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Abstract: The generalized polynomials such as Chebyshev polynomial and Hermite polynomial are
widely used in interpolations and numerical fittings and so on. Therefore, it is significant to study
inclusion regions of the zeros for generalized polynomials. In this paper, several new inclusion sets of
zeros for Chebyshev polynomials are presented by applying Brauer theorem about the eigenvalues
of the comrade matrix of Chebyshev polynomial and applying the properties of ovals of Cassini.
Some examples are given to show that the new inclusion sets are tighter than those provided by
Melman (2014) in some cases.

Keywords: the inclusion region of polynomial zeros; Chebyshev polynomials; Brauer theorem;
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1. Introduction

The inclusion region of polynomial zeros is widely used in the theory of differential equations,
the complex functions and the numerical analysis. There are some inclusion regions for polynomial
zeros in power basis [1–3]. However, the structures of comrade matrix for generalized polynomials
are different from this of polynomial in power basis [4], so it is difficult to use them to generalized
polynomials such as Chebyshev polynomial and Hermite polynomial, which are widely used in
interpolations and numerical fittings. Therefore, it is necessary to use some new methods to study
inclusion regions of the zeros for polynomials in generalized basis. In [5], Melman used linear algebra
techniques to derive two Gershgorin-type inclusion disks of the zeros for polynomials in generalized
basis, specially the Chebyshev basis.

Definition 1 ([6]). The Chebyshev polynomials {Ti(z)} and {Ui(z)} of the first and second kind, respectively,
are defined by the relation

T0(z) = 1, T1(z) = z,
Ti(z) = 2zTi−1(z)− Ti−2(z) (i = 2, 3, · · · ),

and

U0(z) = 1, U1(z) = 2z,
Ui(z) = 2zUi−1(z)−Ui−2(z) (i = 2, 3, · · · ).

In addition, there is a relationship between the Chebyshev polynomials of the first and
second kinds:

Ti(z) =
1
2
(Ui(z)−Ui−2(z)) , (i = 2, 3, · · · ) . (1)

As for practical applications, Chebyshev polynomials can be used to differential equations,
approximation theory, combinatorics, Fourier series, numerical analysis, geometry, graph theory,
number theory, and statistics.
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Chebyshev differential equations were put forward by mathematicians when studing of
differential equations, which were (

1− x2
)

y′′ − xy′ + n2y = 0,

and (
1− x2

)
y′′ − 3xy′ + n (n + 2) y = 0.

Correspondingly, the first and second kind of chebyshev polynomials are the solutions of these
two equations respectively. Next, we give the main results about Chebyshev polynomials obtained by
Malman in [5].

Theorem 1 ([5]). Let

PU(z) = Un(z) + bn−1Un−1(z) + · · ·+ b1U1(z) + b0U0(z),

with bj ∈ C, and Uj (z) is the Chebyshev polynomial of the second kind, and let µU be the largest positive
solution of the equation

xn − |bn−1| xn−1 + (1− |1− bn−2|) xn−2 −
n−3

∑
j=0

∣∣bj
∣∣ xj = 0.

Then all the zeros of PU are contained in Ō
(

0; 1
2
(
µU + µU

−1)), where we denote by Ō(a; r) the closed
disk with center a and radius r.

Theorem 2 ([5]). Let

PU(z) = Un(z) + bn−1Un−1(z) + · · ·+ b1U1(z) + b0U0(z),

with bj ∈ C, and Uj (z) is the Chebyshev polynomial of the second kind, and let VU be the largest positive
solution of the equation

xn + |bn−1| xn−1 + (1− |1− bn−2|) xn−2 −
n−3

∑
j=0

∣∣bj
∣∣ xj = 0.

Then all the zeros of PU are contained in Ō
(
− bn−1

2 ;
∣∣∣ bn−1

2

∣∣∣+ 1
2

(
VU + VU

−1
))

.

In this paper, we continue to research the inclusion regions of generalized polynomial zeros.
We will give a tighter inclusion sets for generalized polynomial zeros. Since Chebyshev polynomials
are reprensentative of all polynomials which satisfy three-term recurrence relation, we only discuss
Chebyshev polynomials. We firstly give some previous results.

