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Abstract: Obtaining high convergence and uniform distributions remains a major challenge in most
metaheuristic multi-objective optimization problems. In this article, a novel multi-objective particle
swarm optimization (PSO) algorithm is proposed based on Gaussian mutation and an improved
learning strategy. The approach adopts a Gaussian mutation strategy to improve the uniformity
of external archives and current populations. To improve the global optimal solution, different
learning strategies are proposed for non-dominated and dominated solutions. An indicator is
presented to measure the distribution width of the non-dominated solution set, which is produced by
various algorithms. Experiments were performed using eight benchmark test functions. The results
illustrate that the multi-objective improved PSO algorithm (MOIPSO) yields better convergence
and distributions than the other two algorithms, and the distance width indicator is reasonable and
effective.

Keywords: multi-objective optimization problems; particle swarm optimization (PSO); Gaussian
mutation; improved learning strategy

1. Introduction

Multi-objective optimization problems (MOPs) are very common in engineering and other areas
of research, such as economics, finance, production scheduling, and aerospace engineering. It is very
difficult to solve these problems because they usually involve several conflicting objectives. Generally,
the optimal solution of MOPs is a set of optimal solutions (known as a Pareto optimal set), which
differs from the solution of single-objective optimization (with only one optimal solution) [1]. Some
classical optimization methods (weighted methods, goal programming methods, etc.) require the
problem functions to be differentiable and are required to run multiple times with the hope of finding
different solutions. In recent years, the multi-objective optimization evolutionary algorithm (MOEA)
has become a popular method for solving MOPs, and it has garnered scholarly interest around the
world [2]. Many representative MOEAs, such as multiple objective genetic algorithm (MOGA) [3],
non-dominated sorting genetic algorithm II (NSGA-II) [4], strength pareto evolutionary algorithm
(SPEA) [5] and pareto archived evolution strategy (PAES) [6], have been presented.

Over the past decade, the particle swarm optimization algorithm (PSO) has been used to solve
MOPs, and a number of multi-objective PSO algorithms have been suggested. Some studies have
shown that the modified PSO algorithm can effectively solve the MOPs and that the non-dominated
solution set of the algorithm is much closer to the true Pareto optimal front. Coello and Pultdo [7]
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incorporated a special mutation operator that enriches the exploratory capabilities. Sierra and Coello [8]
proposed the OMOPSO algorithm, which places the whole population into three subpopulations with
the same size and uses different mutation operators within different subpopulations. This algorithm
improves the exploration ability of the particles. Reddy and Kumar [9] proposed an elitist-mutation
multi-objective PSO (EM-MOPSO) algorithm with a strategic mechanism that effectively explores the
feasible search space and speeds up the search for the true Pareto optimal region. Leong and Yen [10]
proposed a dynamic population multiple-swarm MOPSO algorithm that uses an adaptive local archive
to improve the diversity within each swarm. Yen and Leong [11] also proposed a dynamic population
multiple-swarm MOPSO algorithm in which the number of swarms is adaptively adjusted throughout
the search process via the proposed dynamic swarm strategy. The strategy allocates an appropriate
number of swarms to support convergence and diversity criteria among the swarms as required. Chen,
Zou, and Wang [12] presented a multi-objective endocrine particle swarm optimization algorithm
(MOEPSO) in which the hormone (RH), released by the endocrine system, is encoded as a particle
swarm and is then supervised by the corresponding stimulating hormone. Lin et al. [13] introduced a
novel MOPSO algorithm using multiple search strategies (MMOPSO), and a decomposition approach
was used to transform MOPs into a set of aggregation problems. Then, each particle was accordingly
assigned to optimize each aggregation problem. A multi-objective vortex particle swarm optimization
(MOVPSO) method was proposed in [14] based on the emerging properties of a swarm to simulate
motion with diversity control via collaborative mechanisms using linear and circular movements.
The parallel cell coordinate system (PCCS) in self-adaptive MOPSO [15] is used to select global and
personal bests, maintain archives and adjust flight parameters. Joshua et al. [16] presented a spreading
mechanism to promote diversity in MOPSO. Cheng et al. [17] presented a hybrid multi-objective
particle swarm optimization that combines the canonical PSO search with a teaching–learning-based
optimization (TLBO) algorithm to promote diversity and improve the search ability. Overall, for
any improved MOPSO algorithm, the search ability is determined by the neighbouring topological
structure, and the convergence rate depends on the dominance relationship.

In this paper,we introduce a new multi-objective PSO algorithm based on Gaussian mutation
and an improved learning strategy to solve MOPs. The main new contributions of this work can be
summarized as: (1) Gaussian mutation throw points strategy to improve the uniformity of external
archives and current populations; (2) For MOPs, it is difficult to select the gbest value of velocity and
update the formula. Unlike other MOPSOs, that often randomly select a solution from the external
archive as the global optimal solution gbest, we present different learning strategies to update the
individual positions of the non-dominated and dominated solutions; (3) To further measure the
distribution width, the indicator DW is proposed.

