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Abstract: The aim of this paper is to construct a sharp general inequality for warped product
pseudo-slant submanifold of the type M = M⊥ × f Mθ , in a nearly cosymplectic manifold, in terms of
the warping function and the symmetric bilinear form h which is known as the second fundamental
form. The equality cases are also discussed. As its application, we establish a bound for the first
non-zero eigenvalue of the warping function whose base manifold is compact.
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1. Introduction

The clue of warped product manifolds is related to the generalization of Riemannian products.
The role of warped product submanifolds in studying Riemannian geometry was studied actively
from the pioneering work of Chen [1]. The work of Chen is about the characterization of CR-warped
products in Kaehler manifolds, and derives the inequality for the second fundamental form. In fact,
distinct classes of warped product submanifolds of the different kinds of structures were studied by
several geometers (see [1–14]). Recently, Ali et al. [15], established general inequalities for warped
product pseudo-slants isometrically immersed in nearly Kenmotsu manifolds for mixed, totally
geodesic submanifolds. Moreover, some results on the existence of the warped product pseudo-slant
submanifolds in a nearly cosymplectic manifold in terms of endomorphisms were proved by Uddin
in [14]. We have noticed that the warped product pseudo-slant submanifolds of the form M⊥ × f Mθ ,
and Mθ × f M⊥, is a CR-warped product submanifold with slant angle θ = 0. For contradict that
warped product pseudo-slant submanifolds always not generalize CR-warped product submanifold
which was show in [13]. However, some interesting inequalities have been obtained by many geometers
(see [4,10,12,16–20]) for distinct warped product submanifolds in the different types of ambient
manifolds. In [5], Al-Solamy derived the inequality for mixed, totally geodesic warped product
pseudo-slant submanifolds of type M = Mθ × f M⊥, in a nearly cosymplectic manifold. On other
hand, the warped product pseudo-slant submanifold in a nearly cosymplectic manifold of the type
M = M⊥ × f Mθ was studied by Uddin et al. [14]. We consider the non-trivial warped product
pseudo-slant submanifold M = M⊥ × f Mθ , such that Mθ and M⊥ are proper-slant and anti-invariant
submanifolds, respectively. In this case, considering that M is not mixed and totally geodesic, we
announce our first result as follows.

Theorem 1. Assuming M̃ is a nearly cosymplectic manifold, let M = M⊥ × f Mθ be a warped product
pseudo-slant submanifold of M̃. Then,
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(i) The second fundamental form of M is derived as:

||h||2 ≥
(

d1 cos2 θ

9

)
||∇ ln f ||2, (1)

where dim M̃ = 2n + 1, dim M = m + 1, dim Mθ = d1, & dim M⊥ = d2. Further, ∇ ln f is the
gradient of ln f over M⊥;

(ii) If the equality sign holds in (1), then M⊥ is a totally geodesic submanifold with satisfying conditions:

h(D⊥,Dθ) ⊆ Γ(ϕTM⊥), (2)

&

h(D⊥,D⊥) ⊆ Γ(F(TMθ)) & h(Dθ ,Dθ) ⊆ Γ(ϕTM⊥). (3)

As an application of Theorem 1, the next result comes from the idea of the eigenvalue comparison
theorem of Cheng [21], which has proved that M is complete and isometric to the standard unit sphere,
provided that Ric(M) ≥ 1 and d(M) = π by using the first non-zero eigenvalue of the Laplacian
operator. After that, Mihai [12] obtained the first eigenvalue for CR-warped products into the Sasakian
space form. Therefore, we used the method of the maximum principle for the first non-zero eigenvalue
λ1 which is defined in [22], and made use of Theorem 1 to deduce the following.

