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1. Introduction

Recall that the split feasibility problem (SFP) seeks a point u’ such that
ut € Cand Au' € Q, )

where @ # C and @ # Q are two closed convex subsets of two real Hilbert spaces H; and H>,
respectively and A : Hi — H; is a bounded linear operator.

In 1994, Censor and Elfving [1] refined the above mathematical model from the medical image
reconstruction and phase retrievals. This provides us a useful tool to research inverse problems
arising in science and engineering. One effective method for solving SFP (1) is algorithmic iteration.
In the literature, there are several effective iterative algorithms presented by some authors (see, for
instance [2-28].)

In this paper, our goal is to focus a general case of proximal split feasibility problems and to
investigate the convergence analysis. To begin with, we first give several related concepts.

Let ¢ : Hy — R U {+o0} be a lower semi-continuous, proper and convex function. Let € > 0 be a
constant. Recall that the Moreau [29]-Yosida [30] regularization is defined by

1
9e(x) = min {p(u) + 5[l — x|},

Consequently, we can define the proximity operator of ¢ by the form

. 1
proveg(x) = arg min {g(u) + 5 |ju — x| }.
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The subdifferential of ¢ at x™ denoted by d¢(x") is defined as follows
op(xt) = {x* € Hy: p(x") + (x, xF — xT) < p(xF), Vat € Hp}.

It is easy to validate that 0 € 9¢(x") < x* = proxey(x"). This means that the minimizer of ¢ is
the fixed point of its proximity operator.

Let ¢ : H1 — R U {+oo} be a lower semi-continuous, proper and convex function. Recall that
the proximal split feasibility problem seeks a point x* € 7; such that x' solves the following
minimization problem

min {¢(x") + ¢e(Ax")}. @)
xteH,
In what follows, we use I' to denote the solution set of the problem (2).
The above problem (2) has been studied extensively in the literature, see for instance [31-35].
In order to solve problem (2), in [36], Moudafi and Thakur presented the following split
proximal algorithm.

e Fixed an initialization 1y € H;.
e  Assume that u, € H; has been obtained. Calculate v(uy,) = \/|[Vg(un)||? + [[Vh(uy)|]2, where

1 1
gun) = EH(I - P”"x64>)-'4”n||2 and h(uy) = 5”(1 - Prox;tne(anHZ-

e Ifv(u,) =0, then the iterative procedure stops, otherwise continue to compute the next iterate
Upg1 = ProXpy,eq(tin — pn A" (I — proxep) Auy), n >0,

g(”n)‘f‘h(”n).

where y, = 1, V2 (1)

Remark 1. Note that the stepsize sequence {yy, } is implicit because of the terms g(uy ) and v(uy ). This indicates
that the computation of u,41 is complicated.

To overcome this difficulty, Shehu and Iyiola [37] suggested the following explicit algorithm to
solve problem (2).

1. Fixedu € Hqyand uy € H;.
Set n = 1 and calculate

Yn = Cutt + (1 = Cn)uin,

V(yn) = [[A*(I — proxep) Ayn + (I — proxeg)yu|l,
h(y,) + 1y, N
Zn = Yn — Tn(yvi(yn)(y ) (A*(I — proxep) Ayn + (I — proxeg)yn),

un_l’_l == (1 - ﬁn)yn + 191/12]1.

3. If AY(I —proxep)Ayn = 0 = (I — proxey)yn and u, 1 = uy, then the iterative process stops,
otherwise continue to the next step.
4. Setn < n+ 1 and repeat steps 2-3.

Remark 2. In Step 3, we note that A* (I — proxep) Ayn = 0 = (I — proxeq)yn implies v(y,) = 0. In this
case, the iterates z, and u,1 have no meanings.

