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Abstract: We propose a method to accelerate evolutionary multi-objective optimization (EMO)
search using an estimated convergence point. Pareto improvement from the last generation to the
current generation supports information of promising Pareto solution areas in both an objective space
and a parameter space. We use this information to construct a set of moving vectors and estimate a
non-dominated Pareto point from these moving vectors. In this work, we attempt to use different
methods for constructing moving vectors, and use the convergence point estimated by using the
moving vectors to accelerate EMO search. From our evaluation results, we found that the landscape
of Pareto improvement has a uni-modal distribution characteristic in an objective space, and has a
multi-modal distribution characteristic in a parameter space. Our proposed method can enhance
EMO search when the landscape of Pareto improvement has a uni-modal distribution characteristic
in a parameter space, and by chance also does that when landscape of Pareto improvement has a
multi-modal distribution characteristic in a parameter space. The proposed methods can not only
obtain more Pareto solutions compared with the conventional non-dominant sorting genetic algorithm
(NSGA)-II algorithm, but can also increase the diversity of Pareto solutions. This indicates that our
proposed method can enhance the search capability of EMO in both Pareto dominance and solution
diversity. We also found that the method of constructing moving vectors is a primary issue for the
success of our proposed method. We analyze and discuss this method with several evaluation metrics
and statistical tests. The proposed method has potential to enhance EMO embedding deterministic
learning methods in stochastic optimization algorithms.

Keywords: evolutionary multi-objective optimization; convergence point; acceleration search;
evolutionary computation; optimization

1. Introduction

In the research area of optimization, there are single objective optimization problems and
multi-objective optimization problems. The difference between these two categories of optimization
problems lies in the number of fitness functions. The single objective optimization attempts to obtain
only one optimal solution in one parameter space, i.e., one fitness landscape. The multi-objective
optimization tries to satisfy more than one optimal condition or target, i.e., more than one fitness
landscape. Usually, these optimal conditions in multi-objective optimization conflict with each other,
and cannot be combined into one optimal condition. Single objective optimization and multi-objective
optimization have different search targets because of the requirements of algorithm design. One tries
to obtain a better optimum, the other seeks to obtain more non-dominated solutions on Pareto front.

Most multi-objective optimization research pays attention to the diversity and the number of
non-dominated Pareto solutions. Evolutionary multi-objective optimization (EMO) algorithms are
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efficient and effective when handling multi-objective optimization problems. The EMO keeps the
multiple objective functions independently and uses Pareto-based ranking schemes to maintain feasible
solutions. However, the determinative programming methods use a scalarization method that needs to
transfer multiple objectives into one objective. State-of-the-art studies on EMO concentrate on Pareto
dominance handling in an objective space, which is tied to generating solutions to approximate the
Pareto solution frontiers [1]. The primary disadvantages of EMO are its optimization capability and
the non-guarantee of Pareto optimality, which cannot be perfectly solved by Pareto dominance studies
in EMO.

A fitness approximation method is widely used in the evolutionary computation (EC) community
to reduce the computational cost of fitness evaluations and is expected to estimate the global optimum
solution area. Reference [2] investigated several approximation methods, such as polynomial models,
kriging models, neural networks, and others. Reference [3] proposed a framework to manage
approximation models in EC search. Reference [4] made a survey on the advances of approximating
a fitness function in EC algorithms and presented some future research challenges. Inspired by
the scale-spacing method [5], a uni-modal function was used to approximate a fitness function for
estimating the peak point, and the EC algorithm used it as an elite individual to increase convergence
speed [6]. The same method was extended into a dimension reduction space for fitness landscape
approximation to enhance EC algorithms [7,8]. A fitness approximation mechanism was introduced
into genetic algorithms to obtain the optimal solutions satisfactorily and quickly, and can reduce
computational cost at the same time [9]. It was a unique approach to filter frequency components
for approximating a fitness landscape [10], which uniformly samples in parameter space firstly,
and the re-sampled EC individuals are used to obtain frequency information using the discrete
Fourier transform. There are many methods to accelerate EC convergence using a fitness approximate
model [11–17], and many potential subjects need to be studied further [18,19]. Reference [20] presents a
comprehensive survey on the fitness approximation methods in interactive evolutionary computation
(IEC). Those methods not only can enhance IEC search, but also can enhance conventional EC
search [21].