Theorem 2. Assuming M̃ is a nearly cosymplectic manifold, let M = M⊥ × f Mθ be a warped product
pseudo-slant submanifold of M̃, such that M⊥ is a compact submanifold of M̃. Then, we have:

λ1 ≤
(

9 sec2 θ
∫

M⊥
‖h‖2dV

d1
∫

M⊥
(ln f )2dV

)
, (4)

where λ1 is a first non-zero eigenvalue of the warping function ln f . The dimensions are defined in Theorem 1 (ii).

2. Preliminaries

An odd (2n + 1)-dimensional Riemannian manifold (M̃, g) is called a nearly cosymplectic manifold,
if it consists of an endomorphism ϕ of its tangent bundle TM̃, a structure vector field ξ, and a 1-form
η, which satisfies the following:

ϕ2 =− I + η ⊕ ξ, η(ξ) = 1, ηoϕ = 0, &, ϕ(ξ) = 0, (5)

g(ϕU, ϕV) = g(U, V)− η(U)η(V), (6)

(∇̃U ϕ)V + (∇̃V ϕ)U = 0, (7)

for any vector field U, V on M̃ such that ∇̃ denotes the Riemannian connection with respect to
the Riemannian metric g (see [14]). Furthermore, the fundamental 2-form denoted by Φ, i.e.,
Φ(U, V) = g(ϕU, V).

Let the Lie algebras of vector fields tangent and normal to a submanifold M be denoted as Γ(TM)

and Γ(T⊥M). Moreover, the induced connection on T⊥M is denoted ∇⊥, and ∇ is the Levi-Civita
connection of M. Thus, the Gauss and Weingarten formulas are defined as:

∇̃UV = ∇UV + h(U, V), (8)

∇̃U N = −ANU +∇⊥U N, (9)

for each U, V ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental form and the
shape operator, respectively, for the submanifold of M into M̃, which are related as:
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g(h(U, V), N) = g(ANU, V). (10)

For any U ∈ Γ(TM), we have:

ϕU = PU + FU, (11)

where PU and FU are the tangential and normal components of ϕU, respectively. Similarly, for any
N ∈ Γ(T⊥M), we have:

ϕN = tN + f N, (12)

where tN (resp. f N) are tangential (resp. normal) components of ϕN. If h(U, V) = 0, then M is totally
and if h(U, V) = g(U, V)H, then M is totally umbilical.

The submanifold M is defined as a slant submanifold if, for each non-zero vector X tangent to
M, the angle θ(X) between ϕX and Tp M− < ξ > is constant. We shall use Theorem 2.1 [5] in our
subsequent proof as a characterization of the slant submanifold.

In this sequel, by using the slant distribution given in [23,24], we shall give the definition of
pseudo-slant submanifolds of almost-contact manifolds. For deeper classifications of pseudo-slant
submanifolds, we refer to [7]. First, we give the definition of a pseudo-slant submanifold:

Definition 1. If the tangent bundle TM of submanifold M in an almost-contact manifold is decomposed as
TM = Dθ ⊕D⊥⊕ < ξ >, where Dθ and D⊥ are slant and anti-invariant distributions such that PDθ ⊆ Dθ

and ϕD⊥ ⊆ T⊥M, respectively—in this case, where < ξ > is a one-dimensional distribution spanned by the
structure field ξ, then M is called pseudo-slant submanifold.

If µ is an invariant subspace of T⊥M, then for the pseudo-slant case, the normal bundle T⊥M can
be decomposed as: T⊥M = ϕD⊥ ⊕ FDθ ⊕ µ.

3. Warped Product Submanifolds of the Form M⊥× f Mθ

Let (M1, g1) and (M2, g2) be two Riemannian manifolds. Then, the warped product of M1 and
M2 is the Riemannian product M1 × f M2 = (M1 × f M2, g) with the metric g = g1 + f 2g2 and f being
a positive differential function defined on M1. Then, from Lemma 7.3 [25], we have:

∇UW = ∇WU = U(ln f )W, (13)

for any vector fields U and W tangent to M1 and M2, respectively, where ∇ denote the Levi-Civitas
connection on M (see [25]). If the warping function f is constant, then a warped product manifold
M = M1 × f M2 is called a simply Riemannian product or a trivial warped product manifold. Now,
we consider the warped product pseudo-slant submanifold of the form M = M⊥ × f Mθ , such that
ξ ∈ Γ(TM⊥) and other cases is leaved because they were studied by Al-Solamy [5], and then we obtain
some lemmas for use in our main result.