In mathematics, the recurrence relation are equations defined by successive terms of a sequence or
multidimensional array of values, therefore, once one or more initial terms of the sequence are given,
we can calculate the value of the sequence. The property of recurrence relation makes it useful in many
fields. And three-term recurrence relation is a special kind which is defined by successive three terms.
Its definition is as following:

Definition 2 ([4]). We define the families of the polynomial {φi} (i = 0, 1, 2, 3, · · · ) satisfying three-term
recurrence relation as following
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φ0(z) = 1, φ1(z) = α1z + β1,

φi(z) = (αiz + βi)φi−1(z)− γiφi−2(z).
(2)

where αi, βi, γi ∈ C, and αi 6=0.

Among all the three-term recurrence relation, the Fibonacci sequence is a typical one [7]. Besides,
Mathieu functions, is an example of three-term recurrence relation appears in physical problems
involving elliptical shapes or periodic potentials [8].

Theorem 3 ([4]). All the zeros of the polynomial

p(z)=φn(z)+an−1φn−1(z)+· · ·+a1φ1(z)+a0φ0(z),

are the eigenvalues of the comrade matrix

−β1
α1

γ2
α2

−a0
αn

1
α1

−β2
α2

γ3
α3

−a1
αn

1
α2

−β3
α3

γ4
α4

−a2
αn

. . . . . . . . .
...

1
αn−2

−βn−1
αn−1

−an−2+γn
αn

1
αn−1

−an−1−βn
αn


, (3)

where blank spaces indicate zero entries, φi(z) is defined in (2), and ai ∈ C .

Because Chebyshev polynomials satisfy three-term recurrence relation, we can easily obtain the
following corollaries from Theorem 3.

Corollary 1. Let polynomial

PT(z) = Tn(z) + bn−1Tn−1(z) + · · ·+ b1T1(z) + b0T0(z),

where Ti (z) is the first Chebyshev polynomial. Then the comrade matrix of PT (z) is

C(1)(PT) =



0 1
2

−b0
2

1
2 0 1

2
−b1

2

1
2 0 1

2
−b2

2
. . . . . . . . .

...

1
2 0 −bn−2+1

2

1
2

−bn−1
2


. (4)

Corollary 2. Let polynomial

PU(z) = Un(z) + bn−1Un−1(z) + · · ·+ b1U1(z) + b0U0(z),

where Ui (z) is the second Chebyshev polynomial. Then the comrade matrix of PU (z) is
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C(2)(PU) =



0 1
2

−b0
2

1 0 1
2

−b1
2

1
2 0 1

2
−b2

2
. . . . . . . . .

...

1
2 0 −bn−2+1

2

1
2

−bn−1
2


. (5)

Now, we give the Brauer theorem for the eigenvalues of a matrix and Descartes’ rule of signs of
polynomial zeros for using in the later.

Theorem 4 ((Brauer theorem) [9]). All the eigenvalues of a matrix A=
(
aij
)
∈Cn×n, n≥2, are contained in

the set of

∆ (A) =
⋃

i,j∈N
i 6=j

∆ij(A) =
⋃

i,j∈N
i 6=j

{
z ∈ C : |z− aii|

∣∣z− ajj
∣∣ ≤ ri(A)rj(A)

}
,

where ri(A) =
n
∑

j=1
j 6=i

∣∣aij
∣∣ is the i-th deleted absolute row sum of A, and N = {1, 2, 3, · · · , n}. ∆(A) is called

Brauer set of A.

Remark 1. Because A and AT have the same eigenvalues, so we have that all the eigenvalues of A are contained
in the following set

K (A) =
⋃

i,j∈N
i 6=j

Kij(A) =
⋃

i,j∈N
i 6=j

{
z ∈ C : |z− aii|

∣∣z− ajj
∣∣ ≤ ci(A)cj(A)

}
,

where ci(A) =
n
∑

j=1
j 6=i

∣∣aji
∣∣ is the i-th deleted absolute column sum of A, and N = {1, 2, 3, · · · , n}. K (A) is called

as Brauer column set of A. It is well to be reminded that Theorem 3 and Theorem 4 are very important and can
be applicable to estimate the Estrada index of weighted graphs [10,11].

Theorem 5. (Descartes′ rule o f signs o f polynomial zeros) [12] Let P(x) = a0xb0 + a1xb1 + · · ·+ anxbn

be a polynomial with nonzero real coefficients ai , where the bi are integers satisfying 0 6= b0 < b1 < b2 < · · · <
bn. Then the number of positive real zeros of P(x) (counted with multiplicities) is either equal to the number
of variations in sign in the sequence a0, · · · , an of the coefficients or less than that by an even whole number.