The estimation method presents a novel perspective using mathematical approaches to calculate
a convergence point (Convergence means of modeling the tendency for generic characteristics of
populations to stabilize over time, in EC, convergence point means the global optimum in single
objective problems ideally.) of a population. This is a great solution that enhances search of a stochastic
optimization algorithm using a deterministic method embedded into a stochastic optimization
process. Using an estimated point to accelerate EC search is one such method that implements
this research philosophy [22]. The individual moving from one generation to the next supports
convergence information of EC search condition. We used such information to mathematically
estimate a convergence point as an elite individual to enhance single objective optimization search [23].
A clustering method was developed for bipolar tasks (Bipolar tasks mean there are two peaks in a fitness
landscape in a problem, e.g., combination of two Gaussian functions N(µ1, σ1) + N(µ2, σ2) presents
two peaks in the landscape.), which proposed four improvements to increase the accuracy of estimated
convergence points and was applied to a multi-modal optimization problem [24]. We attempted to
combine EC algorithms with the estimation framework for bipolar tasks and analyzed the effect of
proposed four improvements. From our previous studies, we found that this estimation method is
effective in single objective optimization [23].

Pareto improvement information from the current generation to the next supports the promising
search areas of Pareto frontier solutions in both an objective space and a parameter space. In this paper,
we extend the method of estimating a convergence point into the EMO algorithm to find potential
non-dominated solution areas in search spaces using the estimation information from the objective
spaces. By putting an estimated point into an EMO search and deleting a dominated solution, the EMO
algorithm can find more non-dominated solutions in early generations, which is a factor that motivates
this study. We use the NSGA-II algorithm to evaluate our study hypothesis and verify the performance
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of the framework that combines the estimation method with EMO, and attempt to enhance EMO search.
This demonstrates one of original aspects of this work. We undertake a comparative study between
the NSGA-II algorithm with and without the estimation method using multi-objective optimization
benchmark problems and statistical tests. The advantages and disadvantages of proposed method are
presented, analyzed, and discussed using experimental evaluation results.

Following this introductory section, we introduce a variety of EMO techniques and algorithms
in the Section 2. We make a brief review on the estimation algorithm for a uni-modal optimization
problem in the Section 3. In the Section 4, we explain how to extend such estimation methods to
accelerate EMO search. There are three primary steps in this framework. The first is finding the
pair information of moving vectors in objective space of EMO, the second is the estimation of a
convergence point in a parameter space, and the third is the insertion of an estimated point by deleting
a dominated solution to enhance EMO search. In the Section 5, we evaluate our method using the
NSGA-II algorithm and some multi-objective benchmark problems, and analyze its optimization
performance and characteristics of population distribution in both an objective space and a parameter
space. We discuss and analyze the evaluation results using statistical tests in the Section 6. The results
demonstrate that the proposed method can obtain more non-dominate Pareto solutions early. Finally,
we make a conclusion of the whole work, and present some open research topics and future work in
the Section 7.

2. Evolutionary Multi-Objective Optimization

Multi-objective optimization problems lie in many real-world applications and they contain
multiple optimization objectives that conflict with each other. This makes conventional optimization
algorithms (deterministic optimization method), e.g., linear programming method [25] and
Newton-Raphson method [26], difficult to apply when solving these problems. One solution of
the multi-objective optimization problems is to transform multiple objectives into a single objective by
assigning different weights to each objective for a combination. This requires us to have a degree of
deep understanding of multi-objective optimization problems.

Currently, more popular approaches use evolutionary multi-objective optimization algorithms
because of various well-defined features and characteristics, such as strong robustness, ease of use,
intelligence, and others. Almost all of these pay attention to finding a set of trade-off optimal solutions
(known as Pareto optimal solutions), instead of a single optimal solution. The Pareto dominance
and diversity of solutions are two primary subjects in EMO research. One attempts to obtain many
non-dominated Pareto solutions, and the other tries to obtain Pareto solutions in a wide area on Pareto
solution front. Here, we make a brief review of several techniques, strategies, and algorithms that
solve the problems of EMO with regards to these two aspects.

