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Abstract: In the present work, we introduce a hybrid Mann viscosity-like implicit iteration to find
solutions of a monotone classical variational inequality with a variational inequality constraint over
the common solution set of a general system of variational inequalities and a problem of common
fixed points of an asymptotically nonexpansive mapping and a countable of uniformly Lipschitzian
pseudocontractive mappings in Hilbert spaces, which is called the triple hierarchical constrained
variational inequality. Strong convergence of the proposed method to the unique solution of the
problem is guaranteed under some suitable assumptions. As a sub-result, we provide an algorithm
to solve problem of common fixed points of pseudocontractive, nonexpansive mappings, variational
inequality problems and generalized mixed bifunction equilibrium problems in Hilbert spaces.

Keywords: hybrid Mann viscosity implicit iteration method; triple hierarchical constrained variational
inequality; general system of variational inequalities; fixed point; asymptotically nonexpansive
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1. Introduction

We suppose that H is a real or complex Hilbert space and let H be with inner product (-, -) and
norm || - ||. We suppose that C is a convex nonempty closed set of H. We also suppose that Pc is the
metric projection from H onto C. Since C is a convex nonempty closed set, we conclude that Pc is
defined. Let T be a mapping on convex nonempty closed set C. Denote by Fix(T) the set of fixed
points of T, i.e., Fix(T) = {x € C: (I — T)x = 0}. — and — present strong convergence and weak
convergence, respectively. A mapping T : C — C is named to be asymptotically nonexpansive if there
exists a sequence {6, } C [0, +00) with lim,,_,c 6, = 0 such that

[T"x = T"y| < lx =yl +0ullx—yl, Vn=>0, x,yeC. M
If 0 = 0, then T is named to be nonexpansive, that is,
[Tx = Tyl| <[x—yl, VxyeC. )

Suppose that A is a nonself mapping from convex nonempty closed set C to entire space H.
The classical variational inequality (VI) is to find x* € C such that

(MAx*,x —x*) >0, VxeC, (3)

where y is some positive real number. We denote by VI(C, A) the set of solutions of VI (3).
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Assume that B, is a nonself mapping from convex nonempty closed set C to entire space H and
B, is a nonself mapping from convex nonempty closed set C to entire space H, respectively. we study
the system of approximating (x*,y*) € C x C such that

4
(aBox* —x* +y*,x —y*) >0, VxeC. @

{ (mBy* —y*+x*,x—x*) >0, VxeC,
Here, y1 and pp are two real numbers. The system (4) is named to be a general system of variational
inequalities (GSVI). We note that the system (4) can be transformed into a problem of zero points
(I — T)x = 0, that is, the fixed point of T as following

Lemma 1 ([1]). Fix x*,y* € C, where (x*,y*) satisfies the system (4) if and only if
x* e GSVI(C, By, Bz),

where GSVI(C, By, By) is the set of solutions of the mapping G := Pc(I — p1B1)Pc(I — paBa), and y* =
Pc(I— paBy)x™.

Recently, the variational inequality (3) and the system (4) have been intensively investigated by
many authors via fixed-point methods; see [2-11] and the references therein. A mapping f : C — Cis
said to be a contraction on C if there exists a constant é € [0,1) such that || f(x) — f(y)] < J||x — y|| for
all x,y € C. Amapping F : C — H is called monotone if (Fx — Fy,x —y) > 0 Vx,y € C. Itis called
1-strongly monotone if there exists a constant 7 > 0 such that (Fx — Fy,x —y) > ||x — y||? Vx,y € C.
Moreover, it is called a-inverse-strongly monotone (or a-cocoercive), if there exists a constant @ > 0
such that

(Fx — Fy,x —y) > «||Fx — Fy||?>, Vx,y € C.

Furthermore, let X be a real Banach space whose topological dual space is denoted with X*.
The normalized duality ] : X — 2X" is defined through

J(x) ={p € X*: {xp) = [Ix|* = lg]*}, VxeX,

where (-, -) denotes the generalized duality pairing. We suppose that T is a mapping. Its domain and
range are denoted by D(T) and range R(T), respectively. It called pseudocontractive if

lx =yl < llx =y +r((I=T)x = (I =T)y)ll, Vx,y € D(T),vr>0.

From a result of Kato [12], we know that the notion of pseudocontraction is equivalent to the following
definition: There exists j(x —y) € J(x — y) such that

(j(x—y), Tx = Ty) < [|x —y||>, Vx,y € D(T).

It is well known that the class of pseudocontractive mappings, whose complementary operators are
accretive, is an important and significant generation of nonexpansive mappings (see [13-19]). In 2011,
Ceng et al. [20] introduced an implicit viscosity approximation method for computing approximate
fixed points of pseudocontractive mapping T, and obtained the norm convergence of sequence {x, }
generated by their implicit method to a fixed-point of T.

The main aim of this paper is to introduce and analyze a hybrid Mann viscosity implicit iteration
method for solving a monotone variational inequality with a variational inequality constraint over the
common solution set of the GSVI (4) for two inverse-strongly monotone mappings and a common fixed
point problem (CFPP) of a countable family of uniformly Lipschitzian pseudocontractive mappings
and an asymptotically nonexpansive mapping in Hilbert spaces, which is called the triple hierarchical
constrained variational inequality (THCVI). Here, the hybrid Mann viscosity implicit iteration method
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is based on the viscosity approximation method, Korpelevich extragradient method, Mann iteration
method and hybrid steepest-descent method. With relatively weak assumptions, the authors prove
the strong convergence analysis of the their method to the unique solution of the THCVI. As an
application, we list an algorithm to solve problems of common fixed point of pseudocontractive
and nonexpansive mappings, classical variational inequalities and generalized mixed equilibrium
problems in Hilbert setting.

2. Preliminaries

In this subsection, we suppose H is a Hilbert space. Its inner product denoted by (-, -). We also
suppose C is a convex nonempty closed set of H. Here, we list some basic concepts and facts. A nonself
mapping F from convex nonempty closed set C to entire space H is said to be k-Lipschitzian if there
is a number x > 0 with ||[F(x) — F(y)|| < «||x —y|| Vx,y € C. In particular, if x = 1, then the nonself
mapping F is named to be a nonexpansive operator. A self mapping A on entire space H is name to be
a strongly positive bounded linear operator if we have a number 7y > 0 with

(Ax, x)

> ||x\|2, Vx € H.

It is easy to see that the self mapping A is a y-strongly monotone || A||-Lipschitzian operator. Recall
that a self mapping T on convex nonempty closed set C is named to be

(a) a contraction if we have a number « € (0,1) with
ITx = Tyl| < allx—yl, VxyeC

(b) apseudocontraction if
(Tx =Ty, x—y) < |x—y[>, VxyeC

(c) strong pseudocontraction if we have a number a € (0,1) with

(Tx — Ty, x —y) < a|lx —y||®>, Vx,yeC.

We use the following concept in the sequel.

Definition 1. Let {T},}°_, be a mapping sequence of continuous self pseudocontractions on C. Then, {T, }5_,
is said to be a countable family of (-uniformly Lipschitzian pseudocontractive self-mappings on C if we have a
number £ > 0 such that each T, is {-Lipschitz continuous.

Fix x € H, there is a unique element in C, denoted by Pcx, with
|x = Pex|| < [lx—yll, VyeC. @)

where P stands for a metric projection of entire space H onto convex nonempty closed set C. It is well
known that P¢ is a nonexpansive mapping with

(x =y, Pcx — Pcy) > |[Pcx — Peyl?, Vx,y € H. 6)
Nevertheless, Pcx has the functions: Pcx € C and
(x = Pcx,y — Pcx) <0, @)

lx =yl = llx = Pex||* > [ly — Pex||?, Vx€H,ye€C. ®)
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We also have
2(x =y, y) + llx —yl> = l[xI* = llyl* )

We need the following propositions and lemmas for our main presentation.

Proposition 1 ([21]). We suppose C is a convex nonempty closed set of a Banach space X. We suppose Sg, S1, ...
is an operator sequence on convex nonempty closed C. Let

Y sup{[|Sux — S,_qx]| : x € C} < co.
n=1

It follows that {Sny} converges strongly to some point of C for each y € C. Nevertheless, we
let S be a mapping on convex nonempty closed C defined through Sy = lim,_e Spy for all y € C.
Then limy, ;e sup{||Sx — Syx|| : x € C} = 0.

Proposition 2 ([22]). We suppose C is a convex nonempty closed set of a Banach space X. We also suppose T
is a continuous and strong pseudocontraction on convex nonempty closed C. This shows the fact that T has a
fixed point in C. Indeed, it is also unique.

