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Abstract

:

In this paper, we investigate the boundedness of commutators of matrix Hausdorff operator on the weighted p-adic Herz-Morrey space with the symbol functions in weighted central bounded mean oscillations (BMO) and Lipschitz spaces. In addition, a result showing boundedness of Hausdorff operator on weighted p-adic λ-central BMO spaces is provided as well.
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1. Introduction


Let p be a fixed prime and x be a nonzero rational number. If x can be represented in the form x=pγm/n, where the integers m,n and fixed prime p are coprime to each other then |x|p=p−γ, where γ=γ(x)∈Z. If x=0 then we have |0|p=0. The p-adic absolute value |·|p satisfies all conditions of norm along with the following two extra properties:


|xy|p=|x|p|y|p,|x+y|p≤max{|x|p,|y|p}.



(1)




The symbol Qp denotes the field of p-adic numbers and is the completion of the field of rational number Q with respect to ultrametric p-adic norm |·|p. In [1], it was shown that any x∈Qp\{0} can be expressed in the canonical form as:


x=pγ∑k=0∞βkpk,



(2)




where βk,γ∈Z,β0≠0≤βk<p. The series (2) converges in p-adic norm because one has |pγβkpk|p≤p−γ−k.



The space Qpn=Qp×…×Qp consists of points x=(x1,x2,…,xn), where xk∈Qp,k=1,2,…,n. If x∈Qpn then the following definition of norm is used on Qpn


|x|p=max1≤k≤n|xk|p.











Let us express


Bγ(a)={x∈Qpn:|x−a|p≤pγ},








the ball with center at a∈Qpn and radius pγ. In a same manner, express by


Sγ(a)={x∈Qpn:|x−a|p=pγ},








the sphere with center at a∈Qp and radius pγ. When a=0, we merely represent Bγ(0)=Bγ and Sγ(0)=Sγ. Also, for every a0∈Qpn,a0+Bγ=Bγ(a0) and a0+Sγ=Sγ(a0).



Since Qpn is a locally compact commutative group under addition, therefore, there exists a Haar measure dx on Qpn, such that


∫B0(0)dx=|B0(0)|=1,








where |B| denotes the Haar measure of a subset B of Qpn, and B is measurable. In addition, an easy computation yields |Bγ(a)|=pnγ, |Sγ(a)|=pnγ(1−p−n), for any a∈Qpn.



The p-adic analysis has gained a lot of attention in the past few decades due to its importance in mathematical physics and its usefulness in science and technology (see, for instance, [2,3,4,5]). It is a fact that the theory of function from Qpn into C play a vital role in p-adic quantum mechanics [1]. In the last few years, many researchers have taken interest in the study of harmonic and wavelet analysis over p-adic fields which resulted in a number of reseach items, for instance, see [6,7,8].



The Hausdorff operator is considered very important in harmonic analysis due to its relation with the summability of classical Fourier series (see e.g., [9,10]). The matrix Hausdorff operator with kernel function Φ in Euclidean space Rn,n≥2 was studied by Lerner and Liflyand in [11] and is of the form


HΦ,Af(x)=∫RnΦ(t)f(A(t)x)dt.



(3)




where A(t) is n×n invertible matrix for almost everywhere t in the support of Φ. If the kernel function Φ is chosen wisely then the Hausdorff operator reduces to some classical operators like the Hardy operator, the adjoint Hardy operator, the Hardy-Littlewood averaging operator and the Cesàro operator. Here we would like to mention some important publications including [11,12,13,14,15,16,17,18,19,20,21,22,23,24] which discussed the boundedness of Hausdorff operator on function spaces.



On the other hand, the p-adic matrix Hausdorff operator was introduced by Volosivets [25], which is given by


HΦ,A(f)(x)=∫QpnΦ(t)f(A(t)x)dt,








where Φ(t) is locally integrable function on Qpn and A(t) is n×n nonsingular matrix for almost everywhere in the support of Φ. In recent times, the boundedness of the Hardy operator and the Hausdorff operator on p-adic field has become point of discussion for many authors (see, for instance, [26,27,28,29,30]). In [29], the Hausdorff operator was studied on weighted p-adic Morrey and Herz type spaces where, by imposing special conditions on the norm of the matrix A, sharp estimates were also obtained.