The remainder of this paper is organized as follows. In Section 2, we describe the multi-objective
optimization. Thereafter, in Section 3, we present a multi-objective improved PSO algorithm (MOIPSO).
Section 4 outlines the MOIPSO algorithm. Test problems, performance measures, and the results are
provided in Section 5, and the conclusions are presented in Section 6.

2. Description of Multi-Objective Optimization Problems

A general minimization problem of m objectives can be mathematically stated as follows:
Given x = (x1, x2, · · · , xn) ∈ D, D ⊂ Rn where n is the dimension of decision variable

space D. Additionally,
min y = f (x) = [ f1(x), f2(x), · · · , fm(x)]

s.t.
gi(x) ≤ 0, i = 1, 2, · · · , p
hj(x) = 0, j = 1, 2, · · · , q

, (1)

where y = ( f1, f2, · · · , fn) ∈ Y is the objective function vector, Y is the objective variable space, gi(x)
is the i-th inequality constraint, and hj(x) is the j-th equality constraint.
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Multiple objectives are included in MOPs, therefore, it is not possible to find a single solution
that can optimize all objectives. Generally, improving one objective may cause the performance of the
other objectives to decrease. Therefore, the conventional concept of single-objective optimality does
not hold, and we must find a solution that is a compromize based on all objectives, i.e., the Pareto
optimality. Based on the aforementioned reasons, some important definitions are given as follows for
MOPs [18,19]:

Definition 1. (Pareto dominance) The vector x′ = (x′1, x′2, · · · , x′n) dominates the vector x = (x1, x2, · · · , xn)

if and only if the next statement is verified. ∀i = (1, 2, · · · , n) : fi(x′) ≤ fi(x) and ∃i ∈ (1, 2, · · · , n) :
fi(x′) < fi(x), denoted as x′ ≺ x.

Definition 2. (Pareto optimality) A solution x∗ ∈ D is a Pareto optimal solution if there is not another x ∈ D
that satisfies f (x) ≺ f (x∗).

Definition 3. (Pareto optimal set) The Pareto optimal set is defined as the set of all Pareto optimal solutions.

Definition 4. (Pareto optimal front) The Pareto front consists of the values of the objectives corresponding to
the solutions in the Pareto optimal set.

3. An Introduction to the Multi-Objective Improved PSO

3.1. Main Aspects of the Standard PSO Algorithm

PSO was first presented by Kennedy and Eberhart in 1995 [20]. It is a random optimization
algorithm based on swarm aptitude. The theory behind PSO comes from research on the behaviour of
a bird swarm catching food. Compared with genetic algorithms, it has a simple construction, can be
easily implemented, and has few adjustable parameters.

Let n be the dimension of the search space, xi = (xi1, xi2, · · · , xin) be the current position of the
i-th particle in the swarm, pibest = (pibest1, pibest2, · · · , pibestn) be the best position of the i-th particle at
that time, and gbest = (gbest1, gbest2, · · · , gbestn) be the best position that the whole swarm has visited.
The rate of the velocity of the i-th particle is denoted as vi = (vi1, vi2, · · · , vin).

Algorithm 1: Standard particle swarm optimization [20]
Step 1: Initialize a population of particles XN , such that each particle has a random position
vector xi and a velocity vector vi. Set parameters c1 and c2, the maximum number of
generations Tmax, and the generation number T = 0.

Step 2: Calculate the fitness of all the particles in XN(T).
Step 3: Renew the positions and velocities of particles based on the following equations:

vT+1
id = wvT

id + c1r1(pibestd − xT
id) + c2r2(gbestd − xT

id) (2)

xT+1
id = xT

id + vT+1
id . (3)

Step 4: Calculate the fitness of the particles and renew every optimal position and global
optimal position of the particles.

Step 5: (Termination examination) If the termination criterion is satisfied, then output the
global optimal position and the fitness value. Otherwise, let T = T + 1 and return to Step 2.
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3.2. Main Aspects of the Multi-Objective Improved PSO Algorithm (MOIPSO)

3.2.1. Elitist Archive and Crowding Entropy

Since Zitzler introduced SPEA with an elitist reservation mechanism in 1999 [5], many new
algorithms have adopted a similar elitist reservation mechanism. Namely, they provide an external
archive to store all the non-dominated solutions that have been found. The elitist reservation
mechanism is also adopted in this article. As the evolution progresses, the non-dominated solutions
in the current archive may not be the non-dominated solutions in the entire evolutionary process,
therefore, the archive must be updated. The easiest updating method compares each solution with
the current archive at each generation, which allows for the input of better solutions into the archive.
The specific archive update rules are as follows [21]: (I) If the new solution dominates one or more
solutions of the external archive, the new solution enters the archive, and the dominated solutions are
deleted from the archive; (II) If the new solution is dominated by one or more solutions in the external
archive, then the new solution is rejected; (III) If the new solution and the solutions in the external
archive are not dominated by each other, then the new solution is a non-dominated solution and enters
the archive. However, because of the storage space and computational efficiency, the external archive
is not infinite. When the archive reaches its maximum size, the largest crowding degree solution will
be deleted.