2. Brauer-Type Inclusion Sets for Chebyshev Polynomials Zeros

In this section, we use Brauer theorem and the properties of ovals of Cassini to derive a tighter
inclusion sets for the zeros of Chebyshev polynomials.

Theorem 6. Let
PU(z) = Un(z) + bn−1Un−1(z) + · · ·+ b1U1(z) + b0U0(z),

with bj ∈ C, and Uj (z) be the Chebyshev polynomial of the second kind, and let τU be the largest positive
solution of the the following real equation
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xn+2 − |bn−1| xn+1 + (2− |1− bn−2|) xn − (|bn−1|+ |bn−3|) xn−1

+ (1− |bn−4| − |1− bn−2|) xn−2 −
n−3

∑
j=2

(∣∣bj
∣∣+ ∣∣bj−2

∣∣) xj − |b1|x− |b0| = 0.

Then all the zeros of PU (z) are contained in
{

z ∈ C : |z| ≤
(

τU + τ−1
U

)
/2
}

.

Proof. According to Corollary 2, the comrade matrix of the polynomial

PU(z) = Un(z) + bn−1Un−1(z) + · · ·+ b1U1(z) + b0U0(z)

is the matrix (5). For a real number x >0, denote C(2)
x (PU) = D−1

x C(2)(PU)Dx, where Dx is the diagonal
matrix with diagonal

(
xn, xn−1, · · · , x

)
. By simple calculations, we have

C(2)
x (PU) =



0 1
2x

−b0
2xn−1

x
2 0 1

2x
−b1

2xn−2

x
2 0 1

2x
−b2

2xn−3

. . . . . . . . .
...

x
2 0 −bn−2+1

2x

x
2

−bn−1
2


. (6)

Here, C(2)
x (PU) and C(2)(PU) have the same eigenvalues. The Brauer column set of C(2)

x (PU) is
the union of 2 parts:{

z ∈ C : |z| ≤ x + x−1

2

}⋃{
z ∈ C : |z|

∣∣∣∣z + bn−1

2

∣∣∣∣ ≤ g(x)
}

where

g(x) =
1
4

(
|1− bn−2|+

|bn−3|
x

+
|bn−4|+ |1− bn−2|

x2 +
n−2

∑
j=3

∣∣bn−j−2
∣∣+ ∣∣bn−j

∣∣
xj +

|b1|
xn−1 +

|b0|
xn

)
. (7)

It is the n-th deleted absolute column sum of C(2)
x (PU). From [13], We know the fact that the entire

oval of Cassini |z|
∣∣∣z + bn−1

2

∣∣∣ ≤ g(x) is contained in a circle whose center is 0, radius is

r =
1
2

∣∣∣∣ bn−1

2

∣∣∣∣+
√∣∣∣∣ bn−1

2

∣∣∣∣2 + 4g(x)

 .

So the oval of Cassini is encompassed in the disk and will be tangent to it when the value of
x satisfies

1
2

(
x + x−1

)
= r =

1
2

∣∣∣∣ bn−1

2

∣∣∣∣+
√∣∣∣∣ bn−1

2

∣∣∣∣2 + 4g(x)

 .

Taking the x and multiplying this equation by xn yields

xn+2 − |bn−1| xn+1 + (2− |1− bn−2|) xn − (|bn−1|+ |bn−3|) xn−1

+ (1− |bn−4| − |1− bn−2|) xn−2 −
n−3

∑
j=2

(∣∣bj
∣∣+ ∣∣bj−2

∣∣) xj − |b1|x− |b0| = 0.
(8)
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By Theorem 5, this equation have one positive solution. Let τU be the largest positive solution of
the Equation (8), then all the zeros of PU (z) are contained in

{
z ∈ C : |z| ≤

(
τU + τ−1

U

)
/2
}

.

Remark 2. Any positive solution of the Equation (8) can be used to get the inclusion sets, but it is the largest
one that guarantee the smallest inclusion set because g(x) is a decreasing function of x, for x >0.

