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Abstract: A subgroup H of a finite group G is said to be weaklyH-embedded in G if there exists a
normal subgroup T of G such that HG = HT and H ∩ T ∈ H(G), where HG is the normal closure
of H in G, and H(G) is the set of all H-subgroups of G. In the recent research, Asaad, Ramadan
and Heliel gave new characterization of p-nilpotent: Let p be the smallest prime dividing |G|, and P
a non-cyclic Sylow p-subgroup of G. Then G is p-nilpotent if and only if there exists a p-power d with
1 < d < |P| such that all subgroups of P of order d and pd are weakly H-embedded in G. As new
applications of weaklyH-embedded subgroups, in this paper, (1) we generalize this result for general
prime p and get a new criterion for p-supersolubility; (2) adding the condition “NG(P) is p-nilpotent”,
here NG(P) = {g ∈ G|Pg = P} is the normalizer of P in G, we obtain p-nilpotence for general prime
p. Moreover, our tool is the weaklyH-embedded subgroup. However, instead of the normality of
HG = HT, we just need HT is S-quasinormal in G, which means that HT permutes with every Sylow
subgroup of G.
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1. Introduction

Throughout this paper, “G is a group” always means that “G is a finite group”. For convenience,
one can refer to [1–4] for the definitions and notions in the paper.

The T-groups are defined as the groups G in which normality is a transitive relation, that is,
if H E K E G, then H E G. In 2000, Bianchi Gillio Berta Mauri, Herzog and Verardi [5] proved a
characterization of soluble T-groups by means ofH-subgroup: a subgroup H of a group G is called an
H-subgroup in G if NG(H) ∩ Hg ≤ H, for every element g ∈ G, where NG(H) = {x ∈ G|Hx = H} is
the normalizer of H in G. They proved that a group G is a supersolvable T-group if and only if every
subgroup of G is anH-subgroup of G. Later, except for the exploration of T-groups,H-subgroups were
widely used to character finite groups. Csörgö and Herzog [6] obtained that a group G is supersolvable
if every cyclic subgroup of G of prime order or order 4 is an H-subgroup. Asaad [7] proved that a
group G is supersolvable if every maximal subgroup of every Sylow subgroup of G is anH-subgroup.
The set of all H-subgroups of a group G is denoted by H(G). Moreover, Guo and Wei [8] gave new
characterization of p-nilpotent or supersolvable by assuming some subgroups of G of the same order
all belong toH(G), which provide a unified version of the results mentioned above if the order of G is
odd. Moreover, Li, Zhao and Xu [9] considered the case when G is of even order.

Recently, Asaad et al. [10] introduced a new subgroup embedding property called weakly
H-subgroup, which generalizes both c-normality andH-subgroup, called weaklyH-subgroup. Soon
after, Asaad and Ramadan [11] gave the definition of weakly H-embedded subgroup. Please note
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that a subgroup H of G is said to be a weaklyH-embedded subgroup (weaklyH-subgroup) of G if there exists
a normal subgroup T of G such that HG = HT (G = HT) and H ∩ T ∈ H(G), where HG is the normal
closure of H in G. Clearly, c-normal subgroups,H-subgroups and weaklyH-subgroups imply weakly
H-embedded subgroups. However, the converse does not hold in general, see [11] (Examples 1.3, 1.4
and 1.5).

In fact, these subgroups were widely used to investigate the structure of finite groups. As a result,
many interesting results have been subsequently obtained, such as [7,10–13].

In the recent research about H-subgroups, Asaad, Ramadan, and Heliel gave a new
characterization of p-nilpotency.

Theorem 1. ([12] Theorem A) Let p be the smallest prime dividing |G|, and P a non-cyclic Sylow p-subgroup
of G. Then G is p-nilpotent if and only if there exists a p-power d with 1 < d < |P| such that all subgroups of
P of order d and pd are weaklyH-embedded in G.

However, according to this result, some natural questions arise:

Problem 1. (1) If delete the condition “p is the smallest prime dividing |G|”, can we claim that G is
p-supersoluble?
(2) Does there exist another condition to obtain p-nilpotence rather than “p is the smallest prime dividing |G|”?
(3) As we know, the condition that HT is the smallest normal subgroup of G containing H, is too strict. Can we
replace it by a weaker embedding subgroup property?

In this paper, we further explore weaklyH-embedded subgroups and pay attention to Problem 1.
However, instead of the normality of HT, we just consider HT is S-quasinormal in G. As we know,
a subgroup K is S-quasinormal in G, means that K permutes with every Sylow subgroup P of G, that is
KP = PK. However, for convenience, we also called it a weaklyH-embedded subgroup, that is:

Definition 1. A subgroup H of a group G is said to be weakly H-embedded in G if there exists a normal
subgroup T of G such that HT is S-quasinormal in G and H ∩ T ∈ H(G).