Lemma 1. Let M = M⊥ × f Mθ be a warped product pseudo-slant submanifold of a nearly cosymplectic
manifold, M̃. Then:

2g(h(U, W), FPU) = (W ln f ) cos2 θ||U||2 + g(h(U, PU), ϕW) + g(h(W, PU), FU),

for any U ∈ Γ(TMθ) and W ∈ Γ(TM⊥).

Proof. Suppose that M = M⊥ × f Mθ is a warped product pseudo-slant submanifold of a nearly
cosymplectic manifold M̃; then, from (8), we find that:
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g(h(U, W), FPU) = g(∇̃WU, FPU).

Thus, from (11) and from Theorem 2.1 in [5], we obtain:

g(h(U, W), FPU) = −g(ϕ∇̃WU, PU) + cos2 θg(∇WU, U).

Then, using (13), we can derive:

g(h(U, W), FPU) = g((∇̃W ϕ)U, PW)− g(∇̃WφU, PU) + cos2 θ(W ln f )||U||2.

Using (7) and the (11), the above equation then becomes:

g(h(U, W), FPU) = −g((∇̃U ϕ)W, PU)− g(∇W PU, PU)− g(∇̃W FU, PU) + cos2 θ(U ln f )||W||2.

By using (13), (9), and from (Equation (2.12) in [5]), we derive the following:

g(h(U, W), FPU) =− g(∇̃U ϕW, PU)− g(∇̃UW, ϕPU)

− cos2 θ(W ln f )||U||2 + g(h(W, PU), FU) + cos2 θ(W ln f )||U||2.

From (9), (11), and Theorem 2.1 [5] for the slant submanifold, it is not hard to come by
the following:

g(h(U, W), FPU) = g(AϕWU, PU) + cos2 θg(∇UW, U)− g(∇̃UW, FPU) + g(h(W, PU), FU).

Finally, (8) and (13) implies that:

2g(h(U, W), FPU) = (W ln f ) cos2 θ||U||2 + g(h(U, PU), ϕW) + g(h(W, PU), FU),

which gives our assertion.

Lemma 2. Assume that M = M⊥ × f Mθ is a warped product pseudo-slant submanifold of a nearly
cosymplectic manifold M̃. Then:

g(h(U, W), FPU) = 2g(h(U, PU), ϕW)− g(h(W, PU), FU),

for any U ∈ Γ(TMθ) and W ∈ Γ(TM⊥).

Proof. From (8) and (11), we have:

g(h(W, PU), FU) = −g(ϕ∇̃W PU, U)− g(∇̃W PU, PU),

for U ∈ Γ(TMθ) and W ∈ Γ(TM⊥). Then, the covariant derivative of ϕ and (13), and from
(Equation (2.12) in [5]), we modified as:

g(h(W, PU), FU) = g((∇̃W ϕ)PU, U)− g(∇̃W ϕPU, U)− cos2 θ(W ln f )||U||2.

Taking into account (7) for the nearly cosymplectic manifold, the virtues of (8), (11), and
Theorem 2.1 in [5], it follows that:

g(h(W, PU), FU) = g(h(U, W), FPU)− cos2 θ(W ln f )||U||2 − g((∇̃PU ϕ)W, X) + cos2 θg(∇WU, U).

Using (13), one can obtain:

g(h(W, PU), FU) = g(h(U, W), FPU)− g(∇̃PU ϕW, U)− g(∇̃PUW, ϕU).
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Then, from (9) and (11), it is clear that:

2g(h(W, PU), FU) = g(h(U, W), FPU) + g(h(U, PU), ϕW)− g(∇̃PUW, PU).