For the crowding distance measure, we cite the crowding entropy in the literature [21]. This
method combines the crowded distance and distribution entropy, and the method accurately measures
the crowding degree of the solution.

Crowding entropy is defined as follows:

CEi =
m

∑
j=1

(cijEij)/( f max
j − f min

j )

= −
m

∑
j=1

[dlijlog2(plij) + duijlog2(puij)]/( f max
j − f min

j ),
(4)

where Eij is the distribution entropy of the i-th solution to the j-th objective function. Specifically, Eij

is defined as Eij = −[plijlog2(plij) + puijlog2(puij)], where plij =
dlij
cij

, puij =
duij
cij

, and cij = dlij + duij.
Variables dlij and duij are the distances from the i-th solution to the lower and upper adjacent solutions
for the j-th objective function, f max

j and f min
j are the maximum and minimum values of the j-th

objective function, and m is the number of objective functions.
Thus, the smaller the crowding entropy, the more crowded the archive. For each objective function,

the boundary solutions are assigned infinite crowding entropy values. All other intermediate solutions
are assigned crowding entropy values according to Equation (4).

3.2.2. Gaussian Mutation Strategy

Gaussian mutation is a very popular way to improve the particle swarm optimization algorithm.
Higashi et al. [22] integrate a Gaussian mutation used for GA into PSO, and leave a certain ambiguity
in the transition to the next generation due to Gaussian mutation. This method is used to solve
the single-objective optimization problem, and carries on each individual variation in the current
population. For the multi-objective problems, Coelho et al. [23] used Gaussian mutation to update
the velocity update formula, but they only replaced the uniform random number R with a Gaussian
random number Gd in the velocity formula. Liang et al. [24] also introduced Gaussian mutation, which
will have a certain probability to initialize the particle adjacent to the target particle. Meanwhile, this
will randomly initialize the particles beyond the range to increase the utilization rate of particles. To
further improve the performance of the solutions from the MOPs, this paper presents a new Gaussian
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mutation throw point strategy, which involves the throwing of points into external archives and the
current population. The details of the strategy are as follows.

1. Throw points at sparse positions in the external archive to produce a thickened point set (TPS).

For MOPs, researchers hope that the non-dominated solution set is evenly distributed in the
true Pareto front, but the solution sets of many methods yield uneven distributions. To increase the
number of solutions at sparse positions and make the distribution of the solution set more uniform,
we define the crowding degree of the solution in the external archive based on the crowding entropy
and use throw points based on a Gaussian distribution of the largest crowding entropy solution
(except the boundary solutions). Note that it is more important to find the boundary solutions for the
MOPs, and the crowding entropy is infinite at the boundaries. Therefore, we must throw points at the
boundary solutions.

The concrete operations are as follows.
Step 1: Identify a sparse solution based on the crowding entropy, as shown in Figure 1.

Figure 1. The selection process of the sparse solution.

Step 2: In the decision space, A −→ xA, E −→ xE, and F −→ xF. We normally throw h points
based on centres xA, xE, and xF and variance σ. The random variable Z ∼ N(A, σ), and we add h
random points to the TPS. It should be noted that the value of the variance σ is 1

5 the width of each

dimension. For example; x = (x1, x2) ∈ [−10, 0]× [0, 10] =⇒ σ =

(
2 0
0 2

)
; h = 5.

2. Throw points into the current population to produce a Gaussian mutation points set (GMPS).

The algorithm chooses R solutions based on the prescribed probability in the current population,
and normal throw points are established at R solutions (method based on (i): Step 2). Finally, we
obtain a new GMPS.

3.2.3. Improved Learning Strategy

The standard PSO algorithm is used to solve the single-objective optimization problem, therefore,
it is difficult to select the gbest value of velocity and update the formula for MOPs. The reason for this
issue is that MOPs do not contain the global optimal solution. In many previous articles, researchers
have randomly selected a solution from the external archive as the global optimal solution gbest, but
this method lacks pertinence and cannot reflect the guidance of gbest. Therefore, this article presents a
modified velocity formula, redefines the value gbest of Equation (2) and more efficiently applies gbest
to solve MOPs.

(i) When xT
i is not in the external archive, all solutions in the archive that dominate xT

i can be
regarded as global optimal solutions. Therefore, we provide a linear combination of these solutions.
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Suppose that there are k archive solutions that dominate xT
i : aT

1 , aT
2 , · · · , aT

k . A set of weights wj is

randomly generated, where j = 1, 2, · · · , k and
k
∑

j=1
wj = 1. Thus, gbest can be expressed as follows:

gbest =
k

∑
j=1

wjaT
j .