The following lemma is trivial. In fact, it an immediate consequence of the subdifferential
of 1l - |12
2

Lemma 2. We suppose H is a Hilbert space. In H, we have
lx+ylI* = [Ix[]* < 2y, x +y), Vx,y € H.
Lemma 3 ([23]). We suppose {a,} is a number sequence such that
A1 < an + Apyn — Ay, Vn >0,

where { A, } and {~y, } are real numbers such that

(i) {An} C[0,1] and Y5y Ay = o0; or, equivalently,

];[ (1—An) .—nh_I)I;oH 1-XA) =0

(i) limsup,, ., vn < 00r g |Anyn| < 0.

Then, limy, 0o a, = 0.

Lemma 4 ([24]). We suppose T is a nonexpansive mapping defined on a convex nonempty subset C of a Hilbert
space H. Let A be a number in (0, 1]. We suppose F is a self k-Lipschitzian and y-strongly monotone mapping
on entire space H. Define the mapping T* : C — H through

Thx := Tx — AuF(Tx), Vx € C.
Then, T is a contraction ifo<pu< 2—'27; that is,
K
IT'x — Ty < 1= A1)llx—y|, VxyeC,

where T =1 — /1 — u(2y — ux?) € (0,1].
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Lemma 5. Let the mapping A : C — H be n-inverse-strongly monotone. Then, for a given A > 0,
lx = yl? + A(A = 20) | Ax — Ay||* > [|(1 = AA)x — (I = AA)y]]>

In particular, if 0 < A < 2a, then I — A A is nonexpansive.

Proof.
[(I=AA)y — (I - AA)x|?
= |A(Ay — Ax)[|> = 2(A(Ay — Ax),y — x) + |ly — x|?
< A2 Ay — Ax|? = 2Aa|| Ay — Ax|* + [ly — x[|?
= AA —2a) || Ax — Ay* + [ly — x[|*.
O

Utilizing Lemma 5, we immediately obtain the following lemma.

Lemma 6. We suppose the nonself mappings B1, By is a-inverse-strongly monotone and B-inverse-strongly
monotone defined on convex nonempty closed subset C of entire space H, respectively. Let the self mapping
G be defined as G := Pc(I — u1B1)Pc(I — ppBp). If 0 < w3 < 2aand 0 < pp < 2B, then G : C — C
is nonexpansive.

Lemma 7 ([25]). We suppose that X is a real Banach space with a weakly continuous duality and C is a convex
nonempty closed set in X. Let T be a self mapping defined the set C and we also suppose it is asymptotically
nonexpansive with a empty fixed-point set. Then, T — I is demiclosed at zero, i.e., let {x,} be a sequence in
set C converging weakly to some x, where x in C and the sequence {(I — T)x, } converges strongly to 0, then
(T —I)x = 0, where I is the identity mapping of X.

Lemma 8 ([26]). We suppose C is a convex nonempty closed set in a Hilbert space H and A is a monotone and
hemicontinuous nonself mapping defined on convex nonempty closed set C to H. Then, we have

(i) VI(C,A)={x* e C:{Ay,y—x*) >0, Vy e C};
(i) VI(C, A) = Fix(Pc(I — AA)) forall A > 0; and
(iii) VI(C, A) is singlton, if A is Lipschitz continuous strongly monotone.

3. Main Results

We suppose C is a convex nonempty closed set. Let the mappings A1, B; be nonself monotone
mappings for i = 1,2 from C to H. We also let T be a self asymptotically nonexpansive mapping.
Suppose {S,}5 is a countable family of self mapping. We also assume it is f-uniformly Lipschitzian
pseudocontractive on set C. Consider the variational inequality for monotone mapping A; over the
common solution set () of the GSVI (4) and the CFPP of {S, };>,and T:

Find ¥ € VI(Q), A1)
={xeQ:(A1x,y—x) > 0¥y € Q},

where Q) := N},_, Fix(S,) N GSVI(C, By, By) NFix(T) # @.

This section introduces the following monotone variational inequality with the variational
inequality constraint over the common solution set of the GSVI (4) and the CFPP of {S,}"> ,and T,
which is called the triple hierarchical constrained variational inequality (THCVI):

Problem 1. Assume that

(C1) T:C — Cisan asymptotically nonexpansive mapping with a sequence {6y, }.
(C2) {Su}> is a countable family of {-uniformly Lipschitzian pseudocontractive self-mappings on C.
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(C3) By : C — H is an a-inverse-strongly monotone operator and By : C — H is a B-inverse-strongly

monotone operator.
(C4) GSVI(C, B, Bz) = FIX(G) where G := Pc(l - ]41Bl)Pc(I — ]lsz)fO?’ U1, p2 > 0.
(C5) O := N5y Fix(5,) NGSVI(C, By, By) NFix(T) # @.
(C6) Yqsup,cp |[Snx — Sy_1x|| < oo for any bounded subset D of C.
(C7) S :C — Cis the mapping defined by Sx = lim,_eo Syx Vx € C, such that

Fix(S) = ﬁ Fix(Sy).
n=0

(C8) Ajq : C — H is an (-inverse-strongly monotone operator and Ay : C — H is a x-Lipschitzian and

n-strongly monotone operator.
(C9) f:C — Cisa contraction mapping with coefficient 6 € [0,1).
(C10) VI(Q), Aq) # @.

Then, the objective is to

find x* € VI(VI(Q, Al)/ Az)
= {x* € VI(Q), A1) : (Apx*,v —x*) > 0Vv € VI(Q), A1) }.

Since the original problem is a variational inequality problem, we therefore call it a triple hierarchical
constrained variational inequality (THCVI). We introduce the following hybrid Mann viscosity implicit iteration
method to find the solution of such a problem.

We show the main result of this paper, that is, the strong convergence analysis for Algorithm 1.

Algorithm 1: Hybrid Mann viscosity-like implicit iterative algorithm.
Step 0. Take {an }37 o, {Bn} 7o, {n}iio {00} 50, {on} 5o C (0,0), and p > 0; arbitrarily
choose xy € C; and letnn := 0.
Step 1. Given x,, € C, compute x,, 1 € C as

Uy = YnXy + (1 - 'Yn)sn”n/

Uy = Pe(un — paBaun),

zy = Pc(vy — u1B1oy), (10)
Yn = 0nXpn + (1 — 03)Pc(I — 6,A1)zn,

Xn1 = Brf(Yn) + (1= Bn) Pc(I — anppA2) T"yn.

Update n := n + 1 and go to Step 1.

Theorem 1. Assume that y; € (0,2a), up € (0,28), and 6 < 7:=1— /1 — u(2y — ux?) € (0,1] for
ne (0, i—Z) Suppose that {an},{Bn}, {1n}, {on} C (0,1] and {6,} C (0,2(] are the sequences such that

() limp ety =0, Yy gan =00andy ;o |ay11 — ay| < oo

(i) limpeo =0, limyseo B2 = 0, Y520 |Bust — Bul < oo and T8 |0541 — 8u| < co.
(iii) 0 < liminf, e 0y < limsup, , 0y < land Y37 o041 — 03| < 0.

(iv) 0 <liminfy seo vy < limsup, o vn < land Y77 o |[vng1 — vl < .

() 6p <apand Y5 o | T yn — TMyy|| < oo.

Then, the sequence {x, }5_, generated by Algorithm 1 satisfies the following properties:

(a) {xn}o is bounded.
(b) limy oo ||Xn — Yul| =0, limy o |[|xn — Gxp|| =0, limy—seo ||xn — Txy|| = 0 and
limn%oo ||x1/1 - SXnH - 0.
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(c) {xn}s converges to the unique solution of Problem 1 if w —0asn — oo,

Proof. First, let us show that Py 1)(I — 1Ay) is a contractive mapping. Indeed, by Lemma 4,
we have
A =Dlx =yl = (I = pA)x = (I - pA2)yl
> [|Pyya,a,) (I — pA2)x — Pyya,a,) (I — pA2)yl|,
for any x,y € C, which implies that Pyj( 4,)(I — p#A2) is a contraction mapping. Banach’s Contraction
Mapping Principle tell us that Pyyq 4, (I — uAy) has a fixed point and further it is unique. For
example, x* € C, thatis, x* = Pyyq a,)(I — pA2)x™. Hence, by Lemma 8, we get

{x"} = Fix(Pyy(q,a,) (I — pAz2)) = VI(VI(Q, A1), A2).
That is, Problem 1 has a unique solution. Taking into account that