Again, from (13) and (Equation (2.12) in [5]), the last equation reduces the new form:

2g(h(W, PU), FU) = g(h(U, W), FPU)− (W ln f ) cos2 θ||U||2 + g(h(U, PU), ϕW). (14)

Now, rearrange X by PX in (14) and Theorem 2.1 from [5], and it will give us:

−2 cos2 θg(h(U, Z), FPU) =− (W ln f ) cos4 ||U||2 − cos2 θg(h(W, PU), FU)

− cos2 θg(h(PU, U), ϕW).

which implies:

2g(h(U, W), FPU) = (W ln f ) cos2 ||U||2 + g(h(W, PU), FU) + g(h(PU, U), ϕW). (15)

From (14) and (15), it concludes that:

g(h(W, PU), FU) = 2g(h(U, PU), ϕW)− g(h(U, W), FPU),

which completes the proof of lemma.

Lemma 3. On a warped product pseudo-slant submanifold, M = M⊥× f Mθ of a nearly cosymplectic manifold
M̃. Then:

g(h(PU, U), ϕW) = g(h(U, W), FPU)− 1
3

cos2 θ(W ln f )||U||2,

for any U ∈ Γ(TMθ) and W ∈ Γ(TM⊥).

Proof. From Lemmas 1 and 2, we can derive the proof of Lemma 3.

Lemma 4. On a warped product pseudo-slant submanifold, M = M⊥× f Mθ of a nearly cosymplectic manifold
M̃. Then:

(i) g(h(W, W), FU) = g(h(W, U), ϕW),
(ii) g(h(W, W), FPU) = g(h(W, PU), ϕW),

for any U ∈ Γ(TMθ) and W ∈ Γ(TM⊥).

Proof. From (8) and (11), we obtain:

g(h(W, W), FU) = g(∇̃WW, ϕU)− g(∇̃WW, PU),

for U ∈ Γ(TMθ) and W ∈ Γ(TM⊥). It can be extended further by the fact that W and PU are
orthogonal, i.e.,

g(h(W, W), FU) = −g(ϕ∇̃WW, U) + g(∇̃W PU, W).

We also derived from the covariant derivative of ϕ and (8), that is:

g(h(W, W), FU) = g((∇̃W ϕ)W, U)− g(∇̃W ϕW, U) + g(∇W PU, W).
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Then, from (7) and (13), we obtained:

g(h(W, W), FU) = g(AϕWW, U) + (W ln f )g(PU, W),

which implies:

g(h(W, W), FU) = g(AϕWW, U). (16)

That is, the first part of the proof of lemma ends up and part (ii) can be constructed by rearranging
X by PX in (16).

Lemma 5. Let M̃ be a nearly cosymplectic manifold and M = M⊥ × f Mθ be a warped product pseudo-slant
submanifold in M̃. Thus,

(i) g(h(U, U), ϕW) = g(h(W, U), FU);
(ii) g(h(PU, PU), ϕW) = g(h(W, PU), FPU);

for any U ∈ Γ(TMθ) and W ∈ Γ(TM⊥)

Proof. Assuming U ∈ Γ(TMθ) and W ∈ Γ(TM⊥), we have:

g(h(U, U), ϕW) = g(∇̃UU, ϕW) = −g(ϕ∇̃UU, W)

From the covariant derivative of the tensor field ϕ, it follows that:

g(h(U, U), ϕW) = g(∇̃U ϕ)U, W)− g(∇̃U ϕU, W).

Taking into account (7) and (8), we have:

g(h(U, U), ϕW) = g(∇̃UW, PU)− g(∇̃U FU, W).

Thus, from (13) and (9), it can easily be found that:

g(h(U, U), ϕW) = (W ln f )g(U, PU) + g(AFUU, W).

