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Abstract: Rhythmic neural firing is thought to underlie the operation of neural function. This triggers
the construction of dynamical network models to investigate how the rhythms interact with each
other. Recently, an approach concerning neural path pruning has been proposed in a dynamical
network system, in which critical neuronal connections are identified and adjusted according to
the pruning maps, enabling neurons to produce rhythmic, oscillatory activity in simulation. Here,
we construct a sort of homomorphic functions based on different rhythms of neural firing in network
dynamics. Armed with the homomorphic functions, the pruning maps can be simply expressed in
terms of interactive rhythms of neural firing and allow a concrete analysis of coupling operators to
control network dynamics. Such formulation of pruning maps is applied to probe the consolidation
of rhythmic patterns between layers of neurons in feedforward neural networks.

Keywords: decirculation process; network dynamics; neural path pruning; pruning maps; rhythmic
neural firing

1. Introduction

Rhythms are ubiquitous and have been shown to play an important role in living organisms [1,2].
Lines of research on the roles of rhythms are studied, including synchronous flashing of fireflies [3],
pacemaker cells of the heart [4], synchronization of pulse-coupled oscillators [5,6], synchronous neural
activity propagating in scale-free networks, random networks, and cortical neural networks [7,8].
The central questions in the above research concern the origin and the control of rhythms, that is,
the issue of understanding what causes the rhythms and how the rhythms interact with each other.
Especially in neural network dynamics, an important issue is to probe activity-dependent plasticity of
neural connections entwined with rhythms [9–11]. Such a kind of plasticity is claimed to be the heart
of the organization of behavior [12–15].

Classic models of neural networks have achieved state-of-the-art performances in
classification [16–18], object detection [19–21], and instance segmentation [22–24]. One of the key
structures involved in network architecture is convolution. Many operators used for edge detection or
pattern recognition are convolved with input images to get different types of derivative measurement
in the feature-extracting process. Input images are usually structural with geometric features.
Thus, convolution can be applied to get features from input images, which are then processed
by other parts of network architecture to determine a maximal score for outcome prediction. Here,
instead of concerning the geometric feature extraction, our focus is on the neural network models
receiving and reactivating with rhythms. Rhythms can be the features of inputs sending to neural
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works and also be the features of outputs activating by assemblies of neurons in neural networks.
We search for a rule to derive operators from rhythmic firing of neurons. Such operators are acting
on the adjustment of neural connections and hence can be convolved with the input rhythm to get
features and to propagate features for rhythm formation.

Our point of departure comes from the decirculation process in neural network dynamics [25,26].
The decirculation process describes adaptation of network structure that is crucial for evolutionary
neural networks to proceed from one circulating state to another. Two sorts of plasticity operators are
derived to modify network structure for decirculation process [27]. One is to measure synchronous
neural activity in a circulating state, whereas the other is to measure self-sustaining neural activity in a
circulating state. They meet the neurobiological concept called Hebbian synaptic plasticity [12–14].
Such plasticity operation reflects an internal control in neural network dynamics, enabling neurons
to produce rhythmic, oscillatory activity [27]. Recently, the concept of decirculation process has been
extended to the concept of neural path pruning [28]. There, by setting the beginning and the ending of
a desired flow of neural firing states, a pruning map can be conducted to indicate critical neuronal
connections which have significant controllability in eliminating the flow of neural firing states.
On this basis, a simulation result shows that a mobile robot guided by neural network dynamics can
be exploited to change neuronal connections determined critically by neural path pruning with rewards
and punishment. The mobile robot may result in a good performance of fault-tolerant behavior of
tracking (adaptive matching of sensory inputs to motor outputs) [28].

Neural path pruning paves an alternative way to derive operators convolving with signals and
controlling neural network dynamics. This motivates us to formulate pruning maps with rhythmic
neural firing, which may induce a framework of feedforward neural networks for rhythm formation.

2. Theoretical Framework

The model description follows. Let {0, 1}n be the n-dimensional state space consisting of all
vectors x = (x1, x2, ..., xn), with each component xi being 0 or 1. Consider a dynamical system of n
coupled neurons, which is modeled by the equation [25,26]:

x(t + 1) = HA(x(t), s(t)), t = 0, 1, . . . , (1)

where x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ {0, 1}n is a vector of neural firing states at time t, with each
component xi(t) representing the firing state of neuron i at time t; A = (aij) ∈ Mn(R) is a coupling
weight matrix of the n coupled neurons (be they agents in a recurrent or feedforward neural network),
with each entry aij representing the coupling weight underlying the connection from j to i; s(t) ⊂
{1, 2, . . . , n} denotes an ensemble of neurons which adjust their states at time t; and HA(·, s(t)) is a
transition function whose ith component is defined by