As an application of these subgroups, we give a positive answer to Problem 1 in the class of
p-soluble groups, for detail:

Theorem 2. Let E be a p-soluble normal subgroup of a group G such that G/E is p-supersoluble, where p is a
prime divisor of |E|. Let P be a Sylow p-subgroup of E. Suppose that P has a subgroup D with 1 6 |D| < |P|
such that all subgroups of P of order |D| and p|D| are weakly H-embedded in G. When |D| = 1 and P is a
non-abelian 2-group, we further assume that all cyclic subgroups of P of order 4 are weaklyH-embedded in G.
Then G is p-supersoluble.

Moreover, to avoid the condition “p is the smallest prime dividing |G|” of Theorem 1, we further
prove that the conclusion holds if this condition is replaced by “NG(P) is p-nilpotent”. Consequently,
we give an answer to Problem 1.

Theorem 3. Let E be a normal subgroup of G such that G/E is p-nilpotent, and P be a non-cyclic Sylow
p-subgroup of E, where p is a prime dividing |E|. Assume that NG(P) is p-nilpotent and P has a subgroup D
with order 1 < |D| < |P| such that all subgroups of P of order |D| and order p|D| are weaklyH-embedded in
G. Then G is p-nilpotent.

In the second section, we list some lemmas which will be useful for the proofs of the above
results. The proofs of Theorems 2 and 3 are put in the third section. Some previously known results
are generalized by our theorems, and we list some in the fourth section.



Mathematics 2019, 7, 158 3 of 10

2. Preliminaries

Lemma 1. (see ([1], Chapter 1) or ([3], Chapter 1, Lemmas 5.34 and 5.35)) Assume that H, E are subgroups
of G and N E G.

(1) If H is S-quasinormal in G, then H ∩ E is S-quasinormal in E, and HN/N is S-quasinormal in G/N.
(2) Assume that H is a p-group. Then H is S-quasinormal in G if and only if Op(G) ≤ NG(H).
(3) The set of S-quasinormal subgroups of G is a sublattice of the subnormal subgroup lattice of G.
(4) If H is a p-group and H is subnormal in G, then H ≤ Op(G).

Lemma 2. ([11] Lemma 2.1) Let H, N be subgroups of G satisfying H ∈ H(G) and N E G. Then:
(1) If E is a subgroup of G containing H, then H ∈ H(E);
(2) If H is subnormal in G, then H is normal in G;
(3) Assume that N ≤ NG(H). Then NH ∈ H(G);
(4) If E is a subgroup of G satisfying N ≤ E, then E ∈ H(G) if and only if E/N ∈ H(G/N);
(5) If H is a p-group and p - |N|, then NH ∈ H(G) and HN/N ∈ H(G/N).

Lemma 3. Let H be a weaklyH-embedded subgroup of a group G.
(1) Assume that E is a subgroup of G containing H. Then H is weaklyH-embedded in E.
(2) If N is a normal subgroup of G satisfying N ≤ H, then H/N is weaklyH-embedded in G/N.
(3) Assume that H is a p-group and N a normal p′-subgroup of G. Then HN/N is weaklyH-embedded

in G/N.

Proof. By the hypothesis, G has a normal subgroup T such that HT is S-quasinormal in G and
H ∩ T ∈ H(G).

(1) Clearly, T ∩ E is a normal subgroup of E such that H(T ∩ E) = HT ∩ E is S-quasinormal
in E and H ∩ (T ∩ E) = H ∩ T ∈ H(E)(see Lemmas 1(1) and 2(1)). This shows that H is weakly
H-embedded in E.

(2) Consider the normal subgroup TN/N of G/N. Please note that N ≤ NG(H ∩ T), so (H ∩
T)N ∈ H(G) by Lemma 2(3). Furthermore, we have that (H/N)(TN/N) = HT/N is S-quasinormal
in G/N and

(H/N) ∩ (TN/N) = (H ∩ T)N/N ∈ H(G/N)

(see Lemmas 1(1) and 2(4)). By the definition, H/N is weaklyH-embedded in G/N.
(3) By Lemma 1(1), the normal subgroup TN/N of G/N such that (HN/N)(TN/N) = HTN/N

is S-quasinormal in G/N. Please note that

(|HN ∩ T : H ∩ T|, |HN ∩ T : N ∩ T|) = (|N ∩ HT|, |H ∩ NT|) = 1,

so HN ∩ T = (H ∩ T)(N ∩ T). Combining with Lemma 2(5),

(HN/N) ∩ (TN/N) = (HN ∩ T)N/N = (H ∩ T)N/N ∈ H(G/N).

Hence HN/N is weaklyH-embedded in G/N.

