(1) = 1 + ξy′(1). (28)

In this case, the BVP (Equation (28)) is homogenous and its solution is obtained from Equation (15)
by setting δ = 1, which leads to:

y(t) =
tµ1+µ2−1

1F1[µ1, µ1 + µ2,−Qt]
(1− ξ(µ1 + µ2 − 1))1F1[µ1, µ1 + µ2,−Q] + (ξQµ1)1F1[1 + µ1, 1 + µ1 + µ2,−Q]

. (29)

By substituting µ1 and µ2 given in Equation (12) into Equation (29), we obtain:

y(t) =
t1−P

1F1

[
1−P+ R

Q ,2−P,−Qt
]

(1−ξ(1−P))1F1

[
1−P+ R

Q ,2−P,−Q
]
+ξ(Q(1−P)+R)1F1

[
2−P+ R

Q ,3−P,−Q
] , (30)

which agrees with the obtained results by Ebaid et al. [17].

4.3. Marangoni Boundary Layer Temperature: ξ = 0 at α = 0 and δ = −1

Aly and Ebaid [8] obtained the following temperature equation for the Marangoni boundary layer
of a nanofluid in a porous medium:

ty′′ (t) + (l −mt)y′(t) + 2my(t) = 0, (31)

subject to:
y(0) = 0, y(−1) = 1. (32)

On comparing the BVP, Equations (31) and (32), with the present class (Equations (1) and (2)),
the values of P, Q, R, α, and δ are assigned as:

P = l, Q = −m, R = 2m, α = 0, ξ = 0, δ = −1. (33)

Hence,
µ1 = −1− l, µ2 = 3, (34)
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and y(t) in Equation (15) becomes:

y(t) =
(−t)1−l

1F1[−1− l, 2− l, mt]

1F1[−1− l, 2− l,−m]
, l < −1. (35)

Now, using Theorem 1 at a = −1− l, b = 2− l, and τ = mt, where b = a + 3 is already satisfied,
we obtain:

1F1[−1− l, 2− l, mt] =
(−1)−1−lΓ(2−l)

2(mt)1−l Γ(−1−l)

(
m2t2Γ(−1− l, 0,−mt) + 2mtΓ(−l, 0,−mt) + Γ(−l + 1, 0,−mt)

) (36)

and:
1F1[−1− l, 2− l,−m] =
(−1)−1−l Γ(2−l)

2(−m)1−l Γ(−1−l)

(
m2Γ(−1− l, 0, m) + 2mtΓ(−l, 0, m) + Γ(−l + 1, 0, m)

) (37)

Therefore, the final solution is given by:

y(t) =
m2t2Γ(−1− l, 0,−mt) + 2mtΓ(−l, 0,−mt) + Γ(−l + 1, 0,−mt)

m2Γ(−1− l, 0, m) + 2mtΓ(−l, 0, m) + Γ(−l + 1, 0, m)
, (38)

which is also the same obtained solution in [8].

4.4. Magnetohydrodynamic Marangoni Convection: ξ = 0 at α 6= 0 and δ = 1

Khaled [8] obtained the following temperature equation for the Marangoni boundary layer in the
presence of radiation and joule heating:

ty′′ (t) + (l −mt)y′(t) + 2my(t) = −λt, (39)

subject to:
y(0) = 0, y(1) = 1. (40)

Comparing Equation (39) with Equation (21) and Equation (40) with Equation (8), the values of P,
Q, R, α, n, and δ are as follows:

P = l, Q = −m, R = 2m, α = −λ, n = 1, ξ = 0, δ = 1. (41)

Hence, the values of µ1 and µ2 are the same as in Equation (28). Substituting Equation (41) into
Equation (20) and Equation (22), respectively, we get:

y(t) = − λt2

2(l + 1)
+

ct1−l

Γ(2− l) 1F1[−(1 + l), 2− l, mt], (42)

and:

c =

(
1 + λ

2(1+l)

)
Γ(2− l)

1F1[−(1 + l), 2− l, m]
. (43)

Therefore,

y(t) = − λt2

2(l + 1)
+

(
1 +

λ

2(l + 1)

)
t1−l

1F1[−1− l, 2− l, mt]

1F1[−1− l, 2− l, m]
, (44)

which is the same result that was obtained by Khaled [8].
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4.5. Mass Transfer in a Jeffrey Fluid: ξ = 0 at α = 0 and δ = Sc/β2

The mass transfer equation in a Jeffrey fluid in the presence of heat source/sink was given in
Qasim [18] as:

ty′′ (t) +
(

1− Sc
β2 + t

)
y′(t)−my(t) = 0, (45)

subject to:

y(0) = 0, y
(

Sc
β2

)
= 1, (46)

where β > 0 and Sc is the Schmidt parameter. In this case, P, Q, R, α, ξ, and δ are as follows:

P = 1− Sc
β2 , Q = 1, R = −m, α = 0, ξ = 0, δ =

Sc
β2 . (47)

Hence, µ1 and µ2 are:

µ1 =
Sc
β2 −m, µ2 = 1 + m. (48)

Accordingly, we have:

y(t) =
(

β2

Sc
t
) Sc

β2 1F1

[
Sc
β2 −m, Sc

β2 + 1,−t
]

1F1

[
Sc
β2 −m, Sc

β2 + 1,− Sc
β2

] . (49)

This is also the exact solution of Equations (45) and (46) which were verified by substitution.
It may be useful to end this section by observing that the exact solution reported by Qasim [18] is
given as:

y(t) =
(

β2

Sc
t
) Sc

β2 1F1

[
Sc
β2 −m, 2 Sc

β2 + 1,−t
]

1F1

[
Sc
β2 −m, 2 2Sc

β2 + 1,− Sc
β2

] , (50)

which does not satisfy Equations (45) and (46).