[HA(x, s(t))]i = 1l

(
n

∑
j=1

aijxj − bi

)
if i ∈ s(t), (2)

otherwise [HA(x, s(t))]i = xi, where bi ∈ R is a firing threshold of neuron i for i = 1, 2, . . . , n and
the function 1l is the Heaviside function. Consider a flow Ω = [x0, x1, . . . , xp] of neural firing states
in {0, 1}n, where p > 1, x0, x1, . . . , xp ∈ {0, 1}n, and x0 6= xi for some i ∈ {1, 2, . . . , p}. Specifically,
if x0 = xp within Ω, then Ω is said to be a loop of neural firing states in {0, 1}n. For each i, j = 1, 2, . . . , n,
an integer, denoted cij(Ω), is assigned according to the rule:

cij(Ω) = x0
j (x0

i − x1
i ) + x1

j (x1
i − x2

i ) + · · ·+ xp−1
j (xp−1

i − xp
i ). (3)
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The matrix C(Ω) = (cij(Ω)) is called the pruning map of Ω. Thus,

C(Ω) =



p

∑
m=1

xm−1
1 (xm−1

1 − xm
1 ) · · ·

p

∑
m=1

xm−1
n (xm−1

1 − xm
1 )

...
. . .

...
p

∑
m=1

xm−1
1 (xm−1

n − xm
n ) · · ·

p

∑
m=1

xm−1
n (xm−1

n − xm
n )

 . (4)

The pruning map C(Ω) induces the linear functional A −→ 〈A, C(Ω)〉, which is defined on the
Hilbert space Mn(R) of all real n× n matrices endowed with the Hilbert–Schmidt inner product 〈·, ·〉,
where 〈A, C(Ω)〉 = ∑i,j aijcij(Ω) for each A = (aij) ∈ Mn(R). Let 〈x, y〉 be the usual inner product of
x and y in Rn. With these notions, a basic theorem reveals the determination of whether the neural
connections identified by the pruning map are crucial to eliminate the flow of neural firing states in
the dynamics of the neural network. It was stated in [27,28] as follows.

Theorem 1. Let Ω = [x0, x1, . . . , xp] be a flow of neural firing states in {0, 1}n. If A ∈ Mn(R) and
b ∈ Rn satisfy

〈A, C(Ω)〉 >
〈

b, x0 − xp
〉

, (5)

then for any initial neural firing state x(0) ∈ {0, 1}n and any updating s(t) ⊂ {1, 2, . . . , n}, t = 0, 1, . . . ,
the flow x(t) encoded by Equation (1) cannot behave in

x(T) = x0, x(T + 1) = x1, . . . , x(T + p) = xp (6)

for each T = 0, 1, . . . .

Theorem 1 is based on the concept of neural path pruning. It points out a regulatory regime for
network formation. To show this, consider a flow Ω = [x0, x1, . . . , xp] and a coupling weight matrix
A = (aij) ∈ Mn(R). If we choose a coupling operator D = (dij) ∈ Mn(R) such that 〈D, C(Ω)〉 ≥ 0
(respectively, 〈D, C(Ω)〉 ≤ 0), then

〈A + D, C(Ω)〉 ≥ 〈A, C(Ω)〉 (7)

(resp., 〈A + D, C(Ω)〉 ≤ 〈A, C(Ω)〉). (8)

Since the quantity
〈
b, x0 − xp〉 is determined only by the flow Ω and the threshold b, Theorem 1

coupled with the inequality in Equation (7) (respectively, the inequality in Equation (8)) suggests that,
given the dynamical system

x(t + 1) = HA+D(x(t), s(t)), t = 0, 1, . . . , (9)

the change of the coupling weight matrix from A to A + D may enhance (respectively, inhibit) the
effect of flow elimination on Ω.

We go further to probe the pruning map with a desired flow of rhythmic neural firing. Each entry
in the pruning map may be represented in terms of a quantity related to the firing rhythms of individual
neurons. In so doing, we can directly extract information from the pruning map concerning how the
rhythms interact with each other. Specifically, for feedforward neural networks, the pruning map
provides a recipe to probe the interaction of rhythms between layers, which may reveal a consolidated
rule to keep neurons firing in their specific rhythms consistently.
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3. Main Results

Assume that neuron i fires in rhythm ri ∈ N for i = 1, 2, . . . , n. Let p = lcm(r1, r2, . . . , rn),
where lcm(r1, r2, . . . , rn) denotes the least common multiple of r1, r2, . . . , rn. For each i = 1, 2, . . . , n, let
mi be a nonnegative integer less than ri, denoting the initial phase of rhythmic neural firing. Thus,
the flow with neurons firing in rhythm r1, r2, . . . , rn and in phase m1, m2, . . . , mn can be described as

Ω = [x0, x1, . . . , xp], (10)

where xm
i = 1 if m = mi + kri for k = 0, 1, . . . , b(p− mi)/ric and i = 1, 2, . . . , n; otherwise, xm

i = 0.
Here, the notation brc denotes the largest integer less than or equal to r ∈ R. Theorem 2 represents a
matrix decomposition formula of the pruning map underlying rhythmic neural firing.