2.1. Non-dominated Sorting Method

Non-dominated sorting is an elite mechanism for building a new generation of EMO algorithms
for handling the non-dominated Pareto solutions. It is one of EMO selection strategies. The main
motivation of this method is to find the non-dominated solutions by pairwise comparisons of all
individuals. Here, a non-dominated individual means that there are no other individuals, whose all
objectives are better than this one. The basic and formal calculation process of non-dominant sorting
method can be implemented as the following steps.

1. Getting the first individual as a current individual;
2. Comparing all objectives of the current individual with those of all other individuals;
3. Counting the domination count Np, which means the number of individuals that dominant the

current individual;
4. Setting the individuals satisfy Np = 0 as the first front, and remove these individuals from the

generation temporally;
5. Repeating the above process until every individual is processed.
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2.2. Crowding Distance Techniques

The Pareto solution diversity issue is also an important indicator of measurement in EMO
algorithms. If the solution diversity is insufficient, it is easy to lead the Pareto optimal solutions not to
be covered. Many methods attempt to maintain the solution diversity as much as possible in EMO
algorithms. One of these methods uses a sharing parameter to keep the diversity during EMO search.
However, it requires the preset and optimization of the parameter, and EMO performance depends on
the setting. Crowding distance technique is another solution for handling this predefined parameter
problems, which is calculated using a set of individuals.

The primary motivation of a crowding distance is to measure an individual density by distances.
There is an aggregation level of the adjacent individuals in parameter space. Figure 1 presents
a two-dimensional example of crowding distance calculation, where f1 and f2 are two objectives.
The crowding distance can be calculated by averaging the length and width of the cuboid (marked by
dash line). Averaging of the length and width of the cuboid (marked by dash line) is used to calculate
the crowding distance for each individual.

Figure 1. Two-dimensional example of crowding distance [27], the crowding distance is calculated

within one Pareto front, its calculation method is crowding_distance = ∑P
o=1

objo(i+1)−objo(i−1)
objomax−objomin

, where o is
the index of the number of objective functions, P is the number of objective functions, i is the index of
individual, and obj is the value of an objective function.

Any EMO algorithms sort all individuals according to their first objective. We calculate the
difference, i.e., objo(i+1) − objo(i−1), between two adjacent individuals for all individuals. The first
and last individual are set to infinite. This method calculates all crowding distances using multiple
objectives. Finally, the final crowding distance of each individual is set to the mean of its crowding
distances in all objectives.

2.3. NSGA and Its Variants

The NSGA is the first generation of EMO algorithm that uses non-dominated sorting techniques
to find multiple Pareto optimal solutions with a single simulation running [28]. However, it has still
suffered from several criticisms, including those relating to its high computational cost, lack of elitism,
and the requirement for the setting of sharing parameter. Subsequently, its improved version, NSGA-II,
was proposed to overcome all the above limitations at once by introducing fast non-dominated sorting
and a tournament selection using a crowding distance to reduce computational complexity [27]. It has
become one of the most popular EMO algorithms that are used to solve problems of multi-objective
optimization. Recently, a more powerful version, NSGA-III [29], was also proposed, where a clustering
operator replaces the crowding distance operator in NSGA-II to solve many-objective optimization
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problems. Actually, there are also many other EMO algorithms based on non-dominated sorting and
have achieved satisfactory results, such as MOGA [30], NPGA [31], SPEA [32], SPEA2 [33], PESA [34],
PESA-II [35], multi-objective chaotic evolution [36], etc.

Although various EMO algorithms have been proposed and have achieved outstanding results,
most of them only focus on the study in an objective space. We therefore try to use moving vectors as a
bridge between a parameter space and an objective space to analyze the landscapes of the two spaces.
The motivation of this study promotes to use a mathematical method to estimate a convergence point
in a parameter space using these moving vectors’ information from its objective space. We expect this
research to provoke the EMO researchers’ attention towards the parameter space and encourage them
to notice the connection between the two spaces for designing better EMO algorithms.