In the present paper, our goal is to mend the above gap and to suggest a modified proximal split
feasibility algorithm for solving the proximal split feasibility problem (2). We prove that the presented
sequence converges strongly to a solution of the proximal split feasibility problem (2).
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2. Preliminaries

Let H be a real Hilbert space. Use (-,-) and || - || to denote its inner product and norm, respectively.
Let C be a nonempty closed convex subset of H. Recall that a mapping S : C — C is said to be firmly
nonexpansive [38] if

|Su — Sv||> < (Su— Sv,u —v)

forall u,v € C.
Note that the proximal operators [ — proxe, and I — proxep are firmly nonexpansive, namely,

| (I = proxeg)u — (I — proxap)sz < (I = proxeg)u — (I — proxey)v,u — v) ©)]
forall u,v € H1 and
(I — proxeg)u — (I — proxe(p)sz < A{(I = proxeg)u — (I — proxep)v, u —v) 4)

forall u,v € H,.
For Vu € #, there exists a unique point in C, denoted by proje (1), such that

lu = proje (u)|| < flu—u|]

forall u® € C.
It is known that projc is firmly-nonexpansive and has the following characteristic [39]

(u — proje (u), u" — proje(u)) <0

forallu € Hand ut € C.

An operator F is called strongly positive if there exists a constant § > 0 such that (Fu,u) > J||u
forallu € H.
The following expressions will be used in the sequel.

I

e 1, — u denotes the weak convergence of {u,} to u;
e u, — u denotes the strong convergence of {u, } to u;
e  Fix(S) means the set of fixed points of S.

Lemma 1. [40] In a real Hilbert space H, the following identity holds
JAX* 4 (1= A)E|2 = Al 2+ (1 = A)[|E]2 = AL = A)[1x* = 22,
forall A € [0,1],Vxt, % € H.

Lemma 2. [41] Suppose that three sequences {uy }, {v,} and {6, } satisfy the following conditions

(i) uy >O0foralln>0;

(ii)  there exists a constant M such that v, < M for alln > 0;
(iii) 6, € [0,1] and Y ;7 o6, = oo;

(iv) upi1 < (1—6y)uy + 6,0, foralln > 0.

Then, we have limsup,,_, . u, < limsup,_, vy.
Lemma 3. [42] Suppose that ‘H is a real Hilbert space and C C ‘H is a nonempty closed convex set. If T is a

nonexpansive self-mapping of C, then the operator I — T is demi-closed at 0, i.e., x, — x € C and x, — Tx, — 0
imply x = Tx.
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Lemma 4. [43] Assume that three sequences {pn}, {1n} and {{,} satisfy the following assumptions

(i) pn=>0foralln > 0;

(i1) {gn}nGN - [0/ 1] and 220:1 Cn = o0
(iii) limsup,_,  1n <0;

(1v) ppt1 < (1= Cn)pn + Cntn for all n > 0.
Then limy 0 pn = 0.

3. Main Results
Suppose that

(i) #Hj1 and H; are two real Hilbert spaces and @ # C C Hj and @ # Q C H, are two closed
convex sets;

(i) A:7H; — Hpisabounded linear operator, ¢ : H1 — R U {400} and ¢ : Hy — R U {+oo} are
two proper, convex and lower semi-continuous functions.

In what follows, assume I' # @. The following lemma plays a key role for constructing our
algorithm and proving our main result.

Lemma 5. [34] z' € T iff A*(I — proxey) Az" + (I — proxey)z" = 0.

Next, we suggest the following algorithm by applying Lemma 5.

Let f : H1 — Hi be a p-contraction. Let F : H; — H; be a strongly positive linear bounded
operator with coefficient 6 > 0. Let {{,} C (0,1), {¢,} C (0,1) and {7, } C (0,+o0) be three real
number sequences. Let y be a constant such that 5/u > ¢ > 0.

1.  Given fixed point xy € H;. Setn = 0.
Calculate y, and v(y,) via the iterative procedures

Yn = Cuyf(xn) + (I = CnF)xn, ()
and
v(yn) = A" (I — proxep) Ayn + (I — proxey)yn. (6)

3. Ifv(yn) = 0, then the iterative process stops (in this case, y, is a solution of (2) by Lemma 5),
otherwise continuous to the next step.
4. Compute

Xp+1 = (1 - 1911)]/11 + Ouzn, (7)

where

o — 7 8Wn) Fhyn)
S T ©

in which g(yn) = 3| (I — proxep) Aya||* and h(yn) = 5| (I — proxeq)yn|1*-
5. Setn < n+ 1 and repeat steps 2—4.