5. Example for Numerical Validation

In Reference [19], the authors investigated the laminar boundary layer flow of a viscous
incompressible electrically-conducting and radiating fluid past a semi-infinite flat surface in two
dimensions. They obtained the governing equations as:

z′′′ (η) + z(η)z′′ (η)−
(
z′(η)

)2 −M2z′(η(t) = 0, (51)(
1 + Nr

Pr

)
y′′ (η)− 2z′(η)θ(η) + z(η)y′(η) + Ec

[
M2(z′(η))2

+ (z′′ (η))2
]
= 0, (52)

w′′ (η) + Sc
[
z(η)w′(η)− 2z′(η)w(η)

]
= 0, (53)

with the BCs:
z′′ (0) = −2(r + 1), z(0) = fw, z′(∞(t) = 0, (54)

y(0) = 1, y(∞(t) = 0, (55)

w(0) = 1, w(∞) = 0, (56)

where the parameters Nr, M, Ec, and fw were well defined by [20]. They solved
Equations (51)–(56) numerically using the Runge-Kutta-Fehlberg method along with shooting
technique. However, the exact solutions of the above system can be obtained via our approach.
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Firstly, we show that Equation (46) and Equation (47) take the form of the present class. The exact
solution of Equations (51) and (54) is given as:

z(η) = a + be−βη , a = fw +
2(r + 1)

β2 , b = −2(r + 1)
β2 , (57)

where β is a positive root for the following equation:

β3 − fwβ2 −M2β− 2(r + 1) = 0. (58)

By means of the transformation t = e−βη , Equations (52) and (53) become:

y′′ (t) +
(n1

t
−m1

)
y′(t) +

2m1

t
y(t) = −λ, (59)

and:
w′′ (t) +

(n2

t
−m2

)
w′(t) +

2m2

t
w(t) = 0, (60)

where:

Ω =
1 + Nr

Pr
, n1 = 1− a

Ωβ
, m1 =

b
Ωβ

, λ =
Ecβ2(β2 + M2)

Ω
, (61)

n2 = 1− Sca
β

, m2 =
Scb
β

. (62)

The BCs (55) and (56) become:
y(0) = 0, y(1) = 1. (63)

and:
w(0) = 0, w(1) = 1. (64)

Comparing Equation (59) with Equation (21) and Equation (63) with Equation (8) we have
P = n1, Q = −m1, n = 1, α = −λ and ζ = 0. Therefore, y(t) is given from Equation (21) and
Equation (22) as:

θ(t) = − λt2

2(n1 + 1)
+

(
1 +

λ

2(n1 + 1)

)
t1−n1 F1,1[−1− n1, 2− n1, m1t]

F1,1[−1− n1, 2− n1, m1]
. (65)

By repeating the same analysis for the w-equation (Equation (60)) along with the BCs
(Equation (64)), we have:

w(t) =
(

1 +
λ

2(n2 + 1)

)
t1−n2 F1,1[−1− n2, 2− n2, m2t]

F1,1[−1− n2, 2− n2, m2]
, n2 < 1. (66)

Here, we aim to give some light on the difference between the obtained numerical results by [20]
and present exact ones. Table 1 shows the comparisons between the exact results and the approximate
ones [20] for various values of the magnetic parameter M. It is observed from this table that the
approximate results [20] for−y′(0) and−w′(0) are different than the present exact results. The absolute
error increases at higher values of M. This conclusion may confirm the views of the authors.
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Table 1. Comparisons between the present results with those of Reference [20] for −y′(0) and −w′(0)
at various values of M (magnetic parameter) when r = 0, Nr = 0, Sc = 0.6, Ec = 0.2, Pr = 0.78, fw = 0.

M
−y

′
(0) −w

′
(0)

Approximate
[20]

Exact
(present)

Absolute
Error

Approximate
[20]

Exact
(present)

Absolute
Error

1 1.01345 0.97809 0.03536 1.05783 1.0055 0.05233
2 0.65609 0.53004 0.12605 0.75964 0.61018 0.14946
3 0.47085 0.25593 0.21492 0.57836 0.34641 0.23195
4 0.38809 0.12334 0.26475 0.48607 0.21084 0.27523

6. Conclusions

In this paper, a generalized analytical solution of a class of singular second-order ordinary
differential equations that arises in various applications was obtained. The solution was basically
expressed in terms of the hypergeometric series. By means of a theorem, we were able to express the
solution in terms of the generalized incomplete gamma function. The obtained results were applied
and compared with selected problems in the literature. The current class was reduced to similar
published problems at particular choices for the coefficients. Hence, the corresponding solutions in the
literature were recovered as special cases of the present generalized solution.
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