3. Estimating a Convergence Point

3.1. Notation Definitions

Before we explain how to estimate a convergence point from moving vectors, we offer some
notations for better understanding of this section in advance. When an EC algorithm searches in a
d-dimensional parameter space with n individuals (n, d ∈ Z+), we notate the i-th individual in the
current generation, a corresponding relative individual in the next generation, and their moving vector
to be ai, ci, and bi = ci − ai, respectively, {ai, bi, ci ∈ Rd; i = 1, 2, ..., n} (See Figure 2). The unit vector
of bi is defined as b′ i = bi/‖bi‖ (bT

i bi = 1). There are n moving vectors, and ai is a starting point
of bi.

We notate x ∈ Rd as the estimated convergence point that has the minimal distance to the lines
made by extending the line segments b′ i. This point, x, has a higher possibility to locate near the
optimal solution in EC optimization problems. The x is indicated by the ? mark in the Figure 2. We will
explain how to obtain the x point by a deterministic mathematical method. In this work, all vectors are
presented as column vectors.

a
1

c
1

a
2

c
2

a
3

c
3

a
n

c
n

Figure 2. The convergence point (?) can be estimated by the moving vectors (bi) between individuals
(ai, i = 1, 2, ..., n) in the k-th generation and their offspring (ci, i = 1, 2, ..., n) in the (k + 1)-th generation.

3.2. Estimation Method of a Point from Moving Vectors

This section is primarily adopted from our previous work in reference [22]. From the principle of
the law of large numbers, the estimated convergent point is the nearest one to the extension lines of
these moving vectors. The lines of moving vectors can be expressed as ai + tib′ i, ti ∈ R. The nearest
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point that is close to these extension lines can be obtained by solving the optimization problem shown
in Equation (1).

x = min
x,{ti}

J(x, {ti}) = min
x,{ti}

n

∑
i=1
‖ai + tib′ i − x‖2 (1)

The shortest line segment from the estimated convergence point x to the extended moving vector
ai + tib′ i, ti ∈ R is ai + tib′ i − x, ti ∈ R, and the relation of this line segment and the moving vector b
or its unit vector b′ is orthogonal. Equation (2) presents this orthogonal condition.

b′Ti (ai + tib′ i − x) = 0 (orthogonal condition) (2)

From this orthogonal condition, we can use x to express ti, i.e., ti =
(b′ i)T(x−ai)
‖b′ i‖2 and introduce it to

Equation (1) to reduce the number of optimization parameter. The derivation process is presented in
Equation (3), where Id is an identity matrix, and Hi = b′ ib′

T
i − Id.

x = min
x,{ti}

n

∑
i=1
‖ai + tib′ i − x‖2

= min
x

n

∑
i=1
‖ b′ i

(b′ i)T(x− ai)

‖b′ i‖2 − (x− ai)‖2

= min
x

n

∑
i=1
‖
{

b′ ib′
T
i

‖b′ i‖2 − Id

}
(x− ai)‖2

= min
x

n

∑
i=1
‖Hi(x− ai)‖2

(3)

Next, we can obtain the following objective function (Equation (4)) from Equation (1) where we
have eliminated the term {ti}.

J(x) =
n

∑
i=1

(x− ai)
THT

i Hi(x− ai) (4)

Our goal is obtained by minimizing J(x) regarding x. Estimation of x, i.e., x̂, is obtained by
partially differentiating each element of x and setting them equal to 0 (shown in Equation (5)).