Assume that the above iterates (5)-(8) do not terminate, that is, the sequence {x,} generated by
(7) is very large. In this case, we demonstrate the convergence analysis of the sequence {x, }.

Theorem 1. Suppose that the control parameters {{, }, {0, } and {T,} satisfy the following restrictions
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(C1): nlgr; Cn=0and ) ;> (Cn = o0
(C2): 0 <liminf, ;0 ¥, <limsup, ., & <1;
(C3): liminf, e T, (4 — Ty) > 0.

Then sequence {x, } generated by (7) strongly converges to z, where z = projr(I — F 4+ v f)z.

Proof. Firstly, it is easy to check that operator projr (I — F + 7y f) is a contraction under the restriction
d/u > v > 0. Denote its unique fixed point by z, that is, z = projr (I — F + yf)z. Next, we show the
boundedness of the sequence {x,}. In terms of the nonexpansivity of the operators I — proxey and
I — proxegp, from (3) and (4), we have

2h(yn) = [|(I - Proxeqo)ynnz <((I- P”Uxap)yn/yn —z), )
and
2¢(yn) = (I - proxap)AynHz <{(I- mee(p)AymAyn — Az). (10)
By (6), (9) and (10), we obtain
(V(Yyn),yn —z) = (A" (I - mee(P)-Ayn + (I - P”"xe(p)yn/yn —z)
= ((I — proxep) Ayn, Ayn — Az) + ((I — proxeq)yn, Yn — z) (11)

> 28(yn) + 2 (yn)-

This together with (8) implies that

Zn — Z 2 = — T MV
l|zn | lyn n TeAIE (Yn)

v () |2 V(Yn), yn

—z||

) 42 (8(yn) +h(1/n))2 (12)

= —z||2 - 21,
lyn == = 27 v

2
< llyn =2l = (4 =) (g(y|1|1v)<_y:ﬁf§")) :

By condition (C3), without loss of generality, we assume 0 < a < 7, < b < 4 foralln > 0. In the
light of (7) and (12), we have

lxn1 = 2l < (1= 8a)llyn — 2]l + Bullzn — 2]l

< llyn — =zl

= 18wy (f (xn) = f(2)) + Cu(vf(2) = F(2)) + (I = EnF) (0 — 2)]|

< Cnvillxn =zl + Cullvf(2) = E(2)|| + (1 = 6Zn) [ 2n — ]|

=[1 =0 =v1)Cnlllxn — z| + Cullvf(2z) — F(2)|| (13)
" ||7f( ) ( )Il}

< max{||x, —

IN

< max{||x0 — ZH W(zs)—(”}

Hence, the sequence {x, } is bounded. Consequently, we can check easily that the sequences {y, }
and {z,} are bounded.
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By virtue of (5), we have

lyn — Z||2 = [|Gn(vf(xn) — F(2)) + (I = {uF)(xn _Z)Hz
<= CaFlPlxn — zl1? + Gallvf (xn) = F@)? +28u (1 f (xn) = F(2), (I = GuF) (xn — 2))
< (1= 0gn)?llxn — 21> + Callvf (xu) = F(2)1* + 29ul f (xu) = f(2), (I = TuF) (3 — 2))
+20u(7f(2) = F(2), %0 — 2) = 203(f(2) — F(2), F(x4) — F(2))
< (1= 0gu)?llxn — 2|1> + Gallvf () — F(2) 1>+ 29p(1 — 650) |30 — 2|2
+200517f(2) = F(2) ||l — 2|l + 28 {7 (2) = F(2), %0 — 2)
< [1=2(8 = yu)Culllxn = 211> +28u(vf(2) = F(2), %0 — 2) + TaMy,