Recall that a class of groups F is called a formation if for every group G, every homomorphic
image of G/GF belongs to F, where GF =

⋂{N E G|G/N ∈ F}. Furthermore, a formation F is said
to be saturated if G ∈ F whenever G/Φ(G) ∈ F. The intersection of all formations containing the
set {G/Op′ ,p(G)|G ∈ F} is denoted by F(p), and F(p) denotes the class of all groups G such that
GF(p) is a p-group. Associated with a saturated formation F, there is a function f of the form f : P→
{group formations}, where f (p) = F(p) for any prime p, which divides |G| for some G ∈ F, and
f (p) = ∅ otherwise. The function f is called the canonical local satellite of F. For more detail, please
turn to ([3] P. 3) or ([2] Chap. IV, Theorem 3.7 and Definitions 3.9). Now we recall the subgroup ZF(G)
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of G, which is called the F-hypercenter of G. In fact, ZF(G) the product of all such normal subgroups
N of G whose G-chief factors H/K satisfying (H/K)o (G/CG(H/K)) ∈ F.

Lemma 4. Let F be a saturated formation and f the canonical local satellite of F. Let P be a normal p-subgroup
of G. Then P ≤ ZF(G) if and only if one of the following holds:

(1) G/CG(P) ∈ f (p) (([3] Chap. 1, Lemma 2.26) or ([14] Lemma 2.14));
(2) P/Φ(P) ≤ ZF(G/Φ(P)) ([15] Lemma 2.8).

Lemma 5. ([1] Lemma 2.1.6) If G is p-supersoluble and Op′(G) = 1, then G has the unique Sylow p-subgroup.

Lemma 6. ([2] Chap. A, Lemma 8.4) Let N be a nilpotent normal subgroup of G and M a maximal subgroup
of G such that N � M. Then N ∩M is a normal subgroup of G.

3. Proofs of Main Results

The following proposition plays an important role in the proof of Theorem 2.

Proposition 1. Let P be a normal p-subgroup of a group G. Assume that P has a subgroup D satisfying
1 6 |D| < |P|, such that all subgroups of P of order |D| and p|D| are weaklyH-embedded in G. When |D| = 1
and P is a non-abelian 2-group, we further assume that all cyclic subgroups of P of order 4 are weaklyH-embedded
in G. Then P ≤ ZU(G).

Proof. Assume by contradiction that (G, P) is a counterexample of minimal order |G| + |P|.
We proceed via the following steps.

(1) P is not a minimal normal subgroup of G.
Assume that P is minimal normal in G. Let H be a subgroup of P of order |D| or p|D|, which is

normal in some Sylow subgroup of G. By the hypothesis, H is weaklyH-embedded in G. So G has a
normal subgroup T such that HT is S-quasinormal in G and H ∩ T ∈ H(G). Please note that P ∩ T is
normal in G, so P ∩ T = 1 or P ∩ T = P by the minimality of P. If P ∩ T = 1, then H = H(P ∩ T) =
P ∩ HT is S-quasinormal in G. However, by the choice of H and Lemma 1(2), H E G, a contradiction.
So P ≤ T. In this case, H = H ∩ T ∈ H(G) and then H E G by the relationship H E P E G and
Lemma 2(2), which is impossible. Thus, P is not a minimal normal of G.

(2) If every maximal subgroup of P is weaklyH-embedded in G, then P ≤ ZU(G).
Let N be a minimal normal subgroup of G contained in P. By Lemma 3(2), (G/N, P/N) satisfies

the hypothesis. So, the choice of (G, P) implies that: (i) P/N ≤ ZU(G/N); (ii) N is non-cyclic; (iii) N is
the unique minimal normal subgroup of G contained in P. Now assume that Φ(P) = 1. In this case, P is
elementary abelian and P = N× B, where B is a complement of N. Let N1 be a maximal subgroup of N
such that N1 is normal in some Sylow p-subgroup Gp of G. Then P1 = N1B is a maximal subgroup of P.
By the hypothesis, G has a normal subgroup T such that P1T is S-quasinormal in G and P1 ∩ T ∈ H(G).
Please note that P ∩ T is a normal subgroup of G contained in P, so N ≤ P ∩ T or P ∩ T = 1 by
(iii). First, assume that N ≤ T. Then 1 < N1 ≤ P1 ∩ T. However, P1 ∩ T E G by the relationship
P1 ∩ T E P E G and Lemma 2(2). Thus, the uniqueness of N deduces that N ≤ P1 ∩ T ≤ P1, a
contradiction. Secondly, if P ∩ T = 1, then P1 = P1(P ∩ T) = P ∩ P1T is S-quasinormal in G, moreover
P1 ∩ N = N1 is S-quasinormal in G by Lemma 1(3). Hence Lemma 1(2) and the choice of N1 imply that
N1 E G, a contradiction. The above shows that Φ(P) 6= 1 and consequently, N ≤ Φ(P). Furthermore,
P/Φ(P) ≤ ZU(G/Φ(P)). However, we have P ≤ ZU(G) by Lemma 4. This contradiction shows that
(2) holds.