∂J(x)
∂x

= 2
n

∑
i=1

HT
i Hi(x− ai)

= 2

{(
n

∑
i=1

HT
i Hi

)
x−

(
n

∑
i=1

HT
i Hiai

)}
= 0 (5)

Thus, the estimation of Equation (6) is obtained.

x̂ =

(
n

∑
i=1

HT
i Hi

)−1( n

∑
i=1

HT
i Hiai

)
(6)

Since Hi has the characteristic of HT
i Hi = H2

i = Hi, i.e., a projection matrix, Equation (6) can be
rewritten as in Equation (7), which we can use to estimate a convergence point using moving vectors.
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x̂ =

(
n

∑
i=1

Hi

)−1( n

∑
i=1

Hiai

)

=

{
n

∑
i=1

(
Id − b′ ib′

T
i

)}−1{ n

∑
i=1

(
Id − b′ ib′

T
i

)
ai

}
(7)

Besides these derivatives exactly estimating a convergence point, two approximated calculation
methods are described in [22].

4. Accelerating EMO Search Using an Estimated Convergence Point

4.1. Philosophy of the Proposal

There are two subjects studied in the EMO algorithm research field; one study is the Pareto
dominance issue, and the other one is EMO solution diversity issue. Almost all research on these two
issues focuses on special handling in an objective space of an EMO algorithm, and frequently ignore
the search condition in a parameter space. EMO algorithms try to find more non-dominated solutions
with diversity. The solutions on the first Pareto solution frontier from the last generation to the next in
an objective space supports information on how moving the variables in a parameter space can find
promising Pareto solutions.

In Figure 3, we can find a set of the pairs of moving vectors in a parameter space in accord
with the Pareto dominance information obtained in an objective space. We can use the moving
vector information to estimate a convergence point that presents a promising area where Pareto
solutions would be in a parameter space. We put such an estimated convergence point of a parameter
space into EMO search and remove one of dominated solutions. EMO search should be enhanced
considering such search information, and hopefully, EMO algorithm can find more non-dominated
Pareto solutions quickly. This is a study hypothesis and motivation of our proposal that utilities an
estimated convergence point to accelerate EMO search.

Figure 3. Estimation of promising Pareto solution area in parameter space using the dominance
information from objective space to enhance EMO search.

4.2. Estimation of Pareto Solution Frontier in a Parameter Space from Pareto Improvement Information in an
Objective Space

There are three primary steps and/or issues in the proposed method to enhance EMO search.
The first step/issue is how to make pairs of moving vectors in a parameter space from Pareto
improvement information obtained in an objective space. We make two candidate groups of
non-dominated solutions in the current generation and in the last generation, so Pareto solution
improvement information can be obtained from these two group individuals. Here, we design two
methods to make moving vector pairs (bi = ci − ai in Figure 2) .
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• We pick up one of non-dominated solutions in an objective space from one group, and find the
nearest non-dominated solution in the other group, and then find their corresponding individuals
in a parameter space to make these two solutions form a pair. (Estimation in objective space)

• We pick up one of non-dominated solutions in an objective space from one group, and find its
corresponding individual in a parameter space, and then find this individual’s nearest individual
in a parameter space to make these two solutions form a pair. (Estimation in parameter space)

After this, we delete these two solutions from the two groups, and we repeat this processing until
one of groups becomes empty.

The second step estimates a convergence point in a parameter space using the moving vector pairs
obtained from the first step. The estimation method uses Equation (7) to implement. The estimated
point has high potential in the non-dominated Pareto solution frontier, and can therefore accelerate
EMO search.

• Besides estimating only one estimated point, we can also estimate one point from only one
single objective space each by each individually and use them together to accelerate EMO search
(Estimation in each single objective space).

In the third step, we put the estimated convergence point as a search elite individual into EMO
algorithms, and delete one/more of the dominated solutions in the current generation to enhance
EMO search. This is the primary implementation within our proposal.

5. Experimental Evaluations

5.1. Experiment Setting

We use five multi-objective benchmark functions from the ZDT test suite [37] to evaluate our
proposed methods. We embed our proposed method into conventional NSGA-II [27] with different
constructing methods of moving vector, and compare our proposed method with NSGA-II. Table 1
presents the benchmark function’s mathematical expressions. We examine these functions with three
dimensional settings, i.e., two dimensions (2-D), 10-D, and 30-D. Table 2 shows the parameter settings
of conventional NSGA-II algorithm used in the evaluation experiments.