0< h,ﬂi;‘fW <limsupvy, <1,

n—oo

we usually suppose {7, } C [a,b] C (0,1) for some a,b € (0,1). Note that the mapping G : C — Cis
defined as G := Pc(I — p1B1)Pc(I — upB;), where py € (0,2a) and pp € (0,28). Thus, by Lemma 6,
we know that G is nonexpansive. It is easy to see that there exists an element u,, € C such that

Un = YuXn + (1 = Yn)Snitn. (11)
In fact, it is a unique element. Thus, we can consider the mapping
Fux = yuxn + (1 —vn)Snx, Vx €C.
Since S, : C — C is a continuous pseudocontraction mapping, we deduce thatall x,y € C,
(Fax — Fay,x —y) = (1= ) (Sux — Sy, x —y) < (1— ) x — ||~

In addition, from {v,} C [a,b] C (0,1) weget0 < 1—1, < 1foralln > 0. Thus, F, is a
continuous and strong pseudocontraction mapping of C into itself. By Proposition 2, we know that
there exists a unique element u, € C, for each n > 0, satisfying (11). Thus, it can be readily seen that
the hybrid Mann viscosity implicit iterative scheme (10) can be rewritten as

Uy = YnXn + (1 — ')/n)snun/

zn = Guy,

Yn = OnXn + (1 —04)Pc(I — 0, A1)z,

Xnp1 = (1= Bu) Pl — anppA2) T"yn + Buf (yn), Vn 2 0.

(12)

Next, we divide the rest of the proof into several steps.

Step 1. We claim that {x, }, {vn}, {zn}, {tn}, {on}, {T"yn} and {A2(T"y,)} are bounded. Indeed,
take an element p € Q) = N, Fix(S,) N GSVI(C, By, By) N Fix(T) arbitrarily. Then, we have S,p = p,
Gp =pand Tp = p. Since each S;, : C — C is a pseudocontraction mapping, it follows that

lun = pII> = yul(xn — poutn — p) + (L= 1) (Snttn — p, tin — p)
< Yullxn = pllllwn — pll + (1= vu) lun — plI%,

which hence yields
[un = pl| < llxn —pl, VYn=0. (13)
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Then, we get
1zn = pll = [Gun = pll < llun = pll < llxn —pll. (14)

Since 1 > limsup, . 0, > liminf, ;0 > 0, we reach {¢,} C [c,d] for some ¢,d € (0,1). In

addition, since lim; s G—Z =0and lim,_ e ﬁ—; = 0, we may assume, without loss of generality, that

an(T—9) (< an(t —9))

O > <

IN

and B, < way, for all n > 0. Taking into account the (-inverse-strong monotonicity of A; with
{64} € (0,2Z], we deduce from Lemma 5 and (14) that

lyn =PIl < (1 =0n)||Pc(I = 6nA1)zn — pll + oullp — xul|
< (1= 0w)|[(I =0nA1)zn — (I = 0nA1)p — SnA1pll + oullp — xal|
< (L=0u)(llzn = pll + ull Arpll) + oullp — xall (15)
< (L=an)llxn = pll + dullArpll + oullp — xull
= [lxu = pll + dullA1p]l.

Utilizing Lemma 4 and (15), we obtain from (12) that

[%s1 — pll
< Bull f () = pll + (1 = Bu) [ Pc(I — anpA2) Ty — pl|
< an([|f(yn) = F) | + o= FP) ) + (T = anptA2) Ty — (I — i) p — anpAap|
< an(8llp = yull + P = F(P)I) + (1 = )| T s — pll + aulluAszp)|
< an(8llp = yull + llp = FP)I) + (1 — @)1+ 64) lyn — pll + aullpAzpl]
< an(0llp =yl + 1P — F(PID) + (1= aT+6) |yn — Pl + nllpAzp
= [1— an(T—6) +8u]lyn — pll +au(lf(p) — pll + luA2p])
< [1—an(t— 8) + G2 (Jlxn — pll + Sull Arpll) + an (£ (p) — pll + [lnA2pl])
< [1— 2 1x, — p|| + 6al| Avpl| + an (£ (p) — pll + lnA2p]))
< [1 - 20, — p||+an<||A1p||+|wAzp|| +1£(p) —pl)
=[1- 'Xn(; 9) 1 — ||_,_0énT %) (HAlPH+HHI:2_PH+H)‘(P)—PH)
< max{||x, _PH |\A1P|\+\|P’A2P|\+\|f() PH)}_

By induction, we have

I HA1P||+||PT{5 all | 20T L DR

%01 = Pl < max{|[p — xo

It immediately follows that {x, } is bounded, and so are the sequences {y,}, {zn}, {ttn}, {T"yn}
and {A2(T"y,)} (due to (13)—(15) and the Lipschitz continuity of T and Aj). Taking into account that
{Su} is f-uniformly Lipschitzian on C, we know that

[Snttn|| < \ISuten = pll + lIpll < €llun —pll + pll,

which implies that {S,u,} is bounded. In addition, from Lemma 1 and p € O C GSVI(C, By, B),
it also follows that (p, ) is a solution of GSVI (4) where g = Pc(I — u2B;)p. Note that
vy = Pc(I — upBy)uy for all n > 0. Then, by Lemma 5, we obtain

[onll - < llon —qll + |4l
= ||Pc(I — paBa)un — Pc(I — p2Ba)p | + |4
< (I = p2B2)un — (I — p2B2)pll + llq]|
< lqll + [lp — unl-
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This shows that {v,, } is bounded.

Step 2. We claim that ||x,,+1 — xx|| — 0 and ||y,4+1 —yul| = 0as n — oco. Indeed, we set
pn = Pc(I — 6,A1)zn and gy, = Pc(I — aypA2) T"yy. Then, from (12), we have

Uy = YnXn + (1 - ’Yn)snun/
Yn = OnXp + (1 - Un)Pn/
Xn1 = Buf(Yn) + (1 = Bu)qn

Simple calculations show that

Yn —Yn—1 = 0n(xn — x4—1) + (00 — Op—1)(Xp—1 — Pn71) +(1- O'n)(pn — Pn-1), (16)
Xpt1 = Xn = Bu(f(Yn) — f(Yn-1)) + (Bn — Bn—1) (f(Yn-1) —gu-1) + (1 = Bu) (Gn — Gn—1)-

It follows that

{ Uy —Up—1 = 'Yn(x‘rl - xnfl) + (rYVl - r)/nfl)(xnfl - Snflunfl) + (1 - r)/n)(snun - Snflunfl)/

|t —
= Tn <xn — Xn—1,Un — un—1> + (1 - ’Yn)<5n”n —Sp_qUpy_1, Uy — un—1>
=+ (')/n - 7n71)<xn71 — Sy 1lp_1, Uy — un71>
= Yn(¥n — Xp—1,Un — Up_1) + (1= 70) [(Snthn — Sp—1tn, thn — 1ty 1)
+(Sp—1tn — Sp—1ty—1,un — Ug_1)] + (Yn — Yn-1){(Xn-1 — Su—1Un—1, Un — Up_1)
< Yullxn—1 = xnllllun — wpall + (1= 1) [ Snttn — Sp—1utn |||t — 11|
+ ||un—1 - un”z] + "Yn - ’Yn—1|Hxnfl — Sp_q1tp—1| Hun - ”nfl”r

which hence yields

un —tu1ll < yullxn—1 — xull + (1 =) [[|Snttn — Su—1ttn|
+lJup—1 = unll] + [vn — vn-1lllx¥n-1 — Sp—1tn—1|l-

This immediately leads to

Nty — up_1ll < llxp_1 — x| + = 00 S it — Su—tttal| + [V — V- |w

|
< 1t = a4 St = Syt + 1y — 7| =St

(17)

Putting D = {uy, : n > 0}, we know that D is a bounded subset of C. Then, by the assumption, we

get Yo7 1 sup,cp ||Snx — Sy_1x|| < co. Noticing ||Syun — Sp_qun|| < sup,cp |[Snx — Sy—1x| Vn > 1,
we have .

