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Abstract: In this paper, the change of bases transformations between the Bernstein polynomial basis
and the Chebyshev polynomial basis of the fourth kind are studied and the matrices of transformation
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1. Introduction

This paper discusses and finds the matrices of transformation between Bernstein polynomials
and Chebyshev polynomials of the fourth kind. Both bases have some excellent advantages and there
is a need to convert polynomial forms between them. The Bernstein polynomials form the basis for
the Bézier curves and surfaces that are used in modeling and design and in many other applications.
The Bézier curves have many geometric properties like the fact that they are modeled by their control
points, lying in the convex hull of their control points, and the control polygon is tangent to the Bézier
curve. Calculus and degree raising and reduction of the Bézier curves are essential operations in
applications. In some cases, the orthogonality property of the Chebyshev polynomials simplifies
calculations and enables us to get the solution in explicit form. Thereafter, there is a need to change
bases transformations to get the solution in the Bézier form.

An example of a specific essential operation is the Bernstein polynomials [1–3], which are not
orthogonal while possessing interesting geometric properties. On the other hand, the Chebyshev
polynomials of fourth kind [4,5] are orthogonal, but do not have geometric properties that are in
Bernstein polynomials. When the geometric properties are needed, but the curve is given in Chebyshev
polynomials of fourth kind, change of bases transformations should be carried out. Some cases are
given in [6–8]. These change of bases transformations can also be studied for the cases between the
Chebyshev polynomials of fourth kind and the q-Bernstein polynomials in [9], degenerate Bernstein
polynomials in [10], and the multidimensional Bernstein polynomials in [11]. This paper is organized
as follows. In Section 2, materials, methods, and some preliminary results are stated and proved.
In Section 3, the main result of the matrices of change of bases transformations are derived. In Section 4,
the proof of the main theorem together with two examples are presented.

Mathematics 2019, 7, 120; doi:10.3390/math7020120 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-2896-2290
http://www.mdpi.com/2227-7390/7/2/120?type=check_update&version=1
http://dx.doi.org/10.3390/math7020120
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 120 2 of 9

In this section, materials related to this paper are stated. This includes defining the main concepts,
giving their properties, and related notations. The Chebyshev polynomials of fourth kind satisfy the
following linear homogeneous differential equation of the second order

(1− x2)y
′′ − (1 + 2x)y

′
+ n(n + 1)y = 0.

The Chebyshev polynomials of the fourth kind, Wn(x), are orthogonal polynomials on [−1, 1]

with respect to the weight function w(x) =
√

1−x
1+x . The following recurrence relation is used to acquire

the Chebyshev polynomials of the fourth kind:

Wn(u) = 2(2u− 1) Wn−1(u)−Wn−2(u), n = 2, 3, 4, . . . ,

where W0(u) = 1 and W1(u) = 4u− 1, u ∈ [0, 1]. The Chebyshev polynomials have many applications
in science and engineering; the best uniform approximation is characterized by the Chebyshev
polynomials of first kind, the weighted least squares approximations are characterized by the relevant
weight of Chebyshev polynomials of first, second, third, and fourth kinds. In Computer Aided
Design (CAD), the weighted degree reduction of the Bézier curves is handled by the Chebyshev
polynomials.For more details about the Chebyshev polynomials of the fourth kind and their
applications, see [4,5,12]. Other related applications and properties are found in [13–21].

The following notation

Bn
i (u) =

(
n
i

)
(1− u)n−i ui, u ∈ [0, 1], i = 0, . . . , n,

is used for the Bernstein polynomials of degree n over the interval [0, 1], where

(
n
i

)
= n!

i! (n−i)! .

The Bernstein polynomials are the basis for the Bézier curves and surfaces. The Bernstein polynomials
are non-negative Bn

i (u) ≥ 0, ∀u ∈ [0, 1] and are symmetric in the sense Bn
i (u) = Bn

n−i(1− u), ∀u ∈
[0, 1], ∀i = 0, 1, . . . , n. The definite integrals of the Bernstein polynomials Bn

i (u), u ∈ [0, 1], i =

0, 1, . . . , n, are given by ∫ 1

0
Bn

i (u) du =
1

n + 1
, i = 0, 1, . . . , n.