Since U and PU are orthogonal and (10), we arrive at:

g(h(U, U), ϕW) = g(h(U, W), FU), (17)

which is the first part of lemma. Then, by switching X by PX in (17), we were able to find the proof of
the second part of the lemma.

4. Main Proof of Inequality for Warped Product of the form M⊥× f Mθ

In this section, we establish a geometric inequality for warped product pseudo-slant submanifolds
in terms of the symmetric bilinear form and warping functions with included immersion.

4.1. Proof of Theorem 1

Let M = M⊥ × f Mθ be an (m + 1)-dimensional warped product pseudo-slant submanifold of
a nearly cosymplectic manifold M̃, such that Mθ of dimension d1 = 2β and M⊥ of dimension d2 =

(α + 1). We chose the orthonormal frames {e1, e2, · · · , eα, eα+1 = ξ, } and {eα+2 = e∗1 , · · · , eα+β+1 =

e∗β, eα+β+2 = e∗β+1 = secθPe∗1 , · · · , eα+1+2β = e∗2β = secθPe∗β} of TM⊥ and TMθ , respectively. Thus,
the orthonormal frames of the normal subbundles ϕ(TM⊥), F(TMθ), and µ are denoted by {em+1 =

ē1 = ϕe1, · · · em+α = ēα = ϕeα}, {em+α+1 = ēα+1 = ẽ1 = cscθFe∗1 , · · · , em+α+β = ēα+β = ẽβ =
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cscθFe∗β, em+α+β+1 = ēα+β+1 = ẽβ+1 = cscθsecθFPe∗1 , · · · , em+α+2β = ēα+2β = ẽ2β = cscθsecθFPe∗β},
and {e2m−1 = ēm, · · · , e2n+1 = ē2(n−m+1)}, respectively. From the definition of the second fundamental
form, we have:

||h||2 = ||h(Dθ ,Dθ)||2 + ||h(D⊥,D⊥)||2 + 2||h(Dθ ,D⊥)||2. (18)

After missing the second term of the above equation, we get:

||h||2 ≥ ||h(Dθ ,Dθ)||2 + 2||h(Dθ ,D⊥)||2.

Thus, changes in the above equation into a new form by using the definition of h lead to:

||h||2 ≥
2n+1

∑
l=m+1

2β

∑
r,s=1

g(h(e∗r , e∗s ), el)
2 + 2

2n+1

∑
l=m+1

2β

∑
r=1

α+1

∑
s=1

g(h(e∗r , es), el)
2.

If we put h(U, ξ) = 0 in the second term in the components of ϕD⊥, FDθ , and µ, the proceeding
equation can be expressed as:

||h||2 ≥2
α

∑
l,s=1

2β

∑
r=1

g(h(e∗r , es), el)
2 + 2

2β

∑
l,r=1

α

∑
s=1

g(h(e∗r , es), el)
2

+ 2
2(n−m+1)

∑
l=m

2β

∑
r=1

α+1

∑
s=1

g(h(e∗r , es), el)
2 +

α

∑
l=1

2β

∑
r,s=1

g(h(e∗r , e∗s ), ēl)
2 (19)

+
2β+α

∑
l=α+1

2β

∑
r,s=1

g(h(e∗r , e∗s ), ēl)
2 +

2(n−m+1)

∑
l=m

2β

∑
r,s=1

g(h(e∗r , e∗s ), ēl)
2.

Considering only the first, second, and fourth terms, they then imply that:

||h||2 ≥ 2
α

∑
l,s=1

2β

∑
r=1

g(h(e∗r , es), el)
2 + 2

2β

∑
l,r=1

α

∑
s=1

g(h(e∗r , es), el)
2 +

α

∑
l=1

2β

∑
r,s=1

g(h(e∗r , e∗s ), ēl)
2.