Z |Snttn — Sp—1unl| < co. (18)

In addition, from p, = Pc(I — 6, A1)zy and {5, } C (0,2{], we observe that

[pn = puall <M1= 6nA1)zn — (I = 6p—1A1)zn-1|
= (I = 6nA1)zn — (I = 0nA1)Zn—1 — (6n — On—1)A1zu 1|
< (I = dnA1)zn — (I = 0nA1)zn-1ll + [0n — Su_1][| A1z—1| (19)
< llzn = zn—1ll + [6n = Su—1|l| A1z 1]
< ”un - un—l“ + MO‘én - 5n—1‘/
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where sup, - | A1z, || < My for some My > 0. Thus, from (16), (17) and (19), we get

lyn — yn-ll

< Onl[xn — xp-a || + lon — ou_alllxn—1 = pu—all + (L = on) [[pn — pu-ll

< onllxn — xu-1ll +on — onalllxn—1 — prn_1ll + (1 = o) ([lun — up—1ll + Mo|dn — 0u-1])
< oullxn = xp1 |l + low — onlllxn—1 — pa—1ll + (1T =) ([[xn — x4

LS uttn — S vitall + 0 — o |2t g, — 5, ) 20
< lxn = 21l + low = oual 1 Xn—1 = Paall + 3 1ISuttn — Syt
+ "Yn - 7n71|w +M0|5n - 57171‘
< lxw = xpall + M(low — 01| + [|Suttn — Su—1ttn |l + [vn — Yu—1| + 100 — 6u-1l),
where sup,,~o{[|xn — pull + 1 + Hx”_aw + My} < M for some M > 0.
Furthermore, from gn = Pc(I — aypAp) T"yy, and Lemma 4, we note that
19n = qn—-
< (I = anpA2) Ty — (I =ty pA2) T 1y |
= (I — anpA2)T"yn — (I — “nVAZ)Tn71Vn71 — (an — "‘nfl)VAZTnilynflu 1)
< (1= anT) [ T"n = Tt + T"Yn1 = T Myl + on — aa [ ATy |
< (1= an)[(1+0) [ — Yot |+ [Tt = Ty [+ et — a1 || H ATy
< (U= anT+0)lyn — yu 1l + 1T"Yu1 = T" Myl + lan — a1 [[HALT" 1y 4.

Hence, from (16), (20) and (21), we get

2141 — xnl|

< Bull f(yn) = f Y-l + 1Bn = Buaalll f (Yn—1) = qn—all + (1 = Bu) lgn — g1l

< @ndllyn = yn-all + |Bn = Ba1llf (¥n—-1) — gn-all + (L = an T+ 00)[lyn — yu-ll
+ 1 T"yn-1 — Tnil]/n 1+ lon — “n—1|||ﬂA2Tn71]/n—l||

n d)
< [1— an(t = 8) + 5y — vt | + 1B — Bt lIlf Y1) — Gl

+ | T"Yp1 — T lyn 1+ ey — 1|||F‘A2Tn71]/n—l|| (22)
< (1= 202 [y — 2y || + M(Jow — G| + [|Suttn — Syttt

+ 170 = Yn-1l + 160 = 8u—1D)] + Bn — Bu—1lllf (Yn—1) — qu-1ll
+||T”yn 1= T Yy ||+ |an — an_q | ATy, ||

n 0)
< (1 20y oty — x|+ My (ot — 1| + 1B — Bl + [1n — Tt
+ |(5n n71| + |‘7n Un71| + ||Snun - nflunH) + ||Tn]/n71 - Tnil]/nflnr

where sup,, 1 {M + || f (yn-1) = qu—1ll + [#A2T" 'y, 1]} < My for some M; > 0. From (18) and

Conditions (i)—(v), we know that ) ;> @ = oo and

Y AMi(Jan — an—1| + |Br — Bua| + [7n — Yu—1l + |65 — 6u1]
+low = on1| + [ISuttn = Syt |l) + I T"yn—1 — T" Tyn1][} < oo.
Consequently, applying Lemma 3 to (22), we obtain that
Jim {|x 41 = xul[ = 0. (23)
In terms of (18), (23) and Conditions (ii)—(iv), we deduce from (20) that

Jim [[yns1 = yall = 0.
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Step 3. We claim that ||x, — Gx,|| — 0 as n — co. Indeed, noticing g, = Pc(I — a,ptAz)T"y, for
all n > 0, we obtain from (7) that for each p € (),

(I = anpA2)T"yn — Pc(I — anppA2) T"Yn, p — qn) <0,

which hence leads to

lgn = plI* = (Pc(I — anpA2) T"yy — (I = anptA2) T"Yn, G — p)
+ (I = anpA2)T"Yn — P, Gn — p)
< (I = anpA2)T"yn — p,qn — p)
= ((I — anpA2)T"yn — (I — anpA2)p,qn — p) — an(pA2p, qn — p)
< 3= anT)?T"yn — plI* + 31190 — pII* = an(pA2p, gu — p).

It follows from (1) that
lgn = plI? < (1= an?)(1+00)?lyn = plI* = 20 {pA2p, 4u = p) 24)
< (1= anT)lyn — plI* +64(2+0n) lyn — pII* — 200 {pA2p, gu — p).

From (15) and (24), we get

%011 = pl?

< Bull f(yn) = F(IZ 4 (1= Bu)llgn — pII* +2Bu(f(p) — P, Xns1 — )

< wnbllyn — plI* + (1 = anT)lyn — plI* +62(2+ 62) llyn — p|I?
— 20 (pA2p, Gn — p) + 2Bn(f(p) — P, Xnt1 = P)

= [1—an(t = 0)]llyn — plI* + 612+ 64) lyn — pII* — 20 (p A2p, gu — p)
+ 280 (f(P) — P, Xn1 — )

< [1 = an(t = 0)][oullxn = pll + (1 = ) (20 — pll + 6] Arp])]? 25)
+ 00 (2+ 60) lyn — plI* — 200 (A2p, G — p) +2Bu{f(P) — P, X1 — P)

< [1—an(t = O)oullxn — plI* + (1 =) (lzn — pll + 6ull A1p])?]
+0n(2+0n)llyn — pII* — 200 (pAop, qn — p) + 2Bn{f(p) = P, Xns1 — p)

<1 —an(t=)onllxn — plI* + (1 = on) |20 — plI* + 0ull A1pl| 2ll20 — pll + bull Arpl])]
+ 01 (2+0n) [lyn — PHZ =20, (pA2p, qn — p) +2Ba(f(p) — P, Xnt1 — p)

< [1—an(t = 0)oullxn — plI* + (1 = ow) 20 — plIP] + anl| Arpl| 2ll20 — pll + anl Arp])
+ 6012+ 00)lyn — pII* + 20 ([[pA2p | lgn — pll + [1f (p) = pllllx0 41 = pID)-

We now note that ¢ = Pc(p — u2Bap), vn = Pc(un — paBouy) and z, = Pc(vn — u1B1og).
Then z,;, = Guy,. By Lemma 5, we have

lon —ql> = |Pc(un — p2Baun) — Pc(p — u2Bap) |12
< Jun — p — p2(Battn — Bop) ||? (26)
< un — plI> = 42(2B — 42) || Botn — Bop||?

and
Iz = plI* = [IPc(on — p1B10a) — Pe(q — p1Bag) |2
< |lon — g — p1(Biog — B1g) |2 (27)
< llon — qlI* = 1 (20 — p1) || Bron — Bag|*.
Substituting (26) for (27), we obtain from (13) that

lzn — plI> < llun — plI* = u2(2B — p2) |Bautn — Bap||* — 1 (2 — 1) ||Byvy — B g|?

28
< (1 — xall? — #2(2B — 12) | Battn — Bapll? — pr (2 — 1) | Brow — Bugl2. &
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Combining (25) and (28), we get

2041 = plI?
<[ —an(r=8)lloullp — xal® + (1= on)lp — zull’] + anl| Arpl| 2]l p — zull + aul| A1pl])

+00(2+ 60n) lyn — plI> + 20 ([l A2p | 132 — pll + [1f () = Pl X012 = pII)
<[1—an(t =) {oullp — xull® + (1 = o) [llp — xull* = 42(2B — p2) || Battn — Bap||?
— w1 (20 — p1) | B1ow — B1q|*I} + anl| A1pl| (2] 20 — p| + anl| A1pl])
+ 600 (24 0n) lyn — plI> + 20n ([ A2plllp — qull + lp = fF(P) X011 — pII)
<1 = an(t = 8)llxn — plI* = [1 — an(t = 6)](1 = ) [12(2B — 2) || Battn — Bapl|?
+ 11 (20 — 1) | Brog — Bagl|?] + anl| Arpl| 21|20 — pl + au [ Avpl)
+00(2+ 600) lyn — pI* + 20 ([ A2p | 130 — Pl + 11£ () = Pl %01 — pII)
< lxn = plI? = [1 = an(t = 8)](1 — ) [#2(2B — p2) | Bawtn — Bap||?
+ 120 — 1) | Biow — Biql?] + anl| Arpl| 2l 20 — pll + an [ Arpl)
+ 00 (24 02) lyn — pII> + 20n (| A2p lgn — Pl + £ (p) = pllllxnsa — pIl),

which immediately yields

[1— an(t = 8)](1 — ) [42(2B — p2) | Battn — Bap||* + p1(2a — p1) || Bion — Bag|?]
< lxn = plI> = lxns1 = plI> + anllArpll (21120 — pll + aul Arpl))