(3) If every cyclic subgroup of P of order p or 4 (when P is a non-abelian 2-group) is weaklyH-embedded
in G, then P ≤ ZU(G).

If P is not a non-abelian 2-group, then we use Ω to denote the subgroup Ω1(P) of P. Otherwise,
Ω = Ω2(P).
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Let R be a normal subgroup of G such that P/R is a G-chief factor. Obviously, R satisfies the
hypothesis. So R ≤ ZU(G) and P/R is non-cyclic by the choice of (G, P). Moreover, for any normal
subgroup L of G satisfying L < P, we have L ≤ R. In fact, if L � R, then similarly L ≤ ZU(G), and
P = RL ≤ ZU(G), a contradiction. Now, assume that Ω ≤ R. Then Ω ≤ ZU(G). From Lemma 4
and ([16] Lemma 2.4), it follows that G/CG(Ω) ∈ F(p) and CG(Ω)/CG(P) ∈ Np, where F is the
canonical local satellite of U and Np is the class of p-groups. Consequently, G/CG(P) ∈ NpF(p) = F(p),
and thereby P ≤ ZU(G) by Lemma 4 again. This contradiction shows that Ω = P.

Let L/R be a minimal subgroup of Z(Gp/R) ∩ P/R and x ∈ L \ R, where Gp is a Sylow
p-subgroup of G. Then H = 〈x〉 has order p or 4 and L = HR. By the hypothesis, H is
weakly H-embedded in G, so G has a normal subgroup T such that HT is S-quasinormal in G
and H ∩ T ∈ H(G). Please note that P ∩ T E G. Combining with the above result, we have P ∩ T = P
or P ∩ T ≤ R. If P ∩ T = P, that is, P ≤ T, then H = H ∩ T ∈ H(G). Moreover, the relationship
H EEP E G and Lemma 2(2) deduce H E G. By the choice of H, we have P/R = L/R is cyclic, which
is a contradiction. Now assume that P ∩ T ≤ R. Then

L/R = HR/R = H(P ∩ T)R/R = P/R ∩ HTR/R

is S-quasinormal in G/R by Lemma 1(3). From Lemma 1(2) and the choice of L/R, it follows that
L/R E G/R, which also shows that P/R = L/R, a contradiction. This completes the proof of (3).

(4) p < |D| < |P|
p2 (it follows directly from (2) and (3)).

(5) Φ(P) = 1.
Suppose that Φ(P) > 1. We compare the order of Φ(P) with |D|. First, assume that |Φ(P)| > |D|.

In this case, we have Φ(P) ≤ ZU(G) by the hypothesis and the choice of P. Let N be a minimal normal
subgroup of G contained in Φ(P). Clearly, |N| = p and by (4), P/N satisfies the hypothesis. Thus,
P/N ≤ ZU(G/N) and consequently P ≤ ZU(G), a contradiction. So |Φ(P)| 6 |D|. Please note that
P/Φ(P) is elementary abelian, so we can easily prove that P/Φ(P) satisfies the hypothesis. Therefore,
P/Φ(P) ≤ ZU(G/Φ(P)) and by Lemma 4, we further have P ≤ ZU(G). This contradiction shows that
Φ(P) = 1.

(6) Final contradiction.
Let N be a minimal normal subgroup of G contained in P. Clearly, N < P. Compare the order of

N with |D|. If |D| < |N|, then N satisfies the hypothesis and the choice of P implies that N ≤ ZU(G).
Consequently, |N| = p and then |D| = 1, which contradicts (4). Thus, |D| > |N|. By (5), P is elementary
abelian, and all subgroups of P/N of order |D|/|N| and p|D|/|N| are weaklyH-embedded in G (see
Lemma 3(2)). Therefore P/N ≤ ZU(G/N) by the choice of P. Please note that |P/N| > |P|/|D| > p2.
So there exists a normal subgroup E of G contained in P satisfying N ≤ E ≤ P and |P/E| = p.
Consider the subgroup E. Then E ≤ ZU(G) by the hypothesis and the choice of P, which implies
|N| = p. Combining with P/N ≤ ZU(G/N), we finally obtain P ≤ ZU(G), which is a contradiction.
The final contradiction completes the proof of the proposition.

Now we give the proof of Theorem 2:

Proof. Suppose that the assertion is false and consider a counterexample (G, E) with minimal |G|+ |E|.
We proceed via the following steps.

(1) Op′(E) = 1.
Clearly, (G/Op′(E), E/Op′(E)) satisfies the hypothesis by Lemma 3(3). If Op′(E) > 1, then the

choice of G implies that G/Op′(E) is p-supersoluble. Furthermore, G is p-supersoluble, which is a
contradiction. Thus, Op′(E) = 1.