Velocity is updated in the formula as follows:

vT+1
id = wvT

id + c1r1(pibestd − xT
id) + c2r2(gbestd − xT

id). (5)

(ii) When xT
i is in the external archive, the concept of a global optimal solution is meaningless

for xT
i because the global optimal solution is a non-dominated solution. Therefore, all other solutions

cannot be better than this solution, and gbest does not exist. Hence, the three parts of Equation (2) are
unnecessary, and the velocity updating formula is as follows:

vT+1
id = wvT

id + c1r1(pibestd − xT
id). (6)

The position update formula still uses the original model: xT+1
id = xT

id + vT+1
id .

3.2.4. Update External Archive

The updating process of the external archive is an important problem for MOPs. Researchers
typically use the archive update rules to compare the current population and the old external archive
and then generate a new external archive to further improve the performance of the external archive.
This paper uses three sets to update the old external archive. The specific updating methods are shown
in Figure 2.

Figure 2. The updating process of the external archive.

3.2.5. Population Elitist Incremental Strategy

To increase the convergence rate of the population when the algorithm generates the offspring
population, we consider the effect of not only the parent population but also the external archive. This
paper proposes an elitist incremental strategy that increases the number of external archive solutions
in the offspring population to form a new offspring population. The definition is as follows:

A new offspring population

=randomly selected(N − L)offspring solutions

+ randomly selected L external archive solutions,

(7)
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where N is the population size,

L =



T T ≤
[

N
2

]
&|A| ≥ T

|A| T ≤
[

N
2

]
&|A| < T[

N
2

]
T >

[
N
2

]
&|A| ≥

[
N
2

]
|A| T >

[
N
2

]
&|A| <

[
N
2

] ,

T is the number of iterations, and |A| is the external archive of size A at iteration T.
As a result, the population has strong exploration abilities and can find a wider range of

non-dominated solutions at the early stage. The population will further explore the known
non-dominated solutions and move closer to the true Pareto front in the later stage.

4. Overview of the MOIPSO Algorithm

As previously discussed, the MOIPSO algorithm can be summarized as follows.
Step l: Randomly initialize the position and velocity of each particle within the search space.
(a) Set the following parameters; c1 = c2, vmax, vmin, wmax, wmin, T = 0, the Gaussian mutation

probability pr, the maximum generation number Tmax, the population size N, and the maximum
external archive size Amax.

(b) Randomly initialize the population and the velocity.
Step 2: Calculate the fitness of the particles in the initialized population, and initialize the optimal

position pibest of the i-th particle.
Step 3: Initialize an update to the external archive A.
Step 4: For T = 1:
(a) Renew the velocities of particles based on Equations (5) and (6) and the position of particles

based on Equation (7) to form the middle population;
(b) Select the particles based on the Gaussian mutation probability pr and throw points using the

Gaussian mutation strategy (ii) to produce a GMPS;
(c) Calculate the crowding entropy of the external archive solutions and throw points based on

the Gaussian mutation strategy (i) to produce a TPS;
(d) Renew the external archive A based on Section 3.2.4. If |A| > Amax, then delete the most

crowded particles according to the crowding entropy;
(f) Renew the middle population using the elitist incremental strategy, and form the new

offspring population;
(g) Calculate the fitness of the particle in the offspring population;
(h) Renew the optimal position pibest of each particle;
(i) If the termination criterion is satisfied, then output the Pareto optimal solutions. Otherwise,

let T = T + 1 and go to Step (a).

5. Methods and Simulation Experiments

5.1. Test Problems

To test the performance of MOIPSO, eight unconstrained optimization problems were used in the
experiments. The SCH, KUR, and FON functions were suggested by Schaffer in 1985 [25], Kursawe
in 1991 [26], and Fonseca in 1998 [27], respectively. The remainders are ZDT problems suggested by
Zitzler et al. in 2000 [28]. The optimization problems are described in Table 1.
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Table 1. The tested optimization problems.

Function Objective Functions D Variable Bounds
Characteristics
of the
Pareto Front

SCH
{

f1(x) = x2

f2(x) = (x− 2)2 1 x ∈ [−103, 103] Convex

FON


f1(x) = 1− exp(−

3
∑

i=1
(xi − 1√

3
)

2
)

f2(x) = 1− exp(−
3
∑

i=1
(xi +

1√
3
)

2
)

3 xi ∈ [−4, 4] Nonconvex

KUR


f1(x) =

n−1
∑

i=1
(−10exp(−0.2

√
xi

2 + xi+1
2))

f2(x) =
n
∑

i=1
(|xi|0.8 + 5 sin(xi

3))
3 xi ∈ [−5, 5] Disconnect

ZDT1


f1(x) = x1
f2(x) = g(x)[1−

√
x1/g(x)]

g(x) = 1 + 9(
n
∑

i=2
xi)/(n− 1)

30 xi ∈ [0, 1] Convex

ZDT2


f1(x) = x1
f2(x) = g(x)[1− (x1/g(x))2]

g(x) = 1 + 9(
n
∑

i=2
xi)/(n− 1)

30 xi ∈ [0, 1] Nonconvex

ZDT3


f1(x) = x1
f2(x) = g(x)(1−

√
x1/g(x)− x1 sin(10πx1)/g(x))

g(x) = 1 + 9
n
∑

i=2
xi/(n− 1)