The boundedness properties of commutator operators is also an important aspect of harmonic analysis as these are useful in the study of characterization of function spaces and regularity theory of partial differential equations. The commutator of Hausdorff operator HΦ,A with locally integrable function b is given by


HΦ,Abf=bHΦ,Af−HΦ,A(bf).











The boundedness of the analog of HΦ,Ab on Rn and its special cases when A(t)=diag[1/|t|,1/|t|,…,1/|t|] were discussed in [31,32,33,34,35,36,37]. However, this topic still needs further considerations in the sense of its boundedness on p-adic function spaces.



In this paper, we will mainly discuss the boundedness of HΦ,Ab on p-adic weighted Herz type spaces when b is either from CMOq2(w,Qpn) or Λδ(Qpn). In addition an intermediate result stating the boundedness of p-adic matrix Hausdorff operator on λ-central bounded mean oscillations (BMO) spaces will be given at first.




2. Preliminaries and the Main Results


Suppose w(x) is a weight function on Qpn, which is nonnegative and locally integrable function on Qpn. Let Lq(w;Qpn),(0<q<∞) be the space of all complex-valued functions f on Qpn such that:


∥f∥Lq(w;Qpn)=∫Qpn|f(x)|qw(x)dx1q<∞.








If f∈L1(Qpn), we will write


∫Qpnf(x)w(x)dx=∑γ∈Z∫Sγf(x)w(x)dx.











Definition 1.

Let λ<1n and 1<q<∞. The space CMOq,λ(w,Qpn) is defined as follows.


∥f∥CMOq,λ(w,Qpn)=supγ∈Z1w(Bγ)1+λq∫Bγ|f(x)−fBγ|qw(x)dx1/q<∞,



(4)




where


fBγ=1|Bγ|∫Bγf(x)dx.



(5)









Remark 1.

When λ=0, the space CMOq,λ(w,Qpn) is just reduced to CMOq(w,Qpn) with corresponding norm given as follows.


∥f∥CMOq(w,Qpn)=supγ∈Z1w(Bγ)∫Bγ|f(x)−fBγ|qw(x)dx1/q.













Definition 2.

Suppose α∈R, 0<l,q<∞, the weighted Herz space Kqα,l(w,Qpn) is defined by:


Kqα,l(w,Qpn)={f∈Llocq(w,Qpn\{0}):∥f∥Kqα,l(w,Qpn)<∞},








where


∥f∥Kqα,l(w,Qpn)=∑k=−∞∞w(Bk)αl/n∥fχk∥Lq(w,Qpn)l1/l,



(6)




and χk is the characteristic function of the sphere Sk=Bk\Bk−1.





Remark 2.

Obviously Kq0,q(w,Qpn)=Lq(w,Qpn).





Definition 3.

Suppose α∈R, 0<l,q<∞, and λ be a non-negative real number. Then the weighted Morrey-Herz space MKl,qα,λ(w,Qpn) is defined as follows.


MKl,qα,λ(w,Qpn)={f∈Llocq(w,Qpn\{0}):∥f∥MKl,qα,λ(w,Qpn)<∞},








where


∥f∥MKl,qα,λ(w,Qpn)=supk0∈Zw(Bk0)−λ/n∑k=−∞k0w(Bk)αl/n∥fχk∥Lq(w,Qpn)l1/l.



(7)









Remark 3.

It is evident that MKl,qα,0(w,Qpn)=Kqα,l(w,Qpn).





For the analog of Herz-Morrey space on Euclidean space Rn, we refer the interested reader to the paper [38] by Lu and Xu. Recently, the study reported in [38] was extended to variable exponent Herz-Morrey spaces in [39,40].



Definition 4.

Suppose δ∈R+. The Lipschitz space Λδ(Qpn) is the space of all measurable functions f on Qpn such that:


∥f∥Λδ(Qpn)=supx,h∈Qpn,h≠0|f(x+h)−f(x)||h|pδ<∞.













Lemma 1.