+ 6012+ 00)lyn — plI* + 20 ([[pA2p || lgn — pll + 1f (p) = pllllxns1 = pII)
< (Ip = xull +1Ip = X2 D lxn — Xns1ll + anl| Ar1pl|2l1zn — pll + anl|Arp])

+ 600 (2+60) lyn — plI> + 20 ([[nA2p | lgn — pll + 11£ () = pllx0s1 =PI

Since liminf, 00 (1 — 03) > 0 (due to Condition (iii)), #1 € (0,2a), 2 € (0,28), lim, 6, = 0 and
limy, e &, = 0, we obtain from (23) that
;}glgo ||Bz1/ln - sz” =0 and nll_I)IOIO ||B]Un — quH =0. (29)

Additionally, from (6) and (9), we have

low —qll* = |Pc(un — paBautn) — Pe(p — p2Bap) ||
< (up — paBotty — (p — p2Bap), vn — q)
= (Up — p,vn —q) + u2(Bop — Botty, vy — q)
< 3w = pl? + llow — ql1* = lun — v — (p — q)1?] + u2l|B2p — Bouu | [|on — qll,
which implies that

lp = oull® < llp = unll® = lltn = v = (p = @) 1> + 2021 B2p — Boutull |00 — q]I. (30)

In the same way, we derive

lp —zal* = ||Pc(vn — p1B1ou) — Pc(q — p1Big) |12
< (n — u1B1on — (9 — p1B14), 20 — p)
= (on — 4,20 — p) + 11(B19 — B10n, 20 — p)
< 3llon — qll?> + llzn — plI* = llon — 2o + (p — )12 + 4111B1g — Broallllzn — pll,
which implies that

lzn = plI* < llow = qll* = llow — zu + (p = )II* + 2p11||B1q — Bron| 1z — pl. (31)
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Substituting (3) for (31), we deduce from (13) that
Ip—zall> <Ilp = tall® = llun =0 — (p = @) 1> = llon — 20 + (p — 9)|I?
+ 2p2| B2p — Baun|||[on — gl + 2p1|[B1g — Broa|ll|zn — p|
2 2 2 (32)
<lp—=xull® = llun =00 = (p =" = llon =20+ (p = 9)|
+2p1|B1g = Bronllllzn — pll + 2p2| B2p — Baun||[[on — 4.

Combining (25) and (32), we have

2111 _PH2

< 1= an(t = 8)][oullxn — plI* + (1 —u)llzn — plI] + aul| Arp[|(2l|zn — pll + aul| Arpl])
+ 6012+ 00)lyn — pII* + 20 ([[pA2p |l lgn — pll + 1f (p) = pllllxns1 = pII)

< [1—an(t = 8)H{oullxn — plI* + (1 — o) [lxn — plI*> — ttn — 00 — (p — 9)|I?
—llon —zn + (p = 9) 1> +2p11|B1g — B1vu|||zs — pll + 2p2 Bap — Bautu | [0 — q1I]}
+an || Arpll2llzn — pll + anl|Arpl) + 04(2 + 62 [lyn — pl?
+ 20 ([[nA2p | [lgn — pIl + 1 £ (P) = Pl X1 — Pl

<1 —an(t = 0)llxn — pl* = [1 = an(t = 8)](1 = o) [lun — 00 — (p — 9)|I?
+ llon —zn + (p — ) 11*] + 241 B1qg — Bronl|l|zn — pll + 2p2|[Bap — Bautn|l[|0n — 4|
+an| Arpll 2llzn — pll + anllArpll) + 61(2 + 64)[lyn — plI?
+ 20, ([[nA2pllllgn — Pl + £ () — Pllllxn41 — pII)

< lxn = plI* = [1 = an(t = 8)](1 = o) [llun — 01 — (p = DI + lon — 20 + (p — 9) ]
+2p1(|B1q — Bronl|l|zn — pll + 212 B2p — Bautu||[|on — gl + anl| A1pl[ (2[|zn — pll
+ | Arpl) + 04(2+ 00)[lyn — pII* + 20 (I A2pl 190 — pll + 1 f () = PlllIxns1 — P,

which hence yields

(1= an(t=8)](1 = ) [llun —vn — (p = @) 1* + llon — 20 + (p — 9)|I?]
< lxn = plI* = 1xnt1 = plI* + 2p111B1g — Byoa || |20 — pl|

+ 2p2|[Bap — Boun|[[|on — g + anl[A1p[|(2[|zn — Pl + anllA1pl)

+ 600 (2 4 02) lyn — plI* + 20 ([ A2pl 190 — Pl + £ () = pll |01 = pI)
< (llxn = pll + X1 = pIDIIx0 — Xnsa | + 201 |B1g — Browll|[zn — p|

+ 242|[Bap — Boun||[|on — gl + anl[A1p[|(2[|zn — Pl + anl|A1pl)

+ 601 (2 4 02) lyn — plI* + 20n (|1 A2p | lgn — pIl + £ () = Pl |01 = pID)-

Since liminf, (1 — 0,) > 0 (due to Condition (iii)), limy—e 0y = 0 and lim,eoa, = 0,
we conclude from (23) and (29) that

Jim [luy o4~ (p—4)[ =0 and lim [lon 20 + (p— g)]| = 0. (33)
It follows that
[un —znl < lun —vn —(p =@l +llon —za+ (p—q)| =0 (1 — o).

That is,
lim ||u, — Guy|| = lim [ju, —z,|| = 0. (34)
n—00 n—r00

In addition, according to (12), we have

Ip—unll®> = vu(p — X0, p = tin) + (1 — Yn)(Suttn — p, ttn — p)
< Yulxn = poun — p) + (L= ya) Jun — plI?,
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which, together with (9), yields

lp— “nHz < <1xn —pn —p)
= 30 = Pl + lun — pII* = [l — wal|].

This immediately implies that
lp = unll® < lIp = xa® = [fan — 2%,
which together with (14) and (26), yields

Ip — xppal?

<1 —an(t = 8)][oullp = xull* + (1 = ou) [P — tn||*] + aul| A1p[| 2] p — za || + anl| A1pl])
+ 6012+ 600)lyn — pII* + 20 ([[pA2p | lgn — pll + If (p) = pllllxns1 = pII)

< [1—an(t = O){oullxn — plI* + (1 = o) [[lxn = plI* = llxn — uall]}
+ anl|A1pll2llzn — pll + anl|A1pl) + 64(2 + 64) lyn — plI?
+ 200 (| A2p | lgn — Pl + [ £ (P) = Pllx0+1 — PI)

<1 —an(t=0)]llxn = pl* = [1 = & (T = 8)](1 = ) [[xn — uu]?
+ anl|Arpl|2llza = pll + anllArpll) + 62(2 4 62)[lyn — plI?
+ 20 (| A2p | lgn — Pl + [1£(P) = Plllx0+1 = PI)

<lxn = plI* = [ = & (T = )] (1 = o) xn — unl® + anl| A1p[| (2]l 20 — pl| + anll Arpl])
+601(2 4 00) lyn — plI* + 20n ([ A2p | lgn — Pl + £ () = Pl |01 =PI

Hence, we have

[1—an(t = 8)](1 —on)||xn — un|?
<l = Pl = lxnsr = plI? + nll Arpll 2llzn = pll + ol A1p])
+0n(2+ 0n)lyn — pII* + 20n (I 1 A2pllll9n = Il + 1 (P) = PllIxns1 = pI)
< (1w = pll + 21 = pIDI%0 = 2nga[| + @nl[ Arp[|(2]]20 = pll + anl| Arp])
+00(2+0n)[lyn — pII* + 20 (| A2pllllgn — Il + 1 (p) = Plllxns1 = pID-

Since liminf, (1 — 05;) > 0 (due to Condition (iii)), lim;—e 0y = 0 and lim,ea, = O,
we obtain from (23) that
r}l_r& |2y — un|| = 0. (35)

In addition, observe that
l[xn = znll < [lxn — nl + [[un — Gual|,

lxn — Gxnll < [lxn — znl| + [|Gun — Gxul| < [|xn — zull + [[un — xal|,

and
[0 = ynll < (X —0on)llxn — (I = 0nA1)zull < llxn — zn| + anl|A1zn]-

Then, from (34) and (35), it follows that
lim ||x, —zu|| =0, lm |x, —Guxy||=0 and lim ||x, —y,| =0. (36)
n—oo n—oo n—oo

Step 4. We claim that ||x, — Syxu|| = 0, ||xy — gu|| = 0 and ||x, — Tx,|| — 0as n — oo. Indeed,
combining (11) and (25), we obtain that

b

ISuthn — tta]| = —12
n

1—
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That is,
lim ||S,uy — uy| = 0. (37)
n—00

Since {5, }5_ is (-uniformly Lipschitzian on C, we deduce from (35) and (37) that

[Snxn — xull < (1Snxn — Snttnl| + [|Snttn — tnl| + [[un — x|
§guxn_”nn"‘Hsnun_”nH"‘H“n_an
(4 D) ||xn — un|| + ||Snttn — un|| = 0 (1 — o).