30 xi ∈ [0, 1] Convex disconnect

ZDT4


f1(x) = x1
f2(x) = g(x)(1−

√
x1/g(x))

g(x) = 1 + 10(n− 1) +
n
∑

i=2
[xi

2 − 10 cos(4πxi)] 10
x1 ∈ [0, 1]

Nonconvex

xi ∈ [−5, 5]
i = 2, · · · , n

ZDT6


f1(x) = 1− exp(−4x1)sin6(6πx1)
f2(x) = g(x)[1− ( f1(x)/g(x))2]

g(x) = 1 + 9[
n
∑

i=2
xi/(n− 1)]0.25

10 xi ∈ [0, 1] Nonconvex

5.2. Performance Measures

The standard performance measures of multi-objective evolutionary algorithms were used to
evaluate the performance of the proposed algorithm. The performance measures are briefly described
as follows.

5.2.1. Convergence Measure Indicator

Ideally, the iterative process of MOEA approaches the Pareto front, but in most cases, it is difficult
to find the true Pareto front. The proximity of the approximate solutions to the Pareto optimal solutions
is a main indicator.

The concept of generational distance was introduced by Van Veldhuizen [29] to measure the
proximity of the approximate solutions to the Pareto optimal solutions. This indicator is defined
as follows:

GD =

√
n
∑

i=1
dist2

i

n
, (8)

where n is the number of non-dominated solutions. When the Pareto fronts of the objective function
can be expressed in analytic form, disti is measured by the Euclidean distance (in objective space)
between the i-th non-dominated solution and the nearest member of the Pareto optimal set. Otherwise,
disti is measured by the Euclidean distance between the i-th non-dominated solution and the reference
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point set. It is clear that a smaller value of GD is better, and GD = 0 indicates that the non-dominated
solution set is located in the true Pareto front.

5.2.2. Distribution Measure Indicator

Typically, we hope that non-dominated solutions are uniformly distributed in the true Pareto
front. Two main factors used to measure the distribution are uniformity and width:

(1) Distribution uniformity (∆)
The indicator ∆ [4] is used to measure the uniformity and diversity of the non-dominated solution

set. When calculating this indicator, we must sort the obtained non-dominated solutions based on the
specified objective function values. This indicator is defined as follows:

∆ =

h f + hl +
n−1
∑

i=1
|hi − h̄|

h f + hl + (n− 1)h̄
, (9)

where n is the number of non-dominated solutions, hi is the Euclidean distance between neighbouring
solutions in the non-dominated solution set, h̄ is the mean of all hi values, h f and hl are the Euclidean
distances between the extreme solutions of the Pareto optimal solution set and the boundary solutions
of the non-dominated solution set. When the non-dominated solution set is uniformly distributed in
the true Pareto front, h f = 0, hl = 0, and all hi = h̄, therefore, ∆ = 0. A small value of ∆ indicates
better uniformity in the true Pareto front.

(2) Distribution width (DW)
Generally, it is favourable if the boundary solutions can be included in the non-dominated solution

set. In other words, in these types of problems, researchers hope to find the boundary points of the
true Pareto fronts.

The indicator M∗3(NP), which measures the distribution width, was proposed by Zitzler [28].
The associated formula is as follows:

M∗3(NP) =

√√√√ M

∑
i=1

max{‖ pi − qi ‖∗, p, q ∈ NP}, (10)

where NP is the non-dominated solution set and M is the dimension of the non-dominated solutions.
Notably, M∗3 can measure the distribution width of the non-dominated solution set, but when the
distribution range of the Pareto front is too large or the dimensions of the solutions are large, the value
of M∗3 will be large. Therefore, it is difficult to compare and compile the data.

Based on the aforementioned method, the new indicator, DW, is provided. The concrete form of
this indicator is as follows:

DW =

∣∣∣∣∣∣∣∣∣
M
∏
i=1

max{|pi − qi|, p, q ∈ NP}

M
∏
i=1

max{|p′i − q′i|, p′, q′ ∈ RP}
− 1

∣∣∣∣∣∣∣∣∣ , (11)

where RP is the Pareto optimal set or the reference point set. Notably, a small value of DW reflects a
better distribution uniformity for the non-dominated solution set.

5.3. Algorithm Comparison

To validate the MOIPSO algorithm, we compared it to NSGA-II [4] and MOPSO [7] based on
the above three performance measures. The source codes of NSGA-II and MOPSO are available at
http://delta.cs.cinvestav.mx/~ccoello/EMOO/ (matlab code).

http://delta.cs.cinvestav.mx/~ccoello /EMOO/
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The initial population size is 100 for MOIPSO, NSGA-II and MOPSO. The number of iterations
directly affects the time complexity of the algorithm, and the convergence of the problem with different
iterations is discussed [30]. It can be found that when the program reaches a stable state, the subsequent
iterations can no longer improve the performance of the algorithm, but only increase the running time.
Therefore, through a large number of numerical experiments, different iteration numbers were chosen
based on the complexity of the problems in the three algorithms. The number of iterations completed
was 60 for SCH, 100 for FON and KUR, 300 for ZDT1, ZDT2, and ZDT3, and 1000 for ZDT4 and ZDT6.