Table 1. Multi-objective benchmark function used in evaluation [27]. All the Pareto frontier are g(x) = 1.

Functions Definition

ZDT1

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x) ]

g(x) = 1 + 9 ∑n
i=2 xi
n−1

ZDT2

f1(x) = x1
f2(x) = g(x)[1− ( x1

g(x) )
2]

g(x) = 1 + 9 ∑n
i=2 xi
n−1

ZDT3

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x) −

x1
g(x) sin(10πx1)]

g(x) = 1 + 9 ∑n
i=2 xi
n−1

ZDT4
f1(x) = x1
f2(x) = g(x)[1− ( x1

g(x) )
2]

g(x) = 1 + 10(n− 1) + ∑n
i=2[x

2
i − 10 cos(4πxi)]

ZDT6

f1(x) = 1− exp(−4πx1) sin6(6πx1)

f2(x) = g(x)[1− (
f (x1)
g(x) )

2]

g(x) = 1 + 9[∑n
i=2 xi
n−1 ]0.25
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Three experiments are designed where different methods of constructing moving vectors,
and these combined with the conventional NSGA-II algorithm. The legends displayed in figures
and tables have the following meanings.

• NSGA-II; conventional NSGA-II algorithm;
• Estimation in objective space; we construct moving vectors from two subsequent non-dominated

solution set in an objective space;
• Estimation in parameter space; we find the nearest offspring individual for each one in a parent

generation, and make pairs in a parameter space; and
• Estimation in each single objective space; we consider each objective independently and

estimation convergence point for each objective, where the estimated points may not be best on
all objectives, but they have good potential in some objectives.

Table 2. NSGA-II algorithm parameter setting.

population size for 2-D, 10-D, and 30-D 20, 50, and 100
crossover rate 0.8
mutation rate 0.05
max. # of fitness evaluations, MAXNFC, for 2-D, 10-D, and 30-D search 400, 1000, and 10,000
dimensions of benchmark functions, D 2, 10, and 30
# of trial runs 30

5.2. Evaluation Metrics

We set the stop conditions of each evaluation using the number of fitness calls instead of
generations for fair evaluation, because our proposed methods increase additional fitness cost
consumption. We set the stop conditions as 400 times, 1000 times, and 10,000 times of fitness evaluations
in 2-D, 10-D, and 30-D problems, respectively. Besides, we test each benchmark function with 30 trial
runs in three different dimensional settings.

Conventional NSGA-II is adopted as an example algorithm; other EMO algorithms can be also
applied. Although there are many ways to generate estimated points, the greedy replacement strategy,
where the estimated points will replace with the worst ranked and low diversity individuals to keep
the same population size, is adopted in the proposed acceleration framework. To analyze the effect of
the proposed acceleration framework, we calculate the number of non-dominated Pareto solutions in
each generation shown in Figures 4–6.

Hyper volume [38] is used to evaluate the diversity and acceleration performance of our proposal.
Table 3 presents the hyper volume values of our proposed method and conventional NSGA-II algorithm
at the stop condition in three different dimensional settings. We apply Wilcoxon signed-rank test for
30 trail runs data to evaluate the significance of hyper volume obtained by conventional NSGA-II and
our proposal. Some functions without hyper volume value is due to reference point [−1, 1] setting.
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Figure 4. The number of Pareto solutions in every generation for 2-D benchmark problems. We can
observe that proposed method can obtain more Pareto solutions for the most of cases.
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Figure 5. The number of Pareto solutions in every generation for 10-D benchmark problems. We can
observe that proposed method can obtain more Pareto solutions for the most of cases.
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Figure 6. The number of Pareto solutions in every generation for 30-D benchmark problems. We can
observe that proposed method can obtain more Pareto solutions for the most of cases.
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Table 3. The average hypervolume values from 30 trials running of 4 methods in 2 dimensions (2-D),
10-D, and 30-D. Symbol † means that there is a significant difference between NSGA-II and Proposed
method, i.e., NSGA-II + Estimation Point. The reference point is [1,1]. Obj., Para., and SinglePara.
present objective space, parameter space, and each single parameter space, respective.