(2) E = G.
Suppose that E < G. Please note that Lemma 3(1) shows that (E, E) satisfies the hypothesis, so E

is p-supersoluble. Combining (1) with Lemma 5, we have P E E and consequently, P E G. From the



Mathematics 2019, 7, 158 6 of 10

hypothesis and Proposition 1, it follows that P ≤ ZU(G). This result implies E ≤ ZpU(G) and then G
is p-supersoluble, which is a contradiction. Thus, E = G.

(3) If every maximal subgroup of P is weaklyH-embedded in G, then G is p-supersoluble.
Let N be a minimal normal subgroup of G. Since G is p-soluble and Op′(G) = 1, N ≤ Op(G).

By Lemma 3(2), G/N satisfies the hypothesis, so: (i) G/N is p-supersoluble; (ii) |N| > p; (iii) N is the
unique minimal normal subgroup of G. Obviously, N � Φ(G), so there exists a maximal subgroup M
of G such that G = NoM. By Lemma 6, Op(G) ∩M E G. So Op(G) ∩M = 1 by the uniqueness of N,
and then

Op(G) = N(Op(G) ∩M) = N.

On one hand, Op(G) ≤ CG(Op(G)) by the minimality of Op(G). On the other hand, since G is
p-soluble and Op′(G) = 1,

CG(Op(G)) = CG(F(G)) ≤ F(G) = Op(G).

In general, CG(Op(G)) = Op(G). Now we show that Op(G) < P. In fact, if P E G, then P ≤ ZU(G)

by Proposition 1. Similar to step (2), it is impossible.
Using the above symbol, G = Op(G)oM and then P = Op(G)o (P ∩M). Let P1 be a maximal

subgroup of P containing P ∩ M. Then P1 ∩Op(G) > 1 and it is not normal in G. In fact, if P1 ∩
Op(G)E G, then Op(G) ≤ P1 ∩Op(G) ≤ P1 by the minimality of Op(G) and consequently, P = P1,
a contradiction. By the hypothesis, P1 is weakly H-embedded in G. So G has a normal subgroup T
such that P1T is S-quasinormal in G and P1 ∩ T ∈ H(G). If T = 1, then P1 is S-quasinormal in G,
which implies that P1 ≤ Op(G) by Lemma 1(3)(4) and then Op(G) = P. However, it contradicts the
above result. So, the uniqueness of Op(G) implies that Op(G) ≤ T. Next, we prove that

P1 ∩Op(G) ∈ H(G).

First, we show that NG(P1 ∩Op(G)) = NG(P1 ∩ T). On one hand, note that

P1 ∩Op(G) = (P1 ∩ T) ∩Op(G),

so
P ≤ NG(P1 ∩ T) ≤ NG(P1 ∩Op(G)) < G.

On the other hand, NG(P1 ∩Op(G)) is p-supersoluble by Lemma 3(1) and the relation

NG(P1 ∩Op(G)) < G.

Please note that CG(Op(G)) = Op(G), so it is rather clear that Op′(NG(P1 ∩Op(G))) = 1. Thus, P is
normal in NG(P1 ∩Op(G)) by Lemma 5. At this moment, we have

P1 ∩ T E P E NG(P1 ∩Op(G)),

and by Lemma 2(1),
P1 ∩ T ∈ H(NG(P1 ∩Op(G))).

Consequently, P1 ∩ T E NG(P1 ∩ Op(G)) by Lemma 2(2), that is, NG(P1 ∩ Op(G)) ≤ NG(P1 ∩ T).
Together with the above proof, we finally obtain NG(P1 ∩Op(G)) = NG(P1 ∩ T). Please note that
P1 ∩ T ∈ H(G). So, for any element g ∈ G,

(P1 ∩Op(G))g ∩NG(P1 ∩Op(G)) = (P1 ∩ T)g ∩Op(G)∩NG(P1 ∩ T) ≤ P1 ∩ T ∩Op(G) = P1 ∩Op(G).

This shows that P1 ∩Op(G) ∈ H(G). By Lemma 2(2), we further have P1 ∩Op(G)EG, a contradiction.
This completes the proof of (3).
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(4) If every cyclic subgroup of P of order p or 4 (when P is a non-abelian 2-group) is weaklyH-embedded
in G, then G is p-supersoluble.

Let M be any proper subgroup of G and Mp a Sylow p-subgroup of M. Clearly, (Mp)g ≤ P for
some element g ∈ G. Then consider Mg, which has a Sylow p-subgroup (Mp)g contained in P. So,
without loss of generality, assume that Mp ≤ P. By Lemma 3(1), M satisfies the hypothesis, so the
choice of G implies that M is p-supersoluble. As a result, G is a minimal non-p-supersoluble group.