With Theorem 6, we naturally think of making a similar transformation on C(1)(PT), denoting
C(1)

x (PT) = D−1
x C(1)(PT)Dx, through calculation, We have that

C(1)
x (PT) =



0 1
2x

−b0
2xn−1

x 0 1
2x

−b1
2xn−2

x
2 0 1

2x
−b2

2xn−3

. . . . . . . . .
...

x
2 0 −bn−2+1

2x

x
2

−bn−1
2


.

And the Brauer column set of C(1)
x (PT) is{

z ∈ C : |z| ≤ max
{

x,
x + x−1

2

}}⋃{
z ∈ C : |z|

∣∣∣∣z + bn−1

2

∣∣∣∣ ≤ g(x)
}

,

where the radius of the former part
{

z ∈ C : |z| ≤ max
{

x, x+x−1

2

}}
is a non-smooth function, which

makes the subsequent proof relatively complicated. In order to avoid this situation, we use the
relation (1) to obtain the following theorem.

Theorem 7. Let
PT(z) = Tn(z) + an−1Tn−1(z) + · · ·+ a1T1(z) + a0T0(z),

with aj ∈ C, and Tj (z) be the Chebyshev polynomial of the first kind, and let τT be the largest positive solution
of the following real equation

xn+2 − |an−1| xn+1 + (2− |2− an−2|) xn − (|an−1|+ |an−3 − an−1|) xn−1

+ (1− |an−4 − an−2| − |2− an−2|) xn−2 −
n−3

∑
j=2

(∣∣aj − aj+2
∣∣+ ∣∣aj−2 − aj

∣∣) xj − |a1 − a3|x− |2a0 − a2| = 0.

Then all the zeros of PT (z) are contained in
{

z ∈ C : |z| ≤
(

τT + τ−1
T

)
/2
}

.

Proof. According to the relations of the two kinds of chebyshev polynomials, the polynomial

PT(z) = Tn(z) + an−1Tn−1(z) + · · ·+ a1T1(z) + a0T0(z)

can be expressed as

PT(z) =
1
2

(
Un(x) + an−1Un−1(z) +

n−2

∑
j=1

(
aj − aj+2

)
Uj(z) + (2a0 − a2)U0(z)

)
.

By Theorem 6, though changing the corresponding coefficients, we have all the zeros of PT (z) are
contained in

{
z ∈ C : |z| ≤

(
τT + τ−1

T

)
/2
}

.
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Theorem 8. Let
PU(z) = Un(z) + bn−1Un−1(z) + · · ·+ b1U1(z) + b0U0(z),

with bj ∈ C, and Uj (z) be the Chebyshev polynomial of the second kind, and let ηU be the largest positive
solution of the following real equation

xn+2 + |bn−1| xn+1 + (2− |1− bn−2|) xn + (|bn−1| − |bn−3|) xn−1

+ (1− |bn−4| − |1− bn−2|) xn−2 −
n−3

∑
j=2

(∣∣bj
∣∣+ ∣∣bj−2

∣∣) xj − |b1|x− |b0| = 0.

Then all the zeros of PU (z) are contained in{
z ∈ C : |z|

∣∣∣∣z + bn−1

2

∣∣∣∣ ≤ (|bn−1|
(

ηU + ηU
−1
)
+ ηU

2 + ηU
−2 + 2

)
/4
}

Proof. In [13], it is given that the point closest to 0 in the oval of Cassini lies at a distance given by

s = 1
2

(
−
∣∣∣ bn−1

2

∣∣∣+√∣∣∣ bn−1
2

∣∣∣2 + 4g(x)

)
. Here, we take x to make the oval of Cassini encompass the disk

and be tangent to it, thus

1
2

(
x + x−1

)
= s =

1
2

− ∣∣∣∣ bn−1

2

∣∣∣∣+
√∣∣∣∣ bn−1

2

∣∣∣∣2 + 4g(x)

 ,

where g(x) is defined as in (7). Multiplying this equation by xn yields

xn+2 + |bn−1| xn+1 + (2− |1− bn−2|) xn + (|bn−1| − |bn−3|) xn−1

+ (1− |bn−4| − |1− bn−2|) xn−2 −
n−3

∑
j=2

(∣∣bj
∣∣+ ∣∣bj−2

∣∣) xj − |b1|x− |b0| = 0.
(9)

By Theorem 5, this equation has positive roots. Let ηU be the largest positive solution of
Equation (9). All the zeros of PU (z) must therefore be contained in the following set{

z ∈ C : |z|
∣∣∣∣z + bn−1

2

∣∣∣∣ ≤ (|bn−1|
(

ηU + ηU
−1
)
+ ηU

2 + ηU
−2 + 2

)
/4
}

.