2-D tasks

Func. NSGA-II Estimation in Obj. Estimation in Para. Estimation in SinglePara.

ZDT1 0.414567 0.417300 0.453833 † 0.480533 †

ZDT2 0.109833 0.117367 0.124367 0.113867

ZDT3 0.556733 0.552433 0.622733 † 0.622600 †

ZDT4 0.255733 0.261600 0.284933 † 0.337167 †

ZDT6 0.000033 0.002033 0.001833 0.000967

10-D tasks

Func. NSGA-II Estimation in Obj. Estimation in Para Estimation in SinglePara

ZDT1 0.328033 0.337767 0.345533 0.339433

ZDT2 0.008633 0.012367 0.010100 0.008933

ZDT3 0.564067 0.545767 0.589400 0.588933

30-D tasks

Func. NSGA-II Estimation in Obj. Estimation in Para Estimation in SinglePara

ZDT1 0.647167 0.654000 0.651533 0.648633

ZDT2 0.183333 0.157567 0.187700 0.190433

ZDT3 0.796133 0.792600 0.791533 0.794767

ZDT6 0.066233 0.068433 0.069633 0.066733

6. Discussions

6.1. Pareto Improvement of the Proposal

Pareto dominance and Pareto solution diversity are two metrics to evaluate the performance
of EMO algorithms. In this work, we calculated the average number of Pareto solutions in every
generation for each benchmark problem; see Figures 4–6. This is one of evaluation metrics for Pareto
dominance in EMO. We also calculated hyper volume values at the maximal number of function calls
for each dimension setting, and applied Wilcoxon signed-rank test to verify the significant difference
among hyper volume values in Table 3. This is a demonstration of Pareto solution diversity for each
EMO algorithm. We analyze and discuss our proposed method using these results.

From Figures 4–6, we can observe that methods estimating a convergence point in a parameter
space and in a single objective space can obtain more Pareto solutions from all five multi-objective
benchmark problems in 2-D setting. Method estimating a convergence point in an objective space
fails in two benchmark functions, i.e., ZDT1 and ZDT3 in 2-D tasks. It indicates that moving vectors
constructed from information of the nearest points in an objective space cannot exactly estimate
the non-dominated Pareto frontier area in a parameter space. The same case can also be found
in 10-D benchmark setting for ZDT3 and ZDT4, and 30-D benchmark setting for ZDT1, ZDT3,
and ZDT4. We need to further consider improving the estimation the accuracy of estimation method
of a convergence point in an objective space.

That in a single objective space works well in most of cases because this method replaces more
than one estimated convergence point, and increases the population diversity for EMO algorithms.
This indicates that the better individuals in each objective can improve optimization performance of
EMO algorithms, although there are conflicts among multi-objective functions when EMO searches for
non-dominated Pareto solutions. From this viewpoint, elite strategy-based EC acceleration methods
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can be applied not only in single objective problems, but also have a potential to be applied in
multi-objective problems.

From observation of Table 3, the values of hyper volume from our proposed method are bigger
than those from conventional NSGA-II algorithm for the most of tasks in 2-D benchmark problems.
The Wilcoxon signed-rank test results showed a significant difference between our proposed method
and the conventional NSGA-II algorithm in estimation in a parameter space and estimation in a single
objective space. These results demonstrate that our proposed method can obtain non-dominated
Pareto solution with more diversities for EMO algorithms. However, it is not significant shown in
10-D and 30-D benchmark problems. It is a limitation for our proposal, and we need to improve it in
our future work.

6.2. Topological Structure of Moving Vectors and Modality Characteristic of Pareto Improvement

The basic philosophy of our proposed method to accelerate EMO search lies in three hypotheses.
First, we can obtain the information to improve non-dominated Pareto solutions through Pareto
solution evolutions from the last generation to the current generation in an objective space. Second,
after we obtain the information, the moving vectors can be made in an objective space or in a parameter
space. Third, the estimated convergence point of these moving vectors has a high possibility that locals
in the non-dominated Pareto solution frontier area in a parameter space. From the modality viewpoint,
the distribution of Pareto solutions shows a uni-modal characteristic in the objective space. In the case
of the Pareto improvement from the last generation to the current generation, do the corresponding
individuals also present a uni-modal distribution characteristic in a parameter space? We examine this
question here.