By ([17] Theorem 1), GUp
Φ(G)/Φ(G) is the unique minimal normal subgroup of G/Φ(G), where

Up is the class of all p-supersoluble groups. Clearly, p | |GUp
Φ(G)/Φ(G)|, so GUp

Φ(G)/Φ(G) is a
p-group and GUp

is solvable. From ([18] Theorem 3.4.2), it follows that GUp
is a p-group of exponent p

or 4 (when GUp
is a non-abelian 2-group). By the hypothesis, every cyclic subgroup of GUp

of order p is
weaklyH-embedded in G. When GUp

is a non-abelian 2-group, clearly, P is also a non-abelian 2-group,
so every cyclic subgroup of GUp

of order 4 is also weakly H-embedded in G in this case. Hence,
we have GUp ≤ ZU(G) by Proposition 1, and then G is p-supersoluble, a contradiction. So (4) holds.

(5) p < |D| < |P|
p2 (It follows directly from (3) and (4)).

(6) p > 2 (It follows directly from (2), (5) and Theorem 1).
(7) Op(G) is the unique minimal normal subgroup of G and G/Op(G) is p-supersoluble.
Let N be a minimal normal subgroup of G. Clearly, N ≤ Op(G). If |N| > |D|, then N ≤ ZU(G)

by Proposition 1, which shows that |N| = p and |D| = 1, a contradiction. So, we have |N| 6 |D|.
Please note that p > 2, so it is easy to show that (G/N, P/N) satisfies the hypothesis. Thus, the choice
of G implies that: G/N is p-supersoluble; |N| > p; N is the unique minimal normal subgroup of
G. Since N � Φ(G), there exists a maximal subgroup M of G such that G = N o M. By Lemma 6,
Op(G) ∩M E G, so Op(G) ∩M = 1 and Op(G) = N(Op(G) ∩M) = N. Thus, (7) holds.

(8) Final contradiction.
Let R be a normal subgroup of G such that Op(G) ≤ R ≤ G and G/R is a G-chief factor. Please

note that G/Op(G) is p-supersoluble. So |G/R| = p or p - |G/R|. First, assume that |G/R| = p.
Then |P : P ∩ R| = p and by (6), R satisfies the hypothesis of the theorem. So R is p-supersoluble.
Please note that Op′(R) ≤ Op′(G) = 1. Together with Lemma 5, R has the unique Sylow p-subgroup
P ∩ R, and furthermore, P ∩ R E G. By (6), P ∩ R satisfies the hypothesis of Proposition 1. Thus,
P ∩ R ≤ ZU(G), that is, R ≤ ZpU(G), which deduces that G is p-supersoluble, a contradiction.
Then assume that p - |G/R|, that is P ≤ R. In this case, R satisfies the hypothesis and so R is
p-supersoluble by the choice of G. Similarly, we have Op′(R) = 1 and by Lemma 5, P E R, which
implies that PEG. By Proposition 1, P ≤ ZU(G) and consequently, G is p-supersoluble, a contradiction.
The final contradiction completes the proof of the theorem.

Next we give the proof of Theorem 3:

Proof. Suppose that the assertion is false and consider a counterexample G of minimal order.
According to Theorem 1, we only need to consider that p is odd. We proceed via the following steps.

(1) Op′(E) = 1.
If Op′(E) > 1, then it is normal in G. Consider G = G/Op′(E). Please note that P a Sylow

p-subgroup of E and NG(P) = NG(P) is p-nilpotent. Moreover, by hypothesis and Lemma 3(3),
all subgroups of P of order |D| and order p|D| are weakly H-embedded in G, that is G satisfies the
hypothesis for G. Thus, the choice of G implies that G is p-nilpotent. Consequently, G is p-nilpotent,
a contradiction. So Op′(E) = 1.

(2) E = G.
By Lemma 3(1), all subgroups of P of order |D| and order p|D| are weakly H-embedded in E.

Since NE(P) = NG(P) ∩ E, NE(P) is p-nilpotent. Then E satisfies the hypothesis. If E < G, then E is
p-nilpotent by the choice of G. Let Ep′ be the normal p′-Hall subgroup of E. Clearly, Ep′ E G. So, by (1),
Ep′ = 1, that is, E = P. In this case, G = NG(P) is p-nilpotent. This contradiction shows that E = G.

(3) Op(G) > 1.
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Let J(P) be the Thompson subgroup of P. Then clearly, Z(J(P)) > 1, P ≤ NG(Z(J(P))) and
NNG(Z(J(P)))(P) is p-nilpotent. Assume that NG(Z(J(P))) < G. Please note that NG(Z(J(P))) satisfies
the hypothesis by Lemma 3(1). So, the choice of G implies that NG(Z(J(P))) is p-nilpotent. However,
it contradicts ([19] Theorem 8.3.1). Thus, NG(Z(J(P))) = G, that is Z(J(P))E G, which shows that
(3) holds.