For more on Bernstein polynomials, see [2, 5]. The factorial of an integer n is defined by

n! =

{
n(n− 1)(n− 2) · · · (2)(1), n > 0
0 , o.w

The half-integer factorial is defined as follows:

(n− 1
2
)! = (n− 1

2
)(n− 3

2
) · · · (3

2
)(

1
2
).

The double factorial of an integer n is defined by:

n!! =

{
n(n− 2) · · · (4)(2), if n even
n(n− 2) · · · (3)(1), if n odd

.

2. Materials and Methods

The following results from [6,8] are used in the proof of the results in this paper.
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For every n > 0 and k = 0, 1, . . . , n, we have(
2n− 1
2k− 1

)
(

n− 1
k− 1

) =
(2n− 1)!!

(2k− 1)!!(2n− 2k− 1)!!
. (1)

The combinatorials with an integer plus and minus one half forms satisfy the following relation:

(
n− 1

2
n− k

)(
n + 1

2
k

)
=

(
2n− 1

n

)(
2n + 1

2k

)
22n−1 . (2)

The beta function with integer plus one half as parameters has the following equality:

β(z +
1
2

, k +
1
2
) =

π

2z+k
(2z− 1)!!(2k− 1)!!

(z + k)!
. (3)

The Chebyshev polynomial of the fourth kind Wn(u) of degree n is expressed in the Bernstein
basis Bn

0 (u), Bn
1 (u), . . . , Bn

n(u) as follows:

Wn(u) = (2n + 1)!!
n

∑
k=0

(−1)n−k

(2k + 1)!! (2n− 2k− 1)!!
Bn

k (u). (4)

In the next lemma the integral of the Bernstein and the Chebyshev polynomials of the fourth kind

with respect to the weight function w(u) =
√

1−u
u are found.

Lemma 1. The integral of the product of the Bernstein polynomial of degree n and the Chebyshev polynomials
of the fourth kind of degree j is given by:

Ikj =
∫ 1

0

√
1− u

u
Bn

k (u) Wj(u)du

=

(
n
k

)
π

22n+2j+1

j

∑
i=0

(−1)j−1

(
2j + 1
2i + 1

)(
2k + 2i
k + i

)(
2n + 2j− k− 2i + 1
n + j− k− i

)
(

n + j + 1
k + i + 1

) .

Proof of Lemma 1. The proof of this lemma is accomplished using Equations (2)–(4) as follows:

Ikj =
∫ 1

0
Bn

k (u)Wj(u)(u)
−1
2 (1− u)

1
2 du.

Using Equation (4) yields

Ikj =
∫ 1

0
Bn

k (u)(1− u)
1
2 (u)

−1
2 (2j + 1)!!

j

∑
i=0

(−1)j−i

(2i + 1)!!(2j− 2i− 1)!!
Bj

i (u)du

=
∫ 1

0

(
n
k

)
(1− u)n−k (u)k(1− u)

1
2 (u)

−1
2 (2j + 1)!! ×
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j

∑
i=0

(−1)j−i

(2i + 1)!!(2j− 2i− 1)!!

(
j
i

)
(1− u)j−i(u)idu

=
∫ 1

0

(
n
k

)
(1− u)n−k+ 1

2 (u)k− 1
2 (2j + 1)!! ×

j

∑
i=0

(−1)j−i

(2i + 1)!!(2j− 2i− 1)!!

(
j
i

)
(1− u)j−i(u)idu

=

(
n
k

)
(2j + 1)!!

j

∑
i=0

(−1)j−i

(
j
i

)
(2i + 1)!!(2j− 2i− 1)!!

∫ 1

0
(1− u)n+j−(k+i)+ 1

2 uk+i− 1
2 du.

By Equation (3), we get

Ikj =

(
n
k

)
(2j + 1)!!

j

∑
i=0

(−1)j−i

(
j
i

)
(2i + 1)!!(2j− 2i− 1)!!

β(n + j− k− i +
1
2
+ 1, k + i +

1
2
).

Using Equation (3) yields

Ikj =

(
n
k

)
(2j + 1)!!

j

∑
i=0

(−1)j−i

(
j
i

)
(2i + 1)!!(2j− 2i− 1)!!