Then, using the components of the adapted frame for FDθ , we derive:

||h||2 ≥2 csc2 θ
α

∑
s=1

β

∑
l,r=1

g(h(e∗r , es), Fe∗l )
2 + 2 csc2 θ sec4 θ

α

∑
s=1

β

∑
l,r=1

g(h(Pe∗r , es), FPe∗l )
2

+ 2
α

∑
l,s=1

β

∑
r=1

g(h(e∗r , es), el)
2 + 2 sec2 θ

α

∑
l,s=1

β

∑
r=1

g(h(Pe∗r , es), el)
2

+
α

∑
l=1

2β

∑
r,s=1

g(h(e∗r , e∗s ), ēl)
2.

After taking into account Lemmas 4 and 5, the above equation then takes the form:

||h||2 ≥2 csc2 θ
α

∑
s=1

β

∑
l,r=1

g(h(e∗r , e∗l ), ϕes)
2 + 2 csc2 θ sec4 θ

α

∑
s=1

β

∑
l,r=1

g(h(Pe∗r , Pe∗l ), ϕes)
2

+ 2
α

∑
l,s=1

β

∑
r=1

g(h(el , es), Fe∗r )
2 + 2 sec2 θ

α

∑
l,s=1

β

∑
r=1

g(h(el , es), FPe∗r )
2 (20)

+
α

∑
l=1

2β

∑
r,s=1

g(h(e∗r , e∗s ), ēl)
2.
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Now, if we just consider the last part and the rest of the parts are left, then we have:

||h||2 ≥
α

∑
l=1

2β

∑
r,s=1

g(h(e∗r , e∗s ), ēl)
2.

Again, using the components of Dθ , we finish at:

||h||2 ≥
α

∑
l=1

β

∑
r,s=1

g(h(e∗r , e∗s ), ēl)
2 + sec2 θ

α

∑
l=1

β

∑
r,s=1

g(h(Pe∗r , e∗s ), ēl)
2

+ sec2 θ
α

∑
l=1

β

∑
r,s=1

g(h(e∗r , Pe∗s ), ēl)
2 + sec4 θ

p

∑
l=1

β

∑
r,s=1

g(h(Pe∗r , Pe∗s ), ēl)
2. (21)

If we leave the first and last terms of the right-hand side in (21) and just add the remaining terms,
then we obtain:

||h||2 ≥ 2 sec2
α

∑
l=1

β

∑
r,s=1

g(h(Pe∗r , e∗s ), ēl)
2.

With the help of Lemma 3 in the above inequality, we get:

||h||2 ≥2
9

cos2 θ
α

∑
l=1

β

∑
s=1

(ēl ln f )2g(e∗s , e∗s )
2 + 2

α

∑
l=1

β

∑
s=1

g(h(ēl , e∗s ), FPe∗s )
2

− 4
3

α

∑
l=1

β

∑
s=1

(ēl ln f )g(h(ēl , e∗s ), FPe∗s ). (22)

Now, we can add and subtract the term ξ ln f in the first part of (22), and we have

||h||2 ≥ 2
9

cos2 θ
α+1

∑
s=1

β

∑
l=1

(ēs ln f )2g(e∗l , e∗l )
2 − 2

9
cos2 θ

β

∑
l=1

(ξ ln f )2g(e∗l , e∗l )
2.

It is known that ξ ln f = 0 for a nearly cosymplectic manifold (see [14]). Thus, the above inequality
reduces to:

||h||2 ≥ d1

9
cos2 θ||∇ ln f ||2. (23)

If (23) holds, then from the missing terms in (22), we obtain some conditions from the
second and third terms, i.e., (ēj ln f )g(h(D⊥,Dθ), FDθ) = 0. This implies that either ēj ln f =