That is,
lim ||x, — Syx,|| = 0. (38)
n—oo

In addition, we observe that

[0 = T"yull < llxns1 — Xl + 12041 — T"ya|
< lxen = xupall + Bull f (Yn) — T"yull + (1 = Bu) [(T — anppA2) T"yn — Ty |
< |lxn — xpgall + an (L f (yn) — Tyl + | A2(T"yn) )

Hence, we get

lyn = T"ynll - < llyn — xall + lxn — T"ya|
< lyn — xall + l[xn — xpg1 | + @n (L f (yn) — Tyl + |pA2(T"yn)|))-

Consequently, from (23), (36) and limy, . &, = 0, we obtain that
nlglc}o [xn = T"yn|[ =0 and nlgrolo lyn — T"ynl| = 0. (39)
Thus, it follows that

0 = qnll < llxn — (I — anppA2) T"yn|
< lxn = Tyl + an||pA2(T"yn) || — 0 (n — o).

That is,
lim [[xn — ga | = 0. (40)

We also note that

1o — Tyl < llyn — Tyl + 1Ty — T" Lyl + 1 Ty — Tyl
< Nyn = Tl + 1Ty — Tyl + (14 60) [ Ty — vl
= Ty — Tyl + 2+ 00) | T"yn — Y-

By Condition (v) and (39), we get
nh_{r(}o lyn — Tyul| = 0.
In addition, noticing that

0 = Txnll < [|xn = yull + lyn — Tyall + | Tyn — Txu||
< lyn — Tyull + (2 + 61) [|xn — yall,

we deduce from (36) that
lgn |y — Txy|| = 0. (41)
n—o0

Step 5. We claim that ||x, — Sx,|| — 0as n — co where S := (2] — S)~!. Indeed, first, let us show
that S : C — C is pseudocontractive and ¢-Lipschitzian such that lim,, e ||Sx;, — x| = 0
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where Sx = lim,_0 Syx Vx € C. Observe that for all x,y € C, limy—e ||Spx — Sx|| = 0 and
im0 || Sny — Sy|| = 0. Since each S, is pseudocontractive, we get

(Sx— Sy, x —y) = lim (Syx — Spy, x —y) < [lx — y|%

This means that S is pseudocontractive. Noting that {S, }°°, is {-uniformly Lipschitzian on C,
we have
[5x = Syl = lim [|Sux = Suyl| < Lllx —yll, Vx,y €C.

This means that S is ¢-Lipschitzian. Taking into account the boundedness of {x, } and putting
D = conv{x, : n > 0} (the closure of convex hull of the set {x,, : n > 0}), by Assumption (C6) we
have } " i sup,..p ||Snx — S,—1x|| < co. Hence, by Proposition 1, we get

lim sup ||S,x — Sx|| =0,
n—oo xeD

which immediately yields
lim |, — S| = 0. (42)

Thus, combining (38) with (42), we have

|2 — Sxn || < ||xn — Suxnll + [|Snxn — Sxu|| = 0 (n — o).

That is,
nlgic}o ||xn — Sxp|| = 0. (43)
Now, let us show that. if we define S := (2I — S)_l, then S : C — Cis nonexpansive,

Fix(S) = Fix(S) = Ny Fix(Sx) and limy, s ||x4 — Sx4|| = 0. Indeed, put S := (21 — S)~!, where
I is the identity mapping of H. Then, it is known that S is nonexpansive and the fixed point set

Fix(S) = Fix(S) = N5~ Fix(5,). From (43), it follows that

J— 7_1 J—
Iy — Sxu|| = |ISS xn — Sxu||
<18y — x|
/(21 — S)xp — x| = ||xn — Sxu|| = 0 (n — o).

That is,
lim ||x,;, — Sx,| = 0. (44)
n—oo

Step 6. We claim that

limsup(Ax*, x* —gq,) <0 and limsup(Aix*, x* —z,) <0, (45)

n—o0 n—o0

where {x*} = VI(VI(Q), A1), Az). Indeed, we fix sequence {g,, } of {g,} such that

limsup(Axx™, x* — qn) = lIim (Arx™, x* — qy,).
n—o0 1—00

Since {gq } is a bounded sequence in C, we may assume, without loss of generality, that g,,, —
% € C. Since limy, ye0 || X4 — gn|| = 0 (due to (40)), it follows from q,,, — % that x,,, — X.
Note that G and S are nonexpansive and that T is asymptotically nonexpansive. Since (I —

G)xy = 0, (I—=T)x, — 0and (I —S)x, — 0 (due to (36), (41) and (44)), by Lemma 7 we have

that ¥ € Fix(G) = GSVI(C, By, B,), & € Fix(T) and % € Fix(S) = N, Fix(S,). Then, £ € Q =



Mathematics 2019, 7, 142 17 of 24

Ni—o Fix(Sx) N GSVI(C, By, By) N Fix(T). We claim that ¥ € VI(Q), A1). In fact, let y € Q be fixed
arbitrarily. Then, it follows from (12), (14) and the {-inverse-strong monotonicity of A; that

[y _y”Z < oullxn _3/”2 + (1 = 0u)||Pc(zn — 0nA1zn) — PCy”2
< Onllxn =yl + (1 = o) || (20 — y) — SnA1zal?
= onllxn =yl + (1= 0w)[llza — ylI> + 204 (A1zn, ¥ — 2n) + 05| Arzu %]
< lxn = ylI> + (1= 0u) 200 ( A1y, y — zu) + 65| Arza 1),

which together with {0, } C [c,d], implies that for all n > 0,

0 < sty (lxn = 12— lyn — yIP) +2( A1y, y — za) + 12

|xn Yl

< (ln =yl + llyn =y 720 +2<A1]//]/_Zn>+ﬂ”Alan'

N

From (36) it is easy to see that x,;, — % leads to z,;, — X. Since lim; .o 0, = 0 and ||x, — y,|| =
0(d,) (due to the assumption), we have

0 < timinf{(llxx — yll + lyn — 1) Kol +2(A1y,y — za) + 127 | Avza 2}
= liminf2(Ayy,y — z) < lim2(A1y,y — z,) = 2(A1y,y — %).
n [o0] 1—00

It follows that
(A1y,y—x) >0, VyeQ.

Accordingly, Lemma 8 and the {-inverse-strong monotonicity of A; ensure that
(Aix,y—x) >0, Vye;
thatis, ¥ € VI(Q), A;). Consequently, from {x*} = VI(VI(Q), A1), A2), we have

limsup (Axx™, x* —q,) = hm<A2x X" —qp;) = (Ax*,x* —x) <0.

n—oo

On the other hand, we choose a subsequence {z,, } of {2, } such that

limsup(Ajx*, x* — z,) = hm (Alx X — 2z ).
n—oo
Since {z,,} is a bounded sequence in C, we may assume, without loss of generality, that z, —
% € C. From (36), it is easy to see that z,, — £ yields x;;, — £. By the same arguments as in the proof
of ¥ € (), we have £ € Q). From x* € VI((), A1), we get

limsup(A1x*, x* —z,) = klim (A1x™*, x* —zp,) = (A1x",x* — %) <0. (46)
—00

n—o0

Therefore, the inequalities in (45) hold.

Step 7. We claim that x, — x™ as n — oco. Indeed, putting p = x* in (14) and at Lines 5-6 in (25),
we obtain that ||z, — x*|| < ||x, — x*|| and

[xp1 —x*[12 <1 —an(T = 8)][lyn — x*[|> + 04(2+ 60n) llyn — x*|?