×

π(2(n + j− k− i + 1)− 1)!! (2(k + i)− 1)!!
2n+j+1 (n + j + 1)!

=

(
n
k

)
π

2n+j+1

j

∑
i=0

(−1)j−i

(
j
i

)
(2n + 2j− 2k− 2i + 1)!!(2k + 2i− 1)!!(2j + 1)!!

(2i + 1)!!(2j− 2i− 1)!!(n + j + 1)!
.

Using Equation (1) gives

Ikj =

(
n
k

)
π

2n+j+1

j

∑
i=0

(−1)j−i

(
j
i

)
(2n + 2j− 2k− 2i + 1)!!(2k + 2i− 1)

(
2j + 1
2i + 1

)

(n + j + 1)!

(
j
i

)

=

(
n
k

)
π

2n+j+1

j

∑
i=0

(−1)j−i (2n + 2j− 2k− 2i + 1)!!(2k + 2i− 1)

(
2j + 1
2i + 1

)
(n + j + 1)!

=

(
n
k

)
π

23n+3j+1

j

∑
i=0

(−1)j−i

(
2j + 1
2i + 1

)(
2n + 2j− 2k− 2i
n + j− k− i

)
1

×

(
2k + 2i
k + i

)
(2n + 2j− 2k− 2i)!!(2k + 2i)!!(2n + 2j− 2k− 2i + 1)

(n + j + 1)!
.
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From the definition of the double factorial of the even integer we get:

Ikj =

(
n
k

)
π

23n+3j+1

j

∑
i=0

(−1)j−i

(
2j + 1
2i + 1

)(
2n + 2j− 2k− 2i
n + j− k− i

)
(n + j + 1)

×

(
2k + 2i
k + i

)
(2n + 2j− 2k− 2i + 1)(n + j− k− i)!(k + i)!

(n + j)!

=

(
n
k

)
π

22n+2j+1

j

∑
i=0

(−1)j−i

(
2j + 1
2i + 1

)(
2k + 2i
k + i

)
(

n + j
k + i

) ×

(
2n + 2j− 2k− 2i
n + j− i− k

)
(2n + 2j− 2k− 2i + 1)

(n + j + 1)
.

With some more simple calculations, the result is confirmed.

3. Results

The matrices of converting the bases between the Chebyshev polynomial of the fourth kind and
the Bernstein polynomials are presented in this section. Given a polynomial Pn(u), u ∈ [0, 1] written in
the Bernstein basis form and in the Chebyshev polynomials of the fourth kind form as follows:

Pn(u) =
n

∑
j=0

cj Bn
j (u) = Bn cn, (5)

and

Pn(u) =
n

∑
k=0

tkWk(u) = Wn tn, (6)

where
Bn = (Bn

0 (u), Bn
1 (u), ..., Bn

n(u)), cn = (c0, c1, . . . , cn)
T ,

Wn = (Wn
0 (u), Wn

1 (u), ..., Wn
n (u)), tn = (t0, t1, ..., tn)

T .

The (n + 1)× (n + 1) matrices of transformation M and its inverse M−1 are to be found. They
fulfill the following relations:

cj =
n

∑
k=0

Mjk tk and tj =
n

∑
k=0

M−1
jk ck.

In matrix form, we have
cn = Mtn and tn = M−1 cn.

The Chebyshev polynomial of the fourth kind Wk(u) is presented using the Bernstein polynomials
in the following form:

Wk(u) =
n

∑
j=0

Nkj Bn
j (u), (7)
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where N is the matrix of change of bases transformation of dimension (n + 1)× (n + 1). Multiply with
tk and take the summation over k to get

n

∑
k=0

tk Wk(u) =
n

∑
k=0

tk

n

∑
j=0

Nkj Bn
j (u)

=
n

∑
j=0

n

∑
k=0

tk Nkj Bn
j (u).

Compare it with Equation (5) to get

cj =
n

∑
k=0

tk Nkj. (8)

Using the following relations cn = M tn and tn = M−1 cn yields

cj =
n

∑
k=0

Mjk tk, j = 0, 1, . . . , n,

and

tk =
n

∑
j=0

M−1
jk cj, k = 0, 1, . . . , n.