([30]) Let E be an n×n matrix with entries eij∈Qp. Then the norm of E, regarded as an operator from Qpn to Qpn, is defined as:


∥E∥=max1≤i≤nmax1≤j≤n|eij|p.













Definition 5.

([26]) Let β∈R. The set Wβ consist of all measurable function w(x) on Qpn, Satisfying:

	(a) 

	
w(x)>0 a.e.,




	(b) 

	
∫S0w(x)dx<∞,




	(c) 

	
w(tx)=|t|pβw(x) for all t∈Qp\{0},x∈Qpn.











It is not difficult to see that a weight w(x)∈Wβ needs not to be necessarily locally integrable function. Importantly, if w(x)=|x|pβ, then w(x)∈Wβ but w(x)∈Lloc1(Qpn) if and only if β>−n.



Lemma 2.

([27]) Let w∈Wβ,β>−n. Then for any γ∈Z, we have


w(Bγ)=p(n+β)γw(B0)andw(Sγ)=p(n+β)γw(S0).













Here and in the sequel, for the sake of easiness, we use the following notation:


G(E,δβ)=∥E∥δβifβ>0,∥E−1∥−δβifβ≤0,








where E is any invertible matrix, β∈R and δ is a non-zero positive real number.



It is easy to see that:


G(E,β(1/q+1/p))=G(E,β/q)G(E,β/p),



(8)




where p,q∈Z+.



Proposition 1.

([29]) Let β>−n,w(x)=|x|pβ,E is any nonsingular matrix and x∈Qpn, then


w(Ex)≤∥E∥βw(x)ifβ>0,∥E−1∥−βw(x)ifβ≤0,=G(E,β)w(x).













Lemma 3.

([29]) Let β>−n,w(x)=|x|pβ and E is any nonsingular matrix, then we have


w(EBγ(a))≤G(E,β)|detE|pw(Bγ(a)).













Now, we are in position to state our main results which are as under:



Main Results


Theorem 1.

Let 1<q<∞, 0≤λ<1/n,β>−n and w(x)=|x|pβ, then HΦ,A is bounded on CMOq,λ(w,Qpn) and satisfies the following inequality


∥HΦ,Af∥CMOq,λ(w,Qpn)≤K1∥f∥CMOq,λ(w,Qpn),








where


K1=∫Qpn|Φ(t)||detA(t)|pλG(A−1(t),β/q)G(A(t),β(λ+1/q))dt.













Our first result regarding boundedness of HΦ,Ab with b∈CMOq(w,Qpn) can be stated as:

Theorem 2.

Let 1≤l,q,q1,q2<∞,1/q2=1/q+1/q1,α1=α2+n/q,0≤λ>α1,β>−n and w(x)=|x|pβ. Assume that b∈CMOq(w,Qpn) and


φ(t)=|Φ(t)||detA−1(t)|p1/q1G(A−1(t),β/q1)max1,G(A−1(t),β/q)G(A(t),β/q).








Then the commutator operator HΦ,Ab is bounded from MKl,q1α1,λ(w,Qpn) to MKl,q2α2,λ(w,Qpn) and satisfies the inequality:


∥HΦ,Abf∥MKl,q2α2,λ(w,Qpn)≤CK2∥b∥CMOq2(w,Qpn)∥f∥MKl,q1α1,λ(w,Qpn),








where


K2=∫∥A(t)∥≤1φ(t)∥A(t)∥(λ−α1)(n+β)/n∥A(t)∥n|detA(t)|p+logpp∥A(t)∥dt+∫∥A(t)∥>1φ(t)∥A(t)∥(λ−α1)(n+β)/n∥A(t)∥n|detA(t)|p+logp(p∥A(t)∥)dt.















In the following theorem we proved the boundedness of commutator of Hausdorff operator on Morrey Herz Space by taking b∈Λδ(Qpn).



Theorem 3.