(4) G is not p-soluble.
Suppose that G is p-soluble. Then G is p-supersoluble by the Theorem 2. Please note that

Op′(G) = 1. So P E G by Lemma 5, which shows that NG(P) = G is p-nilpotent, a contradiction. Thus,
(4) holds.

(5) Let N be a minimal normal subgroup of G contained in Op(G). Then |N| > |D|.
If |N| = |D|, then every subgroup of P/N of order p is weakly H-embedded in G/N by

Lemma 3(2). Denote G = G/N. Let M be a proper subgroup of G and Mp a Sylow p-subgroup

of M. Clearly, Mp
g ≤ P for some g ∈ G. Now consider Mg, which has a Sylow p-subgroup Mp

g

contained in P. Without loss of generality, we can assume that the Sylow p-subgroup Mp of M contains
in P. By Lemma 3(1), every cyclic subgroup of Mp of order p is weaklyH-embedded in M. Moreover,
NM(P) = NM(P) is p-nilpotent. So M satisfies the hypothesis, and the choice of G implies that M is
p-nilpotent. Consequently, G is a minimal non-p-nilpotent group. However, in this case, G is soluble,
which contradicts (4). Suppose that |N| < |D|. Then all subgroups of P/N of order |D|/|N| and
p|D|/|N| are weaklyH-embedded in G/N by Lemma 3(2), that is G/N satisfies the hypothesis for G.
SoSo, from the choice of G, we deduce that G/N is p-nilpotent. Similarly, G is p-soluble in this case,
a contradiction. Thus, |N| > |D|.

(6) Final contradiction.
By (5), all subgroups of N of order |D| and p|D| are weaklyH-embedded in G. Then N ≤ ZU(G)

by Proposition 1. From this result, we deduce that |N| = p and |D| = 1, that is, every subgroup of P of
order p is weaklyH-embedded in G. Similarly, as the proof of (5), we can prove that in this case G is
soluble, a contradiction. The final contradiction completes the proof.

4. Some Applications

In this section, we list some applications of our results.

Corollary 1. Let E be a normal subgroup of G. For every non-cyclic Sylow subgroup P of E, assume that P has
a subgroup D such that 1 < |D| < |P| and all subgroups of P of order |D| and p|D| are weaklyH-embedded in
G. Then E ≤ ZU(G).

Proof. Assume that p is the smallest prime divisor of |E| and P is a Sylow p-subgroup of E. If P is
cyclic, then E is p-nilpotent by the famous Burnside Theorem. Otherwise, by Lemma 3(1) and the
hypothesis, all subgroups of P of order |D| and p|D| are weaklyH-embedded in E. So E is p-nilpotent
by Theorem 1, and then E is soluble. By Lemma 3(1) again, we have that for any prime p dividing |E|,
E satisfies the hypothesis of Theorem 2. So E is supersoluble. Let q be the maximal prime dividing
|E| and Q the unique Sylow q-subgroup of E. Clearly, Q E G. Note that Q satisfies the hypothesis of
Proposition 1, so Q ≤ ZU(G). Now consider E/Q. By Lemma 3(3), E/Q satisfies the hypothesis of
corollary. So E/Q ≤ ZU(E/G) by induction. Therefore, E ≤ ZU(G).

Corollary 2. ([12]) Assume that the Sylow subgroups of G are non-cyclic for all primes p dividing |G|. Assume
further that for each such p there is a p-power d with 1 < d < |G|p such that all subgroups of P of order d and
pd are weaklyH-embedded in G, then G is supersoluble.

Proof. Let p be the smallest prime dividing |G|. By Theorem 1, G is p-nilpotent. Consequently, G is
soluble. From the Theorem 2, it follows that G is q-supersoluble, for any prime divisor q of |G|, that is,
G is supersoluble.
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Corollary 3. ([10]) Let P be a normal p-subgroup of a group G. If all maximal subgroups of P are weakly
H-subgroups in G, then P ≤ ZU(G).

Corollary 4. ([10]) Let F be a saturated formation containing the class of supersolvable groups U. A group G
lies in F if and only if it has a normal subgroup H such that G/H ∈ F and all maximal subgroups of every
Sylow subgroup of H (or F∗(H)) are weaklyH-subgroups in G.

Corollary 5. G is supersolvable, if one of the following holds:
(1) G has a normal subgroup H such that G/H is supersolvable and all maximal subgroups of every Sylow

subgroup of H belong toH(G) [7];
(2) all maximal subgroups of every Sylow subgroup of F∗(G) belong toH(G) [7];
(3) all maximal subgroups of every Sylow subgroup of a group G are weaklyH-subgroups in G [10].