Theorem 9. Let
PT(z) = Tn(z) + an−1Tn−1(z) + · · ·+ a1T1(z) + a0T0(z),

with aj ∈ C, and Tj (z) is the Chebyshev polynomial of the first kind, and let ηT be the largest positive solution
of the the following real equation

xn+2 + |an−1| xn+1 + (2− |2− an−2|) xn + (|an−1|+ |an−3 − an−1|) xn−1

+ (1− |an−4 − an−2| − |2− an−2|) xn−2 −
n−3

∑
j=2

(∣∣aj − aj+2
∣∣+ ∣∣aj−2 − aj

∣∣) xj − |a1 − a3|x− |2a0 − a2| = 0.

Then all the zeros of PT (z) are contained in{
z ∈ C : |z|

∣∣∣z + an−1

2

∣∣∣ ≤ (|an−1|
(

ηT + ηT
−1
)
+ ηT

2 + ηT
−2 + 2

)
/4
}

.
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Proof. Similar to Theorem 7, using the relation of the two kinds of chebyshev polynomials,
the polynomial

PT(z) = Tn(z) + an−1Tn−1(z) + · · ·+ a1T1(z) + a0T0(z)

can be expressed as

PT(z) =
1
2

(
Un(x) + an−1Un−1(z) +

n−2

∑
j=1

(
aj − aj+2

)
Uj(z) + (2a0 − a2)U0(z)

)
.

According to Theorem 8, by changing the corresponding coefficients, we have the fact that all the
zeros of PT (z) are contained in{

z ∈ C : |z|
∣∣∣z + an−1

2

∣∣∣ ≤ (|an−1|
(

ηT + ηT
−1
)
+ ηT

2 + ηT
−2 + 2

)
/4
}

.

3. Examples

In this section, we give two examples to compare our results with Theorems 1 and 2 given by
Melman in [5]. Theorems 7 and 9 are similar to Theorems 6 and 8, therefore, we don’t give example on
Theorems 7 and 9, here.

Example 1. Consider the polynomial

P1(z) = U5(z) + (−1 + 2i)U4(z) + 1.5U3(z) + 1.1U2(z) + (2 + 1i)U1(z),

In Figure 1, the black area is the disk obtained from Theorem 1, the blue area is the Cassini oval obtained
from the Theorem 6. The red dots are the zeros of P1(z). It is easy to see that our result is tighter than Melman’s.

Figure 1. P1(z) = U5(z) + (−1 + 2i)U4(z) + 1.5U3(z) + 1.1U2(z) + (2 + 1i)U1(z).

Example 2. Consider the polynomial

P2(z) = U9(z) + 3U8(z)− (1− 2i)U7(z)− (1− i)U6(z) + iU4(z)−U2(z) + 3iU1(z)− 2U0(z),

In Figure 2, the black area is the disk obtained from Theorem 2, the blue area is the Cassini oval obtained
from the Theorem 8. The red dots are the zeros of P2(z). Obviously, our result is tighter than Theorem 2.
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Figure 2. P2(z) = U9(z)+ 3U8(z)− (1− 2i)U7(z)− (1− i)U6(z)+ iU4(z)−U2(z)+ 3iU1(z)− 2U0(z).

4. Conclusions

In the paper, several new inclusion sets of zeros for Chebyshev polynomials are presented by
applying Brauer theorem about the eigenvalues of the comrade matrix of Chebyshev polynomial and
applying the properties of ovals of Cassini. Some examples are given to show that the new inclusion
sets are tighter than those provided by Melman (2014) in some cases. We can generalize the results
to other polynomials that satisfy three-term recurrence relation such as Newton polynomial. On the
other hand, because the system matrix of leader-follower cooperative control in muliti-agentsystems
can be viewed as a comrade matrix [14]. Therefore, the results presented in this paper can be used
to estimate the consensus rate in these problems. These problems need to be studied in the future.
We can generalize our results to other polynomials that satisfy three-term recurrence relation such as
Newton polynomial, but that might increase the computation.
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