Let 1≤q2≤q1<∞, 0<l,δ<∞,1/r=1/q2−1/q1, β>−n and w(x)=|x|pβ,α1=α2+nδ/(n+β)+n(1/q2−1/q1),0≤λ>α1 and b∈Λδ(Qpn). Then the commutator operator HΦ,Ab is bounded from MKl,q1α1,λ(w,Qpn) to MKl,q2α2,λ(w,Qpn) and satisfies the inequality:


∥HΦ,Abf∥MKl,q2α2,λ(w,Qpn)≤CK3∥b∥Λδ(Qpn)∥f∥MKl,q1α1,λ(w,Qpn),








where


K3=∫Qpn|Φ(t)|∥A(t)∥(n+β)(λ/n−α1/n)max{1,∥A(t)∥δ}|detA−1(t)|p1/q1G(A−1(t),β/q1)dt.













In the rest of the article, the character C denote the constant free from essential values and variables whose value may change from line to line.





3. Proofs of Main Results


3.1. Proof of Theorem 1


Suppose f∈CMOq,λ(w,Qpn). By means of Fubini theorem and p-adic change of variables we have


HΦ,AfBγ=1|Bγ|∫Bγ∫QpnΦ(t)f(A(t)x)dtdx=∫QpnΦ(t)1|Bγ|∫Bγf(A(t)x)dxdt=∫QpnΦ(t)1|Bγ|∫A(t)Bγf(x)dx|detA−1(t)|pdt=∫QpnΦ(t)1|A(t)Bγ|∫A(t)Bγf(x)dxdt=∫QpnΦ(t)fA(t)Bγdt.











Using Minkowski’s inequality, Proposition 1 and Lemma 3 with a=0, we are down to


1w(Bγ)1+λq∫Bγ|HΦ,Af(x)−(HΦ,A)Bγ|qw(x)dx1/q=1w(Bγ)1+λq∫Bγ|∫QpnΦ(t)(f(A(t)x)−fA(t)Bγ)dt|qw(x)dx1/q≤∫Qpn|Φ(t)|1w(Bγ)1+λq∫Bγ|f(A(t)x)−fA(t)Bγ|qw(x)dx1/qdt≤∫Qpn|Φ(t)||detA−1(t)|p1/qG(A−1(t),β/q)×1w(Bγ)1+λq∫A(t)Bγ|f(x)−fA(t)Bγ|qw(x)dx1/qdt≤∫Qpn|Φ(t)||detA(t)|pλG(A−1(t),β/q)G(A(t),β(λ+1/q))×1w(A(t)Bγ)1+λq∫A(t)Bγ|f(x)−fA(t)Bγ|qw(x)dx1/qdt≤∥f∥CMOq,λ(w,Qpn)∫Qpn|Φ(t)||detA(t)|pλG(A−1(t),β/q)G(A(t),β(λ+1/q))dt.








Thus, we completed the proof of Theorem 1.




3.2. Proof of Theorem 2


Let f∈MKl,q1α1,λ(w,Qpn) and b∈CMOq(w,Qpn),


∥(HΦ,Abf)χk∥Lq2(w,Qpn)=∫Sk|∫QpnΦ(t)(b(x)−b(A(t)x))f(A(t)x)dt|q2w(x)dx1/q2≤∫Qpn|Φ(t)|∫Sk|(b(x)−b(A(t)x))f(A(t)x)|q2w(x)dx1/q2dt≤∫Qpn|Φ(t)|∫Sk|(b(x)−bBk)f(A(t)x)|q2w(x)dx1/q2dt+∫Qpn|Φ(t)|∫Sk|(bBk−bA(t)Bk)f(A(t)x)|q2w(x)dx1/q2dt+∫Qpn|Φ(t)|∫Sk|(b(A(t)x)−bA(t)Bk)f(A(t)x)|q2w(x)dx1/q2dt=I+II+III.











By Hölder’s inequality, p-adic change of variables and Proposition 1, we estimate I as below:


I≤∫Qpn|Φ(t)|∫Sk|b(x)−bBk|qw(x)dx1/q∫Sk|f(A(t)x)|q1w(x)dx1/q1dt≤∫Qpn|Φ(t)|∫Bk|b(x)−bBk|qw(x)dx1/q×∫A(t)Sk|f(x)|q1|detA−1(t)|pG(A−1(t),β)w(x)dx1/q1dt≤∫Qpn|Φ(t)||detA−1(t)|p1/q1G(A−1(t),β/q1)×∫Bk|b(x)−bBk|qw(x)dx1/q∫A(t)Sk|f(x)|q1w(x)dx1/q1dt≤w(Bk)1/q∥b∥CMOq(w,Qpn)×∫Qpn|Φ(t)||detA−1(t)|p1/q1G(A−1(t),β/q1)∥fχA(t)Sk∥Lq1(w,Qpn)dt.