5. Conclusions

In this paper, we further explore weakly H-embedded subgroups. As new applications,
we generalize the characterization of p-nilpotent given by Asaad, Ramadan and Heliel and get a new
criterion for p-supersolubility for general prime p. Moreover, adding condition “NG(P) is p-nilpotent”,
we obtain p-nilpotence for general prime p.

Author Contributions: Funding Acquisition, L.Z., L.-J.H. and J.-B.L.; Methodology, L.Z. and L.-J.H.; Supervision,
J.-B.L.; Writing—Original Draft, L.Z.; all authors read and approved the final manuscript.

Funding: This work was supported by the Start-Up Scientific Research Foundation of Anhui Jianzhu University
(2017QD20), the National Natural Science Foundation of China (11626049 and 11601006), the China Postdoctoral
Science Foundation (2017M621579), the Postdoctoral Science Foundation of Jiangsu Province (1701081B),
the Project of Anhui Jianzhu University (2016QD116 and 2017dc03) and the Anhui Province Key Laboratory of
Intelligent Building and Building Energy Saving.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ballester-Bolinches, A.; Esteban-Romero, R.; Asaad, M. Products of Finite Groups; Walter de Gruyter: Berlin,
Germany, 2010.

2. Doerk, K.; Hawkes, T. Finite Soluble Groups; Walter de Gruyter: Berlin, Germany, 1992.
3. Guo, W.B. Structure Theory for Canonical Classes of Finite Groups; Springer: Berlin, Germany, 2015.
4. Huppert, B. Endliche Gruppen I; Springer: Berlin, Germany, 1967.
5. Bianchi, M.; MAURI, A.G.; Herzog, M.; Verardi, L. On finite solvable groups in which normality is a transitive

relation. J. Group Theory 2000, 3, 147–156. [CrossRef]
6. Csorgo, P.; Herzog, M. On supersolvable groups and the nilpotator. Commun. Algebra 2004, 32, 609–620.

[CrossRef]
7. Asaad, M. On p-nilpotence and supersolvability of finite groups. Commun. Algebra 2006, 34, 189–195.

[CrossRef]
8. Guo, X.Y.; Wei, X.Y. The influence ofH-subgroups on the structure of finite groups. J. Group Theory 2010, 13,

267–276. [CrossRef]
9. Li, X.H.; Zhao, T.; Xu, Y. Finite groups with someH-subgroups. Indagat. Math. 2011, 21, 106–111. [CrossRef]
10. Asaad, M.; Heliel, A.A.; Al-Mosa Al-Shomrani M.M. On weakly H-subgroups of finite groups.

Commun. Algebra 2012, 40, 3540–3550. [CrossRef]
11. Asaad, M.; Ramadan, M. On weaklyH-embedded subgroups of finite groups. Commun. Algebra 2016, 44,

4564–4574. [CrossRef]
12. Asaad, M.; Ramadan, M.; Heliel, A.A. Influence of weaklyH-embedded subgroups on the structure of finite

groups. Publ. Math. Debrecen 2017, 91, 503–513. [CrossRef]
13. Li, C.W.; Qiao, S.H. On weakly H-subgroups and p-nilpotency of finite groups. J. Algebra Appl. 2017, 16,

1750042. [CrossRef]

http://dx.doi.org/10.1515/jgth.2000.012
http://dx.doi.org/10.1081/AGB-120027916
http://dx.doi.org/10.1080/00927870500346180
http://dx.doi.org/10.1515/jgt.2009.050
http://dx.doi.org/10.1016/j.indag.2011.03.001
http://dx.doi.org/10.1080/00927872.2011.591218
http://dx.doi.org/10.1080/00927872.2015.1130139
http://dx.doi.org/10.5486/PMD.2017.7842
http://dx.doi.org/10.1142/S0219498817500426


Mathematics 2019, 7, 158 10 of 10

14. Guo, W.B.; Skiba, A.N. On FΦ∗-hypercentral subgroups of finite groups. J. Algebra 2012, 372, 275–292.
[CrossRef]

15. Li, B.J.; Guo, W.B. On some open problems related to X-permutability of subgroups. Commun. Algebra 2011,
39, 757–771. [CrossRef]

16. Gagen, T.M. Topics in Finite Groups; Cambridge University Press: Cambridge, UK, 1976.
17. Ballester-Bolinches, A.; Pedraza-Aguilera, M.C. On minimal subgroups of finite groups. Acta Math. Hungar.

1996, 73, 335–342. [CrossRef]
18. Guo, W.B. The Theory of Classes of Groups; Springer: Dordrecht, The Netherlands, 2000.
19. Gorenstein, D. Finite Groups; Harper and Row: New York, NY, USA, 1968.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jalgebra.2012.08.027
http://dx.doi.org/10.1080/00927871003592007
http://dx.doi.org/10.1007/BF00052909
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Proofs of Main Results
	Some Applications
	Conclusions
	References