20y (A" G — ) + 2B (F(X) — X, 201 — X°). @7
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From (12) and the {-inverse-strong monotonicity of Ay, it follows that

*HZ < oullxn — X*HZ (1= 0n)||Pc(zn — 6nA1zn) — x*”Z
< 0|30 — x*[|* + (1 — ) [[(zn = x*) = nArza|?
= Oullxn — x* 12+ (1 = o) [[|zn — x*||* + 260 (Arzn, x* — 20) + 051 A1z ||?] (48)
< O |xn — |2 4 (1= ) [[|xn — X*[|* + 20, (Arx*, x* — 24) + 55 [| A1z ]
= Jn = x*[2 + (1 = 0u) [260 (A1x*, x* — 20) + 65| A1z |?].

lyn — x

Thus, in terms of (47) and (48), we get
01 — x*[|?
<1 = an(T = &)llyn — x*|12 + 0,(2 4 60n) [lyn — x*[|> + 20, (pA2x*, x* — )
+2Bn (f(x*) — x*, x40 — X¥)
<1 —an(t = 8){l[xn — x*[I7 + (1 = ) [26, (A1x™, x* — 23) + 65 [| A1z ||*]}
+ 00 (24 0n) llyn — x*[|* + 20 (pA2x*, x* — qu) + 2Bl f (x*) — x| | X011 — x* (49)
< —an(t—0)]||xn — x|+ (1 =t (T —0))(1 — 03)20, (Arx*, x* — z3) + a2 || A1z, ||?
+ 0024 0 [lyn — x* |17 + 20 (A", x* — ) + 2Bl f () — x* ||| g1 — x| ,
= [1—an(t = 8)]||xn — x*||2 + a0 (T — 6)f <1—“"<;(‘5T>><;)—”")2‘5" (Arx*,x* — z,) + Gldizl

4 9n(2400) lyn— |2 + 2 <ﬂA2x X —gn) + 4+ 2Bullf ) x|l X = X*H}

an (T—0) an (T—0)

It can be readily seen that (45) guarantees that

lim sup (1 —an(r = 9))(1 — 04)20y

Ax*,x* —z,) <0
n—oo an (T —9) (A n <

and 5
lim sup Ti(‘qux*,x* —qn) <0.

n—00 -

In fact, from limsup,,_, (A1x*, x* — z,) < 0, it follows that for any given ¢ > 0 there exists an
integer ny > 1 such that (A1x*, x* —z,) < ¢, VYn > ng. Then, from 6, < a,, we get

(1—ay(t—0))(1— U,,)2(5,,

(1—ay(7—0))(1—0y)26, % ok
an (T—0) <A1x X _Zn> = 2 an(T-0)
S -L—Tgs/ vn 2 no,
which hence yields
1-— — 1—04)2 2
lim sup (1= an(T = 9))(1 = )20 (Apx*, x* —zy) < €.

n—sco an(7—5) T—90

Letting e — 0, we get limsup,,_, (1_“”(2(‘2)_(;)_‘7”)2‘5” (Arx*, x* —z,) <0.

Since Y 7 gy = oo, limy,_seo % = 0 and lim;, e uTZ = 0 (due to Conditions (i) and (ii)), we
deduce that ) (T — 6) = co and

hmsup{ (12 ln(&T))% 9n)20n (Arx*, x* —z,) + 7“"“?,1125"”2

n—oo
0 2+9n n—X * * 2/371 x* x* Xn+ x*
—|— —( n()Hy 5) H 2 5<“I/IA23C , X7 — qn> + Hf( )n( H!) 1 ” } < 0

We can apply Lemma 3 to the relation (49) and conclude that x,, — x* as n — oo. This completes
the proof. 0O

The following results can be obtained by Theorem 1 easily, and hence we omit the details.



Mathematics 2019, 7, 142 19 of 24

Corollary 1. We suppose C is a convex nonempty closed set of a real Hilbert space H and f : C — C
is a contraction with the parameter 5 € [0,1). Let Ay be a {-inverse-strongly monotone nonself mapping
on C and Ay be a strongly positive bounded linear self operator one H with the parameter v > 0, where
§<t:i=1-1-—u@2y—ulA2?) € (01,0 < u < Hj#' Let the mappings B1,B, : C — H
be w-inverse-strongly monotone and B-inverse-strongly monotone, respectively. Let T be an asymptotically
nonexpansive self mapping on set C with a sequence {6, }. Let {S,}5"_, be a countable family of (-uniformly
Lipschitzian pseudocontractive self-mappings on C satisfying the assumptions in Problem 1. For any given

xo € C, we suppose {x, } is a vector sequence through

_ Xp+Suuy
Uy = ol
vn = Pc(uy — paBoun),
zy = Pc(vy — p1B1oy), (50)

Yn = onXn + (1 —04)Pc(I — 8, A1)z,
Xp11 = Buf(yn) + (1 = Bn)Pc(I — anpA2)T"yn, Vn >0,

where uy € (0,2a) and yup € (0,2B). Suppose that {ay}, {Bn}, {on} C (0,1] and {6,} C (0,2] are the
sequences as in Theorem 1. Then, the sequence {x, }5_ generated by (50) satisfies the following properties:

(a)  {xn}57 is bounded.

(b)  limpeo ||Xn — yu|l =0, limy—eo || X0 — Gxyl| =0, limy—sco |[xn — Txy|| = 0 and
limy 00 || x4 — Sxy|| = 0.

(c) {xn}> reaches to the unique solution of Problem 1 if w — 0asn — oo.

Proof. Since the linear bounded operator A, : H — H is positive and strong with the parameter ¢ > 0,
we know that A; is x-Lipschitzian and #-strongly monotone where « = ||A;|| and 7 = «y. In this case,

we obtain that 0 < u < ;2{—2 = sz“z, and

b<ti=1—\/1— @y —px2) =1 /1 pu(2y - pll A2]?) € (0,1].

Therefore, utilizing Theorem 1, we derive the desired result. [

Corollary 2. We suppose C is a convex nonempty closed set of a real Hilbert space H. Let f : C — C be
a contraction with the parameter 6 € [0,1). Let A1 : C — H be a (-inverse-strongly monotone mapping
and Ay : C — H be x-Lipschitzian and n-strongly monotone with the parameters x,n1 > 0, where § <
T:=1—/1—pu2y—ux?) € (0,1],0< pu < '2(—'27 We suppose the nonself mappings By, By : C — H are
w-inverse-strongly monotone and B-inverse-strongly monotone, respectively. Let T : C — C be a nonexpansive
mapping and {Sy }5;_ be a countable family of L-uniformly Lipschitzian pseudocontractive self-mappings on C
satisfying the assumptions in Problem 1. For any given xo € C, let {x, } be the sequence generated by

Uy = YnXn + (1 - 'Yn)snun/

vy = Pco(uy — paBouy),

zp = Pc(vn — u1B1on), (51)
Yn = OuXpy + (1 - (Tn)pC(I - 571A1)Zn/

Xpt1 = Puf(yn) + (1= Bn)Pc(I — anppA2) Tyn, Vn >0,

where py € (0,2a) and py € (0,2pB). Suppose that {an}, {Bn}, {vn}, {on} C (0,1] and {6,} C (0,27] are
the sequences as in Theorem 1. Then, the sequence {x, }5_, generated by (51) satisfies the following properties:

(a)  {xn}iris bounded.

(b)  limyseo [|X0 — yull = 0, limy o0 || X0 — Gxpl| = 0, Limy o0 [|x5 — Ty || = 0 and limy 0 |24 —
Sxy|| = 0.

(c)  {xn}S_ reaches to the unique solution of Problem 1 if 7‘”@%” — 0asn — .
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Proof. Since T is a nonexpansive self mapping defined on set C, T is, of course, an asymptotically
nonexpansive mapping with the parameter sequence {6, }, where 6,, = 0 Vn > 0. Therefore, utilizing
the similar argument process to that of Theorem 1, we obtain the desired result. [

4. Applications to Finite Generalized Mixed Equilibria

We suppose set C is convex nonempty closed and a mapping T with fixed points is named as a
attracting nonexpansive mapping if it is nonexpansive and satisfies:

|Tx —p|| < ||x—p|| forall x & Fix(T) and p € Fix(T).

Lemma 9 ([27]). Let X be a strictly convex space, Ty be an attracting nonexpansive mapping and T, be
a nonexpansive mapping. We suppose they have common fixed points. Then, Fix(T;T,) = Fix(T,T1) =
Fix(Ty) NFix(Ty).

Let A : C — H be nonself mapping, ¢ : C — R be a single-valued real function, and ® : C x C — R be
a bifunction to R. The mixed generalized equilibrium problem (MGEP) is to find x € C such that

O(x,y) + (Ax,y —x) 2 0+ ¢@(y) — @(x), Vye€C. (52)

We borrow the collection of solutions of MGEP (52) by MGEP(®, ¢, A). The GMEP (52) is quite useful in
the sense that it includes many problems, namely, vector optimization problems, minimax problems, classical
variational inequalities, Nash equilibrium problems in noncooperative games and others. For different aspects
and solution methods, we refer to [28-38] and the references therein.