Similarly for III, first making p-adic change of variables and then applying Hölder’s inequality, we have


III≤∫Qpn|Φ(t)|∫Sk|(b(A(t)x)−bA(t)Bk)f(A(t)x)|q2w(x)dx1/q2dt=∫Qpn|Φ(t)|detA−1(t)|p1/q2G(A−1(t),β/q2)|×∫A(t)Sk|(b(x)−bA(t)Bk)f(x)|q2w(x)dx1/q2dt≤∫Qpn|Φ(t)|detA−1(t)|p1/q2G(A−1(t),β/q2)|×∫A(t)Sk|b(x)−bA(t)Bk|qw(x)dx1/q∫A(t)Sk|f(x)|q1w(x)dx1/q1dt≤∫Qpn|Φ(t)|detA−1(t)|p1/q2G(A−1(t),β/q2)|×w(A(t)Bk)1/q∥b∥CMOq(w,Qpn)∥fχA(t)Sk∥Lq1(w,Qpn)dt.








Since 1/q2=1/q+1/q1, therefore, by virtue of the property (8) and Lemma 3, the above inequality becomes


III≤∥b∥CMOq(w,Qpn)∫Qpn|Φ(t)|detA−1(t)|p1/q2G(A−1(t),β/q1)G(A−1(t),β/q)|×G(A(t),β/q)|detA(t)|p1/qw(Bk)1/q∥fχA(t)Sk∥Lq1(w,Qpn)dt=w(Bk)1/q∥b∥CMOq(w,Qpn)∫Qpn|Φ(t)||detA−1(t)|p1/q1G(A−1(t),β/q1)×G(A−1(t),β/q)G(A(t),β/q)∥fχA(t)Sk∥Lq1(w,Qpn)dt.



(9)







The estimation of II is very much similar to that of I and III except that in this case, additionally, we have to bound the term |bBk−bA(t)Bk|. Therefore, in this case, we will make use of the Hölder’s inequality, Lemma 2 and p-adic change of variables to have


II≤∫Qpn|Φ(t)|∫Sk|f(A(t)x)|q1w(x)dx1/q1∫Skw(x)dx1/q|bBk−bA(t)Bk|dt≤w(S0)1/qw(Bk)1/q×∫Qpn|Φ(t)||detA−1(t)|p1/q1G(A−1(t),β/q1)∥fχA(t)Sk∥Lq1(w,Qpn)|bBk−bA(t)Bk|dt.











Next, if ∥A(t)∥>1, then there exists an integer j≥0, such that


pj<∥A(t)∥≤pj+1.








Therefore,


|bBk−bA(t)Bk|≤∑i=0j|bBk+i−bBk+i+1|+|bBk+j+1−bA(t)Bk|.











A use of Hölder’s Inequality and the definition of CMOq(w,Qpn) yields


|bBk+i−bBk+i+1|≤1|Bk+i|∫Bk+i|b(x)−bBk+i+1|dx≤C|Bk+i+1|∫Bk+i+1|b(x)−bBk+i+1|dx≤C|Bk+i+1|∫Bk+i+1|b(x)−bBk+i+1|qw(x)dx1/q×∫Bk+i+1w(x)q′/q1/q′≤Cw(Bk+i+1)1/q|Bk+i+1|∫Bk+i+1|x|p−βq′/q1/q′∥b∥CMOq(w,Qpn)≤Cp(n+β)(k+i+1)/qp(k+i+1)np(k+i+1)(−β/q+n/q′)∥b∥CMOq(w,Qpn)=C∥b∥CMOq(w,Qpn).