0 or g(h(D⊥,Dθ), FDθ) = 0. If we take ēj ln f = 0, it means that f is a constant function on M,
which is a contradiction for the non-trivial warped product pseudo-slant submanifold. Hence, we get
g(h(D⊥,Dθ), FDθ) = 0, and also from the third term of (19), we derive:

h(D⊥,Dθ) ⊆ Γ(ϕTM⊥), (24)

which is (2). Because of the terms which were left in (18), M⊥ is a totally geodesic submanifold in M̃.
On the other hand, leaving the terms in (19), (20), and (21) implies that:

g(h(Dθ ,Dθ), ϕD⊥) =0, g(h(Dθ ,Dθ), µ) = 0,

&

g(h(D⊥,D⊥), FDθ) =0, g(h(D⊥,D⊥), µ) = 0,
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which means that:

h(D⊥,D⊥) ⊆ Γ(F(TMθ)) & h(Dθ ,Dθ) ⊆ Γ(ϕTM⊥). (25)

From this, we get the required condition (3). Thus, the equality cases are verified.

4.2. Proof of Theorem 2

Let us assume that f is a non-constant warping function. From the minimum principle on the
first eigenvalue λ1, one obtains: (p. 186 in [22]).

λ1

∫
Mn

(ln f )2dV ≤
∫

Mn
‖∇ ln f ‖2dV. (26)

with equality holding if, and only if ∆ ln f = λ1 ln f . On the other hand, taking the integration of
Equation (1) along the volume element dV, we have:∫

M⊥
||h||2dV ≥ 2β

9
cos2 θ

∫
M⊥
||∇ ln f ||2dV. (27)

Thus, (26) and (27) implies that:∫
M⊥
||h||2dV ≥ 2β

9
cos2 θλ1

∫
M⊥

(ln f )2dV (28)

The above implies Equation (4). This completes the proof of the Theorem.

Author Contributions: All authors have equal contribution in the manuscript.

Funding: The authors extended their appreciation to the Deanship of Scientific Research at King Khalid University,
for funding this work through research groups program under grant number R.G.P.1/79/40.

Acknowledgments: The authors are gratful to Khursheed J. Ansari for his useful comments, discussions and
constant encouragement which improved the paper.

Conflicts of Interest: The authors declare that they have no competing interest.

References

1. Chen, B.Y. Geometry of warped product CR-submanifold in Kaehler manifolds. Monatsh. Math. 2001, 133,
177–195. [CrossRef]

2. Ali, J.W.L.; Alkhaldi, A.H. Geometric classification of warped product submanifolds of nearly Kaehler
manifolds with a slant fiber. Int. J. Geom. Methods Mod. Phys. 2018. [CrossRef]

3. Ali, A.; Laurian-Ioan, P. Geometric classification of warped products isometrically immersed in Sasakian
space forms. Math. Nachrichten 2018, 292, 234–251.

4. Ali, A.; Uddin, S.; Othman, W.A. Geometry of warped product pointwise semi-slant submanifolds of Kaehler
manaifolds. Filomat 2017, 31, 3771–3788. [CrossRef]

5. Al-Solamy, F.R. An inequality for warped product pseudo-slant submanifolds of nearly cosymplectic
manifolds. J. Inequal. Appl. 2015, 2015, 306. [CrossRef]

6. Chen, B.Y. A survey on geometry of warped product submanifolds. arXiv 2013, arXiv:1307.0236v1[math.DG].
7. Dirik, S.; Atceken, M. Pseudo-slant submanifolds of a nearly cosymplectic manifold. Turk. J. Math.

Comput. Sci. 2014, 14, 20140035.
8. Arvanitoyeorgos, D.A. Biconservative ideal hypersurfaces in Euclidean spaces. J. Math. Anal. Appl. 2018,

458, 1147–1165.
9. Khan, V.A.; Khan, K.A. Generic warped product submanifolds in nearly Kaehler manifolds.