The range of the parameter has been discussed in some literature [31], so we took the commonly
used parameter values for NSGAII and MOPSO. To make the test and its results more comparable, for
MOIPSO, the same parameters as MOPSO took the same values, and other parameters were set after a
large number of numerical experiments. In the MOPSO and MOIPSO algorithms, c1 = c2 = 1.7, while
r1 and r1 are assigned random values between 0 and 1. In MOPSO, the inertia weight is w = 0.7, and
the inertia weight damping ratio wdamp = 1. In MOIPSO, the inertia weight w adaptively decreased

from wmax = 0.9 to wmin = 0.4 according to the following formula: w = wmax − T(wmax−wmin)
Tmax

. In the
NSGA-II [4] algorithm, the crossover probability is 0.8, and the mutation probability is 0.3. To evaluate
the statistical performance, all the experiments are run 30 times. The best, worst, mean, and average
deviations are shown in Tables 2–4, respectively.

The GD results are shown in Table 2. MOIPSO exhibits the best GD values for SCH, KUR, ZDT1
and ZDT4. MOPSO displays the best GD values for ZDT2, ZDT3, and ZDT6. FON, MOIPSO, and
MOPSO exhibit similar results. For the worst GD, MOIPSO displays high stability and consistently
yields the lowest worst GD value in all test problems. For the mean GD, MOIPSO produces the best
mean values for all test problems except ZDT4, for which FON, MOIPSO, and MOPSO exhibit similar
results. With respect to the standard deviation of GD, MOIPSO exhibits the best solution for KUR,
ZDT1, ZDT2, and ZDT3. NSGA-II yields the best results for the other functions. Thus, MOIPSO
produces better values of GD indicators than the other two algorithms in most test problems, and the
results of MOIPSO are better than those of the other algorithms by 1 ˜ 2 orders of magnitude. This
finding indicates that the resulting Pareto fronts obtained via MOIPSO are closer to the true Pareto
fronts, and MOIPSO can effectively improve convergence.

Some information for ∆ is shown in Table 3. For the SCH and ZDT1 functions, all the solutions of
MOIPSO are better than those of the other algorithms. MOPSO exhibits the best, and the mean best,
∆ value for KUR. MOIPSO has the minimal worst ∆ and the best standard deviation. MOIPSO has the
best, the mean best, and the minimal worst ∆ values for ZDT2 and ZDT3, but the standard deviation
of NSGA-II is the best. MOIPSO displays the best and the mean best ∆ values for ZDT4. NSGA-II
exhibits the minimal worst ∆, and MOPSO yields the best standard deviation. MOPSO provides the
best ∆ for ZDT6. MOIPSO has the minimal worst ∆ and the mean best ∆, and the minimal standard
deviation of NSGA-II is the best. Table 3 shows that MOIPSO provides the best mean solution for all
seven functions. Therefore, the MOIPSO results are evenly distributed in the experiments, however,
they are not shown for all the functions.

Table 4 shows the results of a new quality indicator—DW. All the solutions of MOIPSO are better
than those of the other algorithms for SCH, KUR, and ZDT1. MOIPSO yields the three best indicators
for the FON function, and MOPSO provides the best solution for DW. NSGA-II exhibits the best DW
solution for ZDT2, and the other indicators of MOIPSO are the best. MOIPSO displays the best and the
mean best DW for ZDT3, and NSGA-II yields the minimal worst DW and the best standard deviation.
NSGA-II exhibits the best DW for ZDT4, and MOPSO displays the minimal worst DW. MOIPSO
produces the mean best DW and the minimal standard deviation. For the ZDT6 function, NSGA-II
exhibits the minimal standard deviation, and the other indicators of MOIPSO are the best. Similarly,
the DW results in Table 4 show that MOIPSO is able to produce the best distribution of solutions in
the Pareto optimal front for most of the test functions.
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Table 2. Comparison of the results of multi-objective improved particle swarm optimization algorithm
(MOIPSO) and different algorithms based on the indicator, GD.