Theorem 2. Let Ω = [x0, x1, . . . , xp] be a flow of rhythmic neural firing states given in Equation (10).
For each i, j = 1, 2, . . . , n, denote by lcm(ri, rj) the least common multiple of ri and rj, and gcd(ri, rj) the
greatest common divisor of ri and rj. Let [mi]gcd(ri ,rj)

denote the nonnegative integer less than gcd(ri, rj)

such that
[mi]gcd(ri ,rj)

≡ mi mod gcd(ri, rj). (11)

Then, the pruning map C(Ω) can be formulated by C(Ω) = Ĉ(Ω) + C\(Ω), where Ĉ(Ω) = (ĉij(Ω)) is a
symmetric matrix whose non-zero entries are given by

ĉij(Ω) = ĉji(Ω) = −p/lcm(ri, rj) if gcd(ri, rj) = 2 and [mj + 1]gcd(ri ,rj)
= [mi]gcd(ri ,rj)

, (12)

ĉij(Ω) = ĉji(Ω) = p/lcm(ri, rj) if gcd(ri, rj) = 2 and [mj]gcd(ri ,rj)
= [mi]gcd(ri ,rj)

, (13)

and C\(Ω) = (c\ij(Ω)) is a non-symmetric matrix whose non-zero entries are given by

c\ij(Ω) = −p/lcm(ri, rj) if gcd(ri, rj) > 2 and [mj + 1]gcd(ri ,rj)
= [mi]gcd(ri ,rj)

, (14)

c\ij(Ω) = c\ji(Ω) = p/lcm(ri, rj) if gcd(ri, rj) > 2 and [mj]gcd(ri ,rj)
= [mi]gcd(ri ,rj)

. (15)

Proof. To prove Theorem 2, note that if mj > 0, then 1 6= rj > mj > 0 and

(lcm(r1, r2, . . . , rn)− 1)/rj ≥ (p−mj)/rj ≥ (lcm(r1, r2, . . . , rn)− rj + 1)/rj. (16)

Thus, we have

b(p−mj)/rjc =
{

lcm(r1, r2, . . . , rn)/rj − 1 if mj 6= 0,
lcm(r1, r2, . . . , rn)/rj if mj = 0.

(17)

Denote by k j = lcm(r1, r2, . . . , rn)/rj − 1 for j = 1, 2, . . . , n. Since xm
j = 1 if and only if m =

mj + krj for k = 0, 1, . . . , b(p−mj)/rjc, the ij-entry of the pruning map C(Ω) is reduced by

cij(Ω) =
p

∑
m=1

xm−1
j

(
xm−1

i − xm
i

)

=

kj

∑
k=0

x
mj+krj
j

(
x

mj+krj
i − x

mj+krj+1
i

)
(18)

=

kj

∑
k=0

(
x

mj+krj
i − x

mj+krj+1
i

)
.
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To compute Equation (18) for each pair of i, j = 1, 2, . . . , n, we estimate the numbers of elements
in the intersections{

mj + krj; k = 0, 1, . . . , k j
}⋂
{mi + kri; k = 0, 1, . . . , b(p−mi)/ric} (19)

and {
mj + krj + 1; k = 0, 1, . . . , k j

}⋂
{mi + kri; k = 0, 1, . . . , b(p−mi)/ric}. (20)

Denote by gij = gcd(ri, rj). Consider the spanning class 〈a〉ri (respectively, 〈a〉gij ) consisting of all
a + kri (respectively, a + kgij), where k runs through all the integers. Let

Zri = {〈0〉ri , 〈1〉ri , . . . , 〈ri − 1〉ri} (21)

and
Zgij = {〈0〉gij , 〈1〉gij , . . . , 〈gij − 1〉gij}. (22)

Define the mapping Ψ : Zri −→ Zgij by

Ψ(〈a〉ri ) = 〈a〉gij . (23)

Then, Ψ is a homomorphism of Zri onto Zgij . We claim that the kernel of Ψ, denoted by Ker Ψ, is

Ker Ψ =
{
〈krj〉ri ; k ∈ Z

}
. (24)

It is readily seen that krj ≡ 0 mod gij for each k ∈ Z, so 〈krj〉gij = 〈0〉gij , which implies that

Ker Ψ ⊃
{
〈krj〉ri ; k ∈ Z

}
. (25)