Beiträge Algebra Geom. 2009, 50, 337–352.
10. Mustafa, A.; Uddin, S.; Khan, V.A.; Wong, B.R. Contact CR-warped product submanifolds of nearly trans

Sasakian manifolds. Taiwan J. Math. 2013, 17, 1473–1486. [CrossRef]

http://dx.doi.org/10.1007/s006050170019
http://dx.doi.org/10.1142/S0219887819500312
http://dx.doi.org/10.2298/FIL1712771A
http://dx.doi.org/10.1186/s13660-015-0825-y
http://dx.doi.org/10.11650/tjm.17.2013.2601


Mathematics 2019, 7, 162 10 of 10

11. Mihai, A.; Mihai, I. Curvature invariants for statistical submanifolds of Hessian manifolds of sonstant
Hessian curvature. Mathematics 2018, 6, 44. [CrossRef]

12. Mihai, I. Contact CR-warped product submanifolds in Sasakian space forms. Geom. Dedicata 2004, 109,
165–173. [CrossRef]

13. Sahin, B. Warped product submanifolds of a Kaehler manifolds with slant factor. Ann. Pol. Math. 2009, 95,
207–226. [CrossRef]

14. Uddin, S.; Wong, B.R.; Mustafa, A. Warped product pseudo-slant submanifolds of a nearly cosymplectic
manifold. Abstr. Appl. Anal. 2012, 2012, 420890. [CrossRef]

15. Ali, A.; Othman, W.A.M.; Ozel, C. Some inequalities for warped product pseudo-slant submanifolds of
nearly Kenmotsu manifolds. J. Inequal. Appl. 2015, 2015, 29. [CrossRef]

16. Ali, A.; Ozel, C. Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds
and its applications. Int. J. Geom. Meth. Mod. Phys. 2017, 14, 175002.

17. Ali, A.; Laurain-Ioan, P. Geometry of warped product immersions of Kenmotsu space forms and its
applications to slant immersions. J. Geom. Phys. 2017, 114, 276–290. [CrossRef]

18. Li, J.; He, G.; Zhao, P. On submanifolds in a Riemannian manifold with a semi-symmetric non-metric
connection. Symmetry 2017, 9, 112. [CrossRef]

19. Tripathi, M.M. Improved Chen-Ricci inequality for curvature-like tensors and its applications.
Differ. Geom. Appl. 2011, 29, 685–698. [CrossRef]

20. Uddin, S.; Chi, A.M.Y. Warped product pseudo-slant submanifolds of nearly Kaehler manifolds. An. St.
Univ. Ovidius Constanta 2011, 3, 195–204.

21. Cheng, S.Y. Eigenvalue comparison theorem and its geometric applications. Math. Z. 1975, 143, 289–297.
[CrossRef]

22. Berger, M.; Gauduchon, P.; Mazet, E. Le Spectre D’une Variétés Riemannienne; Springer: Berlin, Germany, 1971.
23. Carriazo, A. New Developments in Slant Submanifolds; Narosa Publishing House: New Delhi, India, 2002.
24. Cabrerizo, J.L.; Carriazo, A.; Fernandez, L.M.; Fernandez, M. Slant submanifolds in Sasakian manifolds.

Glasgow Math. J. 2000, 42, 125–138. [CrossRef]
25. Bishop, R.L.; O’Neil, B. Manifolds of negative curvature. Trans. Am. Math. Soc. 1969, 145, 1–9. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/math6030044
http://dx.doi.org/10.1007/s10711-004-5459-z
http://dx.doi.org/10.4064/ap95-3-2
http://dx.doi.org/10.1155/2012/420890
http://dx.doi.org/10.1186/s13660-015-0802-5
http://dx.doi.org/10.1016/j.geomphys.2016.12.001
http://dx.doi.org/10.3390/sym9070112
http://dx.doi.org/10.1016/j.difgeo.2011.07.008
http://dx.doi.org/10.1007/BF01214381
http://dx.doi.org/10.1017/S0017089500010156
http://dx.doi.org/10.1090/S0002-9947-1969-0251664-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Warped Product Submanifolds of the Form MfM
	Main Proof of Inequality for Warped Product of the form MfM
	Proof of Theorem 1
	Proof of Theorem 2

	References