The other term can be treated in a similar way as below


|bBk+j+1−bA(t)Bk|≤1|A(t)Bk|∫A(t)Bk|b(x)−bBk+j+1|dx≤1|A(t)Bk|∫Bk+j+1|b(x)−bBk+j+1|qw(x)dx1/q×∫Bk+j+1w(x)−q′/q1/q′≤w(Bk+j+1)1/q|A(t)Bk|∫Bk+j+1|x|p−βq′/qdx1/q′×∥b∥CMOq(w,Qpn)≤p(n+β)(k+j+1)/q|detA(t)|ppknp(k+j+1)(−β/q+n/q′)∥b∥CMOq(w,Qpn)=p(j+1)n|detA(t)|p∥b∥CMOq(w,Qpn)≤C∥A(t)∥n|detA(t)|p∥b∥CMOq(w,Qpn).








Therefore, for ∥A(t)∥>1


|bBk−bA(t)Bk|≤Cj+1+∥A(t)∥n|detA(t)|p∥b∥CMOq(w,Qpn)≤Clogp(∥A(t)∥p)+∥A(t)∥n|detA(t)|p∥b∥CMOq(w,Qpn).











When ∥A(t)∥≤1, a similar argument yields


|bBk−bA(t)Bk|≤Clogpp∥A(t)∥+∥A(t)∥n|detA(t)|p∥b∥CMOq(w,Qpn).











Therefore,


II≤Cw(Bk)1/q∥b∥CMOq(w,Qpn)∫Qpn|Φ(t)|detA−1(t)|p1/q1G(A−1(t),β/q1)|×∥A(t)∥n|detA(t)|p+1+maxlogp∥A(t)∥,logp1∥A(t)∥∥fχA(t)Sk∥Lq1(w,Qpn)dt.











Finally, we combine the estimates for I,II and III to have


∥(HΦ,Abf)χk∥Lq2(w,Qpn)≤Cw(Bk)1/q∥b∥CMOq(w,Qpn)×∫Qpnφ(t)∥A(t)∥n|detA(t)|p+1+maxlogp∥A(t)∥,logp1∥A(t)∥∥fχA(t)Sk∥Lq1(w,Qpn)dt.











In order to avoid repetition of the same factor in the subsequent calculations, we let


ψ(t)=φ(t)∥A(t)∥n|detA(t)|p+1+maxlogp(∥At)∥,logp1∥A(t)∥.








Also, it is easy to see that (see [29], Theorem 3.1)


∥fχA(t)Sk∥Lq1(w,Qpn)=∫A(t)Sk|f(x)|q1dx1/q1≤∫|x|p≤∥A(t)∥pk|f(x)|q1dx1/q1≤C∑m=−∞logp∥A(t)∥∥fχk+m∥Lq1(w,Qpn).



(10)




Therefore,


∥(HΦ,Abf)χk∥Lq2(w,Qpn)≤Cw(Bk)1/q∥b∥CMOq(w,Qpn)∫Qpnψ(t)∑m=−∞logp∥A(t)∥∥fχk+m∥Lq1(w,Qpn)dt.



(11)







Now, by the definition of Morrey-Herz space, the inequality (11), Minkowski’s inequality and the condition α1=α2+n/q, we have


∥HΦ,Abf∥MKl,q2α2,λ(w,Qpn)=supk0∈Zp−k0λ(n+β)/n∑k=−∞k0pkα2(n+β)l/n∥(HΦ,Abf)χk∥Lq(w,Qpn)l1/l≤C∥b∥CMOq(w,Qpn)∫Qpnψ(t)supk0∈Zp−k0λ(n+β)/n×∑k=−∞k0∑m=−∞logp∥A(t)∥pk(α2+n/q)(n+β)/n∥fχk+m∥Lq1(w,Qpn)l1/ldt≤C∥b∥CMOq(w,Qpn)∫Qpnψ(t)supk0∈Zp−k0λ(n+β)/n×∑k=−∞k0∑m=−∞logp∥A(t)∥pkα1(n+β)/n∥fχk+m∥Lq1(w,Qpn)l1/ldt≤C∥b∥CMOq(w,Qpn)∫Qpnψ(t)∑m=−∞logp∥A(t)∥pm(λ−α1)(n+β)/n×supk0∈Zp−(k0+m)λ(n+β)/n∑k=−∞k0+mpkα1(n+β)l/n∥fχk∥Lq1(w,Qpn)l1/ldt.