We present improved EMO evolutions along three generations’ EMO evolution condition
both in an objective space and a parameter space for these benchmark functions with 2-D setting
(see Figures 7 and 8). The arrows demonstrate the Pareto improvement directions between two
generations in both spaces. From Figures 7 and 8, we observe that with regards to the directions
of arrows in an objective space, all of them are towards almost the same direction, i.e., their angles
are less than 90 degrees. However, in the parameter space, the arrows are not towards the same
direction. It displays a multi-modal distribution characteristic, e.g., in the ZDT4 and ZDT6 benchmark
problems. From these observations, it indicates that Pareto improvement in the objective space
presents a uni-modal characteristic, while it presents a multi-modal characteristic in a parameter space.
In Figure 4, the numbers of the first Pareto frontier solution from four methods are almost the same,
but their acceleration performances are not significant. This is one our discovery on the modality
characteristic of Pareto improvement in both an objective space and a parameter space.

From Figures 7 and 8, there is a multi-modal characteristic in a parameter space when the Pareto
improvement occurs from one generation to the next. The third hypothesis of proposed method is not
always correct, therefore, the proposed method can work well in the uni-modal condition of Pareto
improvement, and by chance well in the multi-modal one. From Table 3, there is not a significant
difference between NSGA-II algorithm and our proposed method in ZDT6. This experiment’s results
verify our analysis and observations. The multi-modal characteristic of Pareto improvement in a
parameter space is an issue when applying our proposal to enhance EMO search.
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Figure 7. Two-dimensional demonstration of Pareto solution improvement in an objective space (left)
and their corresponding individuals in parameter space (right) of ZDT1, ZDT2, and ZDT3. The arrows
show directions of both Pareto solution improvement and moving vectors. We can observe that there
is a uni-modal landscape for Pareto solution improvement in an objective space; however, it is a
multi-modal landscape for Pareto improvement in a parameter space. The green point is the estimated
convergence point, most of the red points and most of the blue points are in the first generation and in
the third generation, respectively.
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Figure 8. Two-dimensional demonstration of Pareto solution improvement in an objective space (left)
and their corresponding individuals in parameter space (right) of ZDT4, and ZDT6. The arrows
show directions of both Pareto solution improvement and moving vectors. We can observe that there
is a uni-modal landscape for Pareto solution improvement in an objective space; however, it is a
multi-modal landscape for Pareto improvement in a parameter space. The green point is the estimated
convergence point, most of the red points and most of the blue points are in the first generation and in
the third generation, respectively.

7. Conclusions and Future Work

In this work, we use an estimated convergence point from dominance information of Pareto
solution improvement to enhance EMO search. We use NSGA-II as a test algorithm and five
multi-objective functions to qualitatively evaluate our proposal. We found that our proposed method
can enhance EMO search in some benchmark problems, especially for the high-dimensional and
complex multi-objective problems which can obtain a greater number of Pareto solutions. We also
analyzed the modality of the Pareto improvement in both an objective space and a parameter space.
We found that the Pareto improvement in an objective space demonstrates a uni-modal characteristic,
but a multi-modal one in parameter space. It is one of the discoveries in this work.

In the future, we will further investigate the proposed method in a variety of multi-objective
problems, especially for real-world problems. How to find the exact pairs information of moving
vectors is one of the potential study subjects in our method. It influences the accuracy of estimated point
to make different performances of our proposed by using the point. The multi-modal characteristic of
moving vectors in a parameter space is an issue for our estimation method. We will use clustering
methods to find the representative moving vectors to find the estimated point in a parameter space.
Another study issue is a search condition using multi-objective fitness landscape and an estimated
convergence point. These and other study subjects will be involved in our future research work.
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