In particular, if ¢ = 0, then MGEP (52) become the generalized equilibrium problem (GEP) of finding
x € C such that

O(x,y)+ (Ax,y—x) >0, VyeC. (53)

The collection of solutions of GEP is used by GEP(©, A).
If A =0, then MGEP (52) become the mixed equilibrium problem (MEP). which is to find x € C such that

O(x,y) +o(y) —@(x) >0, VyeC.

The collection of solutions of MEP is used by MEP(®, ¢).
If o =0and A = 0, then MGEP (52) become to the equilibrium problem (EP) (see Blum and Oettli [30]),
which will approximate x € C with
O(x,y) >0, VyeC.

The collection of solutions of EP is used by EP(®).

Here, we list some elementary conclusions for the MEP.

It is first used in [38] that © : C x C — Risa bifunction and ¢ : C — R is a convex lower semicontinuous
function restricted to the following items

(A1) Vx € C,O(x,x) =0.
(A2) O has the monotonicity, i.e., Vx,y € C, ®(x,y) + O(y, x) <O0.
(A3)
limsupO(tz + (1 —t)x,y) < O(x,y).

t—0t

(A4) Vx € C, O(x, ) is lower semicontinuous convex.
(B1) Vx € Hand Vr > 0, we fix aset Dy C C and y, € C with

Oz,x) + plya) — 9(2) + 1y — 2,2 — %) <0

Vz € C\ Dy.
(B2) C acts as a bounded set.
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Lemma 10 ([38]). We suppose that © : C x C — R has conditions (A1)—(A4) and ¢ : C — R has the
properties proper lower semicontinuous and convex, if either condition (B1) or condition (B2) is true. For r > 0

and x € H, generate an operator T,(®’¢) : H — C through
1
T (x) = {zeC:9(y) +0(z,y) — 9(z) + ;(y —z,z—x)>0,Vy € C}

forall x € H. Then,

(i) Set Tr(®’(P) (x) is a singleton set.
(ii) Vx,y € H,

1T = TLOPy |2 < (11O x — 1Oy, x —y).

(iii) MEP(®, ¢) = Fix(T, "),
(iv) MEP(®, ¢) is convex closed.
(v) ||Ts(®’(”)x - Tt((a’(”)xﬂ2 < %<T§®’¢)x - Tt(@’(P)x, Ty — x), Vs, t > 0and Vx € H.

Next, under some mild control conditions, we establish the strong convergence of the proposed
algorithm to the unique element {x*} = VI(VI(Q, A;), Ay) (i.e., the unique solution of a THCVI),
where Q := NN, GMEP(©;, ¢;, A;) NGSVI(C, By, B2) N Fix(S) N Fix(T).

Theorem 2. We suppose C is a convex nonempty closed set. Assume that, Vi =1,2,..,N,®; : Cx C =+ R
a bifunction has Conditions (A1)—(A4), ¢; : C — R U {+oo} is a lower semicontinuous, convex proper
function with Condition (B1) or Condition (B2), and A; : C — H is an y;-inverse-strongly monotone
nonself mapping. Let f : C — C be a contraction with the parameter 6 € [0,1), Ay : C — H bea
(-inverse-strongly monotone nonself mapping and Ay : C — H be x-Lipschitzian and y-strongly monotone
with parameters x,1 > 0, where § < T:=1— /1 —u(2y —ux?) € (0,1, 0 < pu < i—’; Let the nonself
mappings B1, By : C — H be a-inverse-strongly monotone and B-inverse-strongly monotone, respectively.
Let self mapping T, defined on C, be a nonexpansive mapping and self mapping S, also defined on C, be an
{-Lipschitzian pseudocontractive mapping such that Q := NN, GMEP(®;, ¢;, A;) N GSVI(C, By, B) N
Fix(S) NFix(T) # @ and VI(Q, A1) # @, where GSVI(C, By, By) is the fixed point set of the mapping
G := Pc(I — p1By) Pc(I — uaBy) with py € (0,2a) and uy € (0,2p). For any given xg € C, let {x,} be the
sequence generated by

Uy = YnXn + (1 - 'Yn)sunr

On = Pc(un — p2Bouty),

zn = Pc(vn — p1B1on), (54)
Yn = OpXp + (1 - Un)PC(I - 5n¢41)2n/

X1 = Buf (Yn) + (1 = Bn) Pc(I — anppAz) TANy,, ¥ >0,

where AN = Tr(1®1,¢1)(1 —1r1Aq) - T(®N’¢N)(I — rNAN) with r; € (0,2y;) for each i = 1,2,...,N.

N

Suppose that {an}, {Bn}, {7n}, {on} C (0,1] and {6,} C (0,2{] are the sequences such that
(i) wp—0asn— 00, Y 0> oy =o00andy ;a1 — an| < oo.

(ii) 5—: —0asn —ocoand Y37 |But1 — Bul < 0.

(iii) 0 < liminf, o 0 < limsup, , 0y < land Y57 |01 — 03| < 0.

(iv) 0 <liminfy seo vy < limsup, o vn < land Y77 o |[vug1 — vl < .
(v) on <ap¥n>0andy ;. |0yt1 — 0n| < 0.

Then, the sequence {x, }5,_, generated by (54) satisfies the following properties:

(a)  {xn}ieyis bounded.
() limy e ||xn — Yull = 0, limyseo [|xn — Gx|| =0, limyse0 ||xn — TANx, || = 0 and limy e || X —
Sxy|| = 0.
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(c) {xu} converges strongly to the unique element {x*} = VI(VI(Q, A1), Ay) (i.e., the unique solution
of a THCVI), provided ||xy, — ynl|| = 0(6n).

Proof. First, let us show that for eachi = 1,2, ..., N, the composite mapping Tr(ie)i’(’)i) (I —r;A;) with
r; € (0,27;) is nonexpansive. Indeed, from Lemma 10 (iii), it is not difficult to obtain

GMEP(0, i, A7) = Fix(T,"%) (1 — 1;A;)).
Utilizing Lemma 5 and Lemma 10 (ii), we have

1T (1 = ryAi)x = T2 (1= i)y 2
< (I =riAnx = (I—riAyy|?
< v =yl + rilrs — 200) | Ai — Al
< Jx -yl
Thus, each composite mapping Tr(].®”¢") (I — r;A;) is nonexpansive. Moreover, we claim that
Tr(i®”¢f)(l — r;A;) is also attracting nonexpansive for each i = 1,2,..,N. In fact, for all x ¢

GMEP(0;, ¢;, A;) and p € GMEP(O;, ¢;, A;), by the firm nonexpansivity of T,(i®i’¢i) (due to
Lemma 10 (ii)), we obtain

ITSE (1 = rAx — pl? = I T (1 = 1A x — T (114 pl 2

< (TP = 1 A)x = TP (T — 1 Ag)p, (I = riA)x — (1 - 1 AD)p)

= %{||Tr(;®i'¢i)(1 —riAj)x — Tr(iQi'(Pi)(I — 1 A)pl2+ (I = riA)x — (I -1 A:)p|?
— TN (T = A x = T (1= 1A p — (T = riA)x + (T — 1A%}

= LT (1~ riApx — pl2 + 11 = riAd)x — (1 —1;A)p|?
TSI~ riAg)x — p— (1A + (I -1 ADpl},

which immediately implies that

0;,¢;
T2 (1 = ridi)x = pl . 5)
<1 = riAg)x — (I — A2 = | TSP (T = 1 Ap)x — p— (1 — riAg)x + (1 — 1A >

Next, we discuss two cases.
Case 1. If A;x = A;p, then from (55) we have

T (1 = ryAp)x — pl?

< (I = riAd)x — (I = 1A plP = 1T (1 = riA)x — p — (I - riAd)x + (I — 1A pl 2
= [lx = p|2 = T2 (1 = ridi)x — |2

< Jlx—pl-

Case 2. If A;x # A;p, then from (55) we get

ITAO) (1 — v Ap)x — p?

< |l(x = riAx) = (p = i Aip) [P = IS (1 = riAg)x — p — (1 — riAd)x + (I — 1 A)p|?
< |I(x = riAx) = (p — 1 Aip) |2

<|lx = pl|® +ri(r; — 2u;) || Aix — Aip|)?

<[lx - p]?
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(due to r; € (0,27;)). Summing up the above two cases, we know that each composite mapping

Tr<i®i’¢i ) (I —r;A;) is also attracting nonexpansive. Therefore, by Lemma 9, we conclude that Fix(TAN) =
NY., GMEP(®;, ¢;, A;) N Fix(T). Then, we get the desired result by Theorem 1 easily. [
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