By comparing with Equation (8), we get Mjk = Nkj; therefore, M = NT . The following examples
should motivate finding general formulas for these change of basis transformations.

Example 1. For n = 1: we have P1(u) = 1B0 + 1B1 = 1 = 1W0 + 0W1. Thus,

C =

[
1
1

]
, T =

[
1
0

]
.

Since B1
0(u) = 1− u, B1

1(u) = u, and W0(u) = 1, W1(u) = 4u− 1, thus

M−1
00 =

1
4

, M−1
01 =

3
4

, M−1
10 =

−1
4

, M−1
11 =

1
4

.

Hence

M−1C =

 1
4

−1
4

3
4

1
4

 [ 1
1

]
=

[
1
0

]
= T.

Example 2. For n = 2, we have P2(u) = 1B0 + 1B1 + 1B2 = 1 = 1W0 + 0W1 + 0W2. Thus

C =

 1
1
1

 , T =

 1
0
0

 .

Since B2
0(u) = u2 − 2u + 1, B2

1(u) = 2u − 2u2, B2
2(u) = u2, W0(u) = 1, W1(u) = 4u− 1,

W2(u) = 16u2 − 12u + 1, thus

M−1
00 =

1
8

, M−1
01 =

1
4

, M−1
02 =

5
8

, M−1
10 =

−12
64

, M−1
11 =

−8
64

,

M−1
12 =

20
64

, M−1
20 =

2
8

, M−1
21 =

−1
8

, M−1
22 =

−1
8

.
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Thus

M−1C =


1
8

−12
64

2
8

1
4

−8
64

−1
8

5
8

20
64

−1
8


 1

1
1

 =

 1
0
0

 = T.

Theorem 1. The elements of the Matrix M−1 that satisfies Bn = Wn M−1 which transforms from the Bernstein
polynomial basis into the Chebyshev polynomial basis of the fourth kind for 0 ≤ j, k ≤ n are given by:

M−1
jk =

(
n
k

)
4n+j

j

∑
i=0

(−1)j−i

(
2j + 1
2i + 1

)(
2k + 2i
k + i

)(
2n + 2j− 2k− 2i + 1

n + j− k− i

)
(

n + j + 1
k + i + 1

) .

4. Discussion

In this section, the proof of the main theorem is given.

Proof of Theorem 1. In order to get the elements M−1
jk , we want to find the elements N−1

ki first then

we get the elements M−1
jk by transposing the elements N−1

kj . We know that

Bn
k (u) =

n

∑
i=0

N−1
ki Wi(u).

Multiply the previous equation by Wj(u)( 1−u
u )

1
2 and then integrate from 0 to 1 to get

∫ 1

0
Bn

k (u)Wj(u)(
1− u

u
)

1
2 du =

n

∑
i=0

∫ 1

0
(

1− u
u

)
1
2 N−1

ki Wi(u)Wj(u)du.

By the orthogonality property of the Chebyshev polynomials of the fourth kind, we get

∫ 1

0
Bn

k (u)Wj(u)(
1− u

u
)

1
2 du = N−1

kj

∫ 1

0
(

1− u
u

)
1
2 Wi(u)Wj(u)du.

Thus, ∫ 1

0
Bn

k (u)Wj(u)(
1− u

u
)

1
2 du = N−1

kj
π

2
.

Therefore,

N−1
kj =

2
π

∫ 1

0
Bn

k (u)Wj(u)(
1− u

u
)

1
2 du.

After applying the Lemma we have

N−1
kj =

(
n
k

)
2n+j

n

∑
i=0

(−1)j−i

(
j
i

)
(2n + 2j− 2k− 2i + 1)!!(2k + 2i− 1)!!(2j− 1)!!

(2i− 1)!!(2j− 2i + 1)!!(n + j + 1)!
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and

N−1
kj =

2
π

(
n
k

)
π

2× 4n+j

n

∑
i=0

(−1)j−i

(
2j + 1
2i + 1

)(
2k + 2i
k + i

)(
2n + 2j− 2k− 2i + 1

n + j− k− i

)
(

n + j + 1
k + i + 1

) .

By transposing N−1
kj we get M−1

jk .

Examples 1 and 2 can be verified using Theorem 1.
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