(14)
where My > sup,~o{[|7f (xn) = F(2), 26|17 (xn) — F(2)||[|xn — 2|, 6%[|xn — 2|*}.
On the basis of (7) and Lemma 1, we get
21 =2l = [|(1 = 82) (yn — 2) + Bu(z0 — 2) |7 (15)
= (1= 0u)llyn — zlI* + Bullzn — 21> — (1 = 80) O llyn — za||*.
From (12) and (15), we deduce
%1 = 2l < lyn = 2I1* = (1= 81)Bullyn — 2zl (16)
By (7), we note that
1
Yn —2Zn = 197(]/71 - xn+l)- (17)
n
Thus, combining (14), (16) with (25), we get
2 2 — O 2
[%n+1 —2[|7 < |lyn — 2| - [[Xn41 = a|
< [1-206 = yW)llxn — 21+ 26 (=) = F(2), 30— 2) )
-9
+ My = == [xn 1 =
n
= [1 =208 = v)Zulllxn — 2)1* + Zu0w,
where
1-9, 5
=2(yf(z) — F(z),xn — z) + M1{p — Tt 1 — yall* (19)

According to the boundedness of the sequence {x,}, from (27), we obtain 0;, < M, (Vn > 0) for
some Mj. Applying Lemma 2 to (26), we get 0 < 2(6 — yu) limsup,, ., [|[xn — z||> < limsup,, ,, ou <

M,. Therefore, limsup,,_, ., 0y, exists and there exists a subsequence {x, } of {x; } such that x,, — ¥ and

. . 1-19,
limsup 0y, = limsup(2(7yf(z) — F(z), xn — z) + M1{n — Tt "Nxni1 — yall?)

n—o00 n—oo
— Oy,

= im (2(yf(z) — F(z), ¥ — z) — én‘ 1 = Y1)

(20)

1—19,
This indicates that lim —— " ||x,,, 11 — ¥, ||* exists and by conditions (C1) and (C2), we deduce

i—00 gnl "

lim Hxn,-+1 - ]/”i” =0. (21)
i—y00
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This together with (25) implies that

lim H]/"i - Zﬂi” =0.
1—00
Combining (5) with (21), we obtain
lim Hxni+1 - xni” = lim ||yni - x”i” =0.
1—00 1—00

By (12), we have

n;) + 1(yn, §
0< Tni(4 - ”z) (g(y||1/)(yn)(|y2 )) < ||yni 72”2 - Hzn,- 7ZH2 22)

< yn; = zu [ (lyn; — 2]l + llzn; — 2l]) = 0 (as i — o).
It follows that
i 8Wn) +hym) _ o
i [[v(yn)|
Noting that v(y,,) is bounded, from (23), we deduce lim;_,o(g(ys,) + h(yn,)) = 0. Thus,
lim; 0 §(¥n;) = lim;_,eo h(yn;) = 0. That is,

(23)

lim [|(I — proxeg )y, || = lim [|(I — proxep) Ayn, || = 0.
1—00 1—00

This together with Lemma 3 implies that # € Fix(proxey) and AX € Fix(proxey). Hence ¥ € T.
Therefore,

limsup(7f(z) — F(2), % — 2) = (7f(z) — F(z), £~ 2) < 0.

n—o00

By (26), we have
1 — 22 < [1— 206 = V)Gl 0 — 22 + 201 f(2) — F(2), %0 — 2) + BMy. (24)
According to Lemma 4 and (24), we deduce that x, — z. This completes the proof. [

1.  Given fixed point xy € H;. Setn = 0.
Calculate y, and v(y,) via the iterative procedures

Yn = (1= Cn)xn, (25)
and
v(yn) = A*(I — proxep) Ayn + (I — proxey)yn. (26)

3. Ifv(ys,) = 0O, then the iterative process stops (in this case, y, € I' by Lemma 5), otherwise
continuous to the next step.

4. Compute

Xp+1 = (1 - ﬁn)yn + Ouzy, (27)
where

8(yn) + h(yn)
Lo

in which g(y,) = 3 [|(I — proxeg) Aya||? and h(y,) = 3| (I — proxeg)ynl*.

Zpn = Yn — Tn (28)
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5. Setn < n+ 1 and repeat steps 2—4.

Assume that the above iterates (25)-(28) do not terminate, that is, the sequence {x, } generated
by (27) is very large.

Corollary 1. Suppose that the control parameters {{,}, {0,} and {T,} satisfy the restrictions (C1)—(C3).
Then sequence {x, } generated by (27) strongly converges to z = projr(0), the minimum norm element in T
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