Since α1<λ, as a consequence


∑m=−∞logp∥A(t)∥pm(λ−α1)(n+β)/n=∥A(t)∥(λ−α1)(n+β)/n1−p(α1−λ)(n+β)/n.



(12)




Hence,


∥HΦ,Abf∥MKl,q2α2,λ(w,Qpn)≤C∥b∥CMOq(w,Qpn)∥f∥MKl,q1α1,λ(w,Qpn)×∫Qpnψ(t)∥A(t)∥(λ−α1)(n+β)/ndt.








Thus the proof of the Theorem 2 is completed.




3.3. Proof of Theorem 3


Let f∈MKl,q1α1,λ(w,Qpn), b∈Λδ(Qpn). By applying the Minkowski’s inequality and the Holder’s inequality, we get


∥(HΦ,Abf)χk∥Lq2(w,Qpn)=∫Sk|∫QpnΦ(t)f(A(t)x)(b(x)−b(A(t)x))dt|q2w(x)dx1/q2≤∫Qpn|Φ(t)|∫Sk|f(A(t)x)(b(x)−b(A(t)x))|q2w(x)dx1/q2dt≤∫Qpn|Φ(t)|∫Sk|f(A(t)x)|q1w(x)dx1/q1×∫Sk|b(x)−b(A(t)x)|rw(x)dx1/rdt,



(13)




where 1/r=1/q2−1/q1. By the definition of Lipschitz space Λδ(Qpn) we have


|b(x)−b(A(t)x)|≤C∥b∥Λδ(Qpn)|x−A(t)x|pδ≤C∥b∥Λδ(Qpn)max{|x|p,|A(t)x|p}δ≤C∥b∥Λδ(Qpn)max{|x|p,∥A(t)∥|x|p}δ≤pkδC∥b∥Λδ(Qpn)max{1,∥A(t)∥δ},



(14)




for every x∈Sk and for almost everywhere t∈Qpn.



By p-adic change of variables, Proposition 1, inequality (14) together with w(Sk)w(B0)=w(Bk)w(S0), inequality (13) assumes the following form


∥(HΦ,Abf)χk∥Lq2(w,Qpn)≤C∥b∥Λδ(Qpn)∫Qpn|Φ(t)|w(Bk)δ/(n+β)+1/r∥fχA(t)Sk∥Lq1(w,Qpn)×max{1,∥A(t)∥δ}|detA−1(t)|p1/q1G(A−1(t),β/q1)dt.



(15)




Furthermore, in view of inequality (10) and 1/r=1/q2−1/q1, we get


∥(HΦ,Abf)χk∥Lq2(w,Qpn)≤C∥b∥Λδ(Qpn)w(Bk)δ/(n+β)+1/q2−1/q1∫Qpn∑m=−∞logp∥A(t)∥∥fχk+m∥Lq1(w,Qpn)×|Φ(t)|max{1,∥A(t)∥δ}|detA−1(t)|p1/q1G(A−1(t),β/q1)dt.



(16)







The factor |Φ(t)|max{1,∥A(t)∥δ}|detA−1(t)|p1/q1G(A−1(t),β/q1) repeats itself many times in the remaining proof of this theorem, so we let it be denoted by ϕ(t). With this we break our proof in the following two cases:



Case 1: λ>0, in this case we first evaluate the inner norm ∥fχk+m∥Lq1(w,Qpn) as below:


∥fχk+m∥Lq1(w,Qpn)≤w(Bk+m)−α1/n∑j=−∞k+mw(Bj)α1l/n∥fχj∥Lq1(w,Qpn)l1/l=w(Bk+m)−α1/nw(Bk+m)λ/n×w(Bk+m)−λ/n∑j=−∞k+mw(Bj)α1l/n∥fχj∥Lq1(w,Qpn)l1/l=w(Bk+m)(λ−α1)/n∥f∥MKl,q1α1,λ(w,Qpn)≤p(k+m)(n+β)(λ−α1)/n∥f∥MKl,q1α1,λ(w,Qpn).