Function Statistic MOPSO NSGA-II MOIPSO

SCH Best 8.72× 10−4 8.37× 10−4 8.34× 10−4

Worst 1.30× 10−3 1.10× 10−3 1.00× 10−3

Mean 9.66× 10−4 9.56× 10−4 9.41× 10−4

Std 7.89× 10−5 4.70× 10−5 4.76× 10−5

FON Best 1.00× 10−3 1.10× 10−3 1.00× 10−3

Worst 1.30× 10−3 1.30× 10−3 1.20× 10−3

Mean 1.10× 10−3 1.20× 10−3 1.10× 10−3

Std 6.22× 10−5 3.73× 10−5 6.08× 10−5

KUR Best 3.10× 10−3 1.60× 10−3 1.40× 10−3

Worst 3.09× 10−2 4.40× 10−3 3.80× 10−3

Mean 5.80× 10−3 3.00× 10−3 2.50× 10−3

Std 4.82× 10−3 6.43× 10−4 4.13× 10−4

ZDT1 Best 1.70× 10−3 1.96× 10−2 5.91× 10−4

Worst 6.43× 10−2 5.49× 10−2 3.20× 10−3

Mean 2.63× 10−2 3.03× 10−2 1.00× 10−3

Std 1.81× 10−2 7.80× 10−3 6.30× 10−4

ZDT2 Best 5.28× 10−5 2.96× 10−2 3.51× 10−4

Worst 1.55× 10−1 4.99× 10−2 3.10× 10−3

Mean 4.19× 10−2 3.84× 10−2 7.52× 10−4

Std 4.49× 10−2 5.40× 10−3 5.94× 10−4

ZDT3 Best 4.04× 10−4 2.19× 10−2 5.01× 10−4

Worst 1.08× 10−1 4.74× 10−2 7.10× 10−3

Mean 3.82× 10−2 3.30× 10−2 1.20× 10−3

Std 3.27× 10−2 8.10× 10−3 1.50×10−3

ZDT4 Best 1.10× 10−1 1.30× 10−3 3.23× 10−4

Worst 2.01× 10−1 2.86× 10−2 1.61× 10−2

Mean 1.40× 10−1 4.90× 10−3 9.90× 10−3

Std 1.67× 10−2 6.20× 10−3 2.37× 10−2

ZDT6 Best 2.72× 10−4 1.19× 10−1 5.36× 10−4

Worst 3.32× 10−1 1.65× 10−1 4.38× 10−2

Mean 2.29× 10−2 1.46× 10−1 1.09× 10−2

Std 5.96× 10−2 9.10× 10−3 1.13× 10−2

Table 3. Comparison of the results of MOIPSO and different algorithms based on ∆.

Function Statistic MOPSO NSGA-II MOIPSO

SCH Best 4.68× 10−1 4.68× 10−1 4.67× 10−1

Worst 4.80× 10−1 4.73× 10−1 4.70× 10−1

Mean 4.68× 10−1 4.69× 10−1 4.67× 10−1

Std 2.80× 10−3 1.70× 10−3 4.53× 10−4

FON Best 4.82× 10−1 4.81× 10−1 4.84× 10−1

Worst 4.94× 10−1 4.95× 10−1 4.85× 10−1

Mean 4.86× 10−1 4.87× 10−1 4.85× 10−1

Std 2.60× 10−3 3.90× 10−3 4.70× 10−4

KUR Best 4.59× 10−1 4.64× 10−1 4.63× 10−1

Worst 4.69× 10−1 4.69× 10−1 4.68× 10−1

Mean 4.63× 10−1 4.67× 10−1 4.66× 10−1

Std 2.10× 10−3 1.30× 10−3 1.10× 10−3

ZDT1 Best 4.08× 10−2 2.67× 10−1 1.13× 10−2

Worst 3.54× 10−1 4.05× 10−1 1.08× 10−1

Mean 2.47× 10−1 3.43× 10−1 4.28× 10−2

Std 8.62× 10−2 3.71× 10−2 9.70× 10−3
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Table 3. Cont.

Function Statistic MOPSO NSGA-II MOIPSO

ZDT2 Best 3.78× 10−1 4.09× 10−1 3.90× 10−3

Worst 9.92× 10−1 4.90× 10−1 1.47× 10−1

Mean 6.88× 10−1 4.59× 10−1 2.65× 10−2

Std 1.54× 10−1 1.99× 10−2 3.17× 10−2

ZDT3 Best 4.19× 10−1 2.64× 10−1 2.50× 10−3

Worst 7.06× 10−1 3.60× 10−1 1.94× 10−1

Mean 5.58× 10−1 3.13× 10−1 3.08× 10−2

Std 6.58× 10−2 2.94× 10−2 4.57× 10−2

ZDT4 Best 6.11× 10−1 1.33× 10−2 3.70× 10−3

Worst 6.89× 10−1 3.50× 10−1 4.74× 10−1

Mean 6.50× 10−1 8.96× 10−2 8.88× 10−2

Std 1.95× 10−2 9.90× 10−2 1.50× 10−1

ZDT6 Best 1.07× 10−2 4.86× 10−1 1.11× 10−2

Worst 4.52× 10−1 7.95× 10−1 4.08× 10−1

Mean 2.43× 10−1 6.29× 10−1 2.28× 10−1

Std 1.28× 10−1 6.92× 10−2 1.28× 10−1

Table 4. Comparison of the results of MOIPSO and different algorithms based on DW.