(17)




Next, by virtue of Equation (12), the inequality (16) becomes


∥(HΦ,Abf)χk∥Lq2(w,Qpn)≤C∥b∥Λδ(Qpn)∥f∥MKl,q1α1,λ(w,Qpn)pk(n+β)(δ/(n+β)+1/q2−1/q1+(λ−α1)/n)×∫Qpnϕ(t)|∑m=−∞logp∥A(t)∥pm(n+β)(λ−α1)/ndt≤C∥b∥Λδ(Qpn)∥f∥MKl,q1α1,λ(w,Qpn)pk(n+β)(δ/(n+β)+1/q2−1/q1+(λ−α1)/n)×∫Qpnϕ(t)∥A(t)∥(n+β)(λ−α1)/ndt.








Therefore, by definition of Morrey-Herz space and α1=α2+nδ/(n+β)+n(1/q2−1/q1), we have


∥HΦ,Abf∥MKl,q1α2,λ(w,Qpn)≤C∥b∥Λδ(Qpn)∥f∥MKl,q1α1,λ(w,Qpn)supk0∈Zp−k0(n+β)λ/n×[∑k=−∞k0pkl(n+β)(α2/n+δ/(n+β)+1/q2−1/q1+(λ−α1)/n)×∫Qpnϕ(t)∥A(t)∥(n+β)(λ−α1)/ndtl]1/l≤C∥b∥Λδ(Qpn)∥f∥MKl,q1α1,λ(w,Qpn)∫Qpnϕ(t)∥A(t)∥(n+β)(λ−α1)/ndt×supk0∈Zp−k0(n+β)λ/n∑k=−∞k0pkl(n+β)λ/n1/l≤Cp(n+β)λ/n(pl(n+β)λ/n−1)1/lC∥b∥Λδ(Qpn)∥f∥MKl,q1α1,λ(w,Qpn)∫Qpnϕ(t)∥A(t)∥(n+β)(λ−α1)/ndt≤C∥b∥Λδ(Qpn)∥f∥MKl,q1α1,λ(w,Qpn)∫Qpnϕ(t)∥A(t)∥(n+β)(λ−α1)/ndt,








substituting back the value of ϕ(t) we get the desired result.



Case 2: λ=0 and l∈[1,∞).



In this case Morrey-Herz spaces are reduced to the Herz spaces. It is clear that


∥(HΦ,Abf)χk∥Lq2(w,Qpn)≤C∥b∥Λδ(Qpn)∫Qpnϕ(t)pk(n+β)(δ/(n+β)+1/q2−1/q1)∑m=−∞logp∥A(t)∥∥fχk+m∥Lq1(w,Qpn)dt.



(18)




Hence, by using the Minkowski’s inequality and α1=α2+nδ/(n+β)+n(1/q2−1/q1), we obtain


∥HΦ,Abf∥Kq2α2,l(w,Qpn)≤C∥b∥Λδ(Qpn){∑k=−∞+∞pk(n+β)α2l/n×∫Qpnϕ(t)pk(n+β)(δ/(n+β)+1/q2−1/q1)∑m=−∞logp∥A(t)∥∥fχk+m∥Lq1(w,Qpn)dtl}1/l≤C∥b∥Λδ(Qpn)∫Qpnϕ(t)∑k=−∞+∞∑m=−∞logp∥A(t)∥pk(n+β)α1/n∥fχk+m∥Lq1(w,Qpn)l1/ldt≤C∥b∥Λδ(Qpn)∫Qpnϕ(t)∑m=−∞logp∥A(t)∥p−m(n+β)α1/n∑k=−∞+∞pkl(n+β)α1/n∥fχk∥Lq1(w,Qpn)l1/ldt≤C∥b∥Λδ(Qpn)∥f∥Kq1α1,l(w,Qpn)×∫Qpn|Φ(t)|max{1,∥A(t)∥δ}|detA−1(t)|p1/q1G(A−1(t),β/q1)∥A(t)∥−(n+β)α1/ndt.



(19)




From the inequalities (18) and (19), we get the proof.





4. Conclusions


Here we employed some conditions on the norm of matrix A(t) to ensure the boundedness of the commutators of Hausdorff operator on p-adic Herz-Morrey spaces. An idea that can be employed on various situations to obtain boundedness results for the p-adic matrix Hausdorff operator and its commutators on different function spaces.
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