Function Statistic MOPSO NSGA-II MOIPSO

SCH Best 1.00×10−3 4.46× 10−5 4.44× 10−5

Worst 6.43×10−2 4.35× 10−2 1.80× 10−2

Mean 1.43×10−2 1.66× 10−2 2.70× 10−3

Std 1.56×10−2 1.26× 10−2 3.70× 10−3

FON Best 2.62× 10−4 4.21× 10−4 1.90× 10−3

Worst 3.36× 10−2 9.09× 10−2 8.00× 10−3

Mean 9.60× 10−3 3.10× 10−2 5.50× 10−3

Std 9.30× 10−3 2.19× 10−2 1.60× 10−3

KUR Best 3.07× 10−4 5.50× 10−3 2.40× 10−4

Worst 7.55× 10−2 7.36× 10−2 1.11× 10−2

Mean 1.32× 10−2 3.71× 10−2 3.30× 10−3

Std 1.82× 10−2 1.95× 10−2 2.40× 10−3

ZDT1 Best 7.80× 10−3 5.00× 10−2 3.20× 10−3

Worst 1.33 1.29 2.26× 10−2

Mean 5.23× 10−1 4.98× 10−1 1.17× 10−2

Std 4.05× 10−1 2.83× 10−1 6.20× 10−2

ZDT2 Best 1.54× 10−1 1.60× 10−3 3.30× 10−3

Worst 1.00 6.40× 10−1 2.99× 10−1

Mean 7.72× 10−1 2.07× 10−1 4.16× 10−2

Std 2.55× 10−1 1.49× 10−1 6.28× 10−2

ZDT3 Best 4.60× 10−3 3.49× 10−2 1.83× 10−4

Worst 8.93× 10−1 5.54× 10−1 9.63× 10−1

Mean 6.23× 10−1 2.59× 10−1 8.52× 10−2

Std 2.37× 10−1 1.54× 10−1 2.37× 10−1

ZDT4 Best 1.92× 10−1 9.28× 10−4 6.50× 10−3

Worst 1.00 1.64 1.68
Mean 6.33× 10−1 2.21× 10−1 2.07× 10−1

Std 1.95× 10−1 4.03× 10−1 1.55× 10−1

ZDT6 Best 1.42× 10−2 1.04× 10−2 2.20× 10−4

Worst 6.87 1.17 1.09
Mean 1.18 2.78× 10−1 1.86× 10−1

Std 1.48 2.78× 10−1 8.77× 10−1

According to the above statistical analyses, MOIPSO successfully solves the SCH, ZDT1 and
ZDT6 problems, as illustrated by Figures 3–5. Figure 3 shows that the three algorithms have
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similar convergence performances for the SCH function, however, MOIPSO exhibits better uniformity.
Figures 4 and 5 illustrate the superior convergence and distribution results of MOIPSO compared
with those of the other algorithms. Furthermore, by combining the data from Table 4 and the figures,
we can see that when the boundary solutions do not exist in non-dominated solutions or solutions
do not converge to the true Pareto front, then the DW value is very large. In the case of NSGAII and
MOPSO for ZDT6, because some points are far away from the true optimal pare fronts, their DW
values are 10−2, but the values are 10−4 for MOIPSO and we can find that all the solutions are near the
true optimal Pareto fronts in Figure 4. Thus, the DW indicator can measure the distribution width of
the non-dominated solution set.

Figure 3. For SCH, the comparisons between the true Pareto front and the best ones obtained by three
different algorithms.

Figure 4. For ZDT1, the comparisons between the true Pareto front and the best ones obtained by three
different algorithms.

From the numerical results, we can also see that the MOIPSO algorithm performs better than
other algorithms in distribution uniformity and width. This is obviously a good result of the Gaussian
mutation throw point strategy. However, this method is not omnipotent. Firstly, when the number
of throwing points is too large, the running time will rapidly increase. It is difficult to determine the
number, so in this paper, we have done a lot of experiments to determine it. Secondly, for all sparse
solutions, we will throw points, so when the Pareto optimal front of optimization problem is very
complex and contains a large number of outliers, the effectiveness of our Gaussian mutation throw
point strategy will be affected.
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Figure 5. For ZDT6, the comparisons between the true Pareto front and the best ones obtained by three
different algorithms.

6. Conclusions

A new multi-objective PSO algorithm based on Gaussian mutation and an improved learning
strategy (MOIPSO) is presented to solve MOPs. First, MOIPSO builds different learning strategies to
update the individual positions of the non-dominated and dominated solutions. Then, the Gaussian
mutation strategy is used to create throw points at sparse and boundary positions. These updating
strategies yield high convergence and a satisfactory distribution. To further measure the distribution
width, the indicator DW is proposed.

The performance of MOIPSO was tested based on different MOP benchmark functions with
convex and nonconvex objection functions. To demonstrate the effectiveness of MOIPSO, the results
were compared to those of MOPSO and NSGA-II. The experimental results showed that MOIPSO
significantly outperforms all other algorithms based on the test problems with respect to three metrics.
The resulting data and figures indicate that the proposed DW indicator is reasonable.

In this article, only two-objective functions are tested. In the near future, we also plan to evaluate
MOIPSO using other objective test functions. Furthermore, most parameters in this paper (such as
the number of throw points, cognitive coefficient, etc.) have certain values. It would be interesting to
study whether these control parameters could adaptively change as the iteration time increases.
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