On the other hand, suppose 〈a〉ri ∈ Ker Ψ. Then, a = δgij for some δ ∈ Z. Since gij is the greatest
common divisor of ri and rj, there exist α, β ∈ Z such that

gij = αri + βrj. (26)

This shows that
a = δαri + δβrj, (27)

and hence a ≡ δβrj mod ri, proving the Equation (24). Thus, Zri /
{
〈krj〉ri ; k ∈ Z

}
is isomorphic to

Zgij . Denote by lij = lcm(ri, rj). Since
lij = (rirj/gij)|p (28)

and the order of the kernel of Ψ is |Ker Ψ| = |Zri |/|Zgij | = ri/gij, we may explicitly rewritten Ker Ψ by

Ker Ψ = {〈0〉ri , 〈rj〉ri , 〈2rj〉ri , . . . , 〈(ri/gij − 1)rj〉ri}
= {〈lij〉ri , 〈lij + rj〉ri , 〈lij + 2rj〉ri , . . . , 〈lij + (ri/gij − 1)rj〉ri} (29)

= · · ·
=

{
〈p− lij〉ri , 〈p− lij + rj〉ri , 〈p− lij + 2rj〉ri , . . . , 〈p− lij + (ri/gij − 1)rj〉ri

}
.

On the other hand, since

Ker Ψ = {〈0〉ri , 〈gij〉ri , 〈2gij〉ri , . . . , 〈(ri/gij − 1)gij〉ri}, (30)

there exists a bijective mapping σ on {0, 1, . . . , ri/gij − 1} with σ(0) = 0 such that

〈hlij + krj〉ri = 〈σ(k)gij〉ri (31)
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for each h = 0, 1, . . . , p/lij − 1 and k = 0, 1, . . . , ri/gij − 1. Recall that mj = [mj]gij + δgij for some δ ∈ Z.
By Equation (30), we have

〈mj〉ri + Ker Ψ = 〈[mj]gij + δgij〉ri + Ker Ψ = 〈[mj]gij〉ri + Ker Ψ, (32)

and hence by Equation (31), we have

〈mj + hlij + krj〉ri = 〈[mj]gij + σ(k)gij〉ri , (33)

which implies that there exists λ ∈ Z such that

mj + hlij + krj = [mj]gij + σ(k)gij + λri (34)

for each h = 0, 1, . . . , p/lij − 1 and k = 0, 1, . . . , ri/gij − 1. Since hlij ≤ mj + hlij + krj < (h + 1)lij and
0 ≤ [mj]gij + σ(k)gij < ri for each h = 0, 1, . . . , p/lij − 1 and k = 0, 1, . . . , ri/gij − 1, it follows from
Equation (34) that

(hlij − ri)/ri < (mj + hlij + krj − [mj]gij − σ(k)gij)/ri = λ < (h + 1)lij/ri. (35)

Since λ ∈ Z, we may rewrite Equation (35) by

hlij/ri ≤ λ < (h + 1)lij/ri. (36)

With the inequalities in Equations (34) and (36) established by the construction of Ψ, we now
proceed to compute Equations (19) and (20). Let τ ∈ {0, 1}. For the case of mi 6= 0, since

b(p−mi)/ric = p/ri − 1 = (p/lij − 1 + 1)lij/ri − 1, (37)

we have

{mi + kri; k = 0, 1, . . . , b(p−mi)/ric}
=

⋃
h=0,1,...,p/lij−1

{mi + λhri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}. (38)

Furthermore, since
k jrj = p− rj = (p/lij − 1)lij + (ri/gij − 1)rj, (39)

we have {
mj + τ + krj; k = 0, 1, . . . , k j

}
=

⋃
h=0,1,...,p/lij−1

{
mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1

}
. (40)

Combining Equations (38) and (40) shows that{
mj + τ + krj; k = 0, 1, . . . , k j

}⋂
{mi + kri; k = 0, 1, . . . , b(p−mi)/ric}

=

( ⋃
h=0,1,...,p/lij−1

{
mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1

})
(41)

⋂( ⋃
h=0,1,...,p/lij−1

{mi + λhri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}
)

.
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Consider a partition of {τ, τ + 1, . . . , τ + p− 1} given by

{τ, τ + 1, . . . , τ + p− 1} =
⋃

h=0,1,...,p/lij−1

{hlij + τ, hlij + 1 + τ, . . . , (h + 1)lij − 1 + τ}. (42)

Fix h ∈ {0, 1, . . . , p/lij − 1}. Since

0 ≤ mj ≤ mj + krj ≤ mj + (ri/gij − 1)rj = mj + lij − rj ≤ lij − 1 (43)

for each k = 0, 1, . . . , ri/gij − 1, we have

{mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1} ⊂ {hlij + τ, hlij + 1 + τ, . . . , (h + 1)lij − 1 + τ}. (44)

Furthermore, since

1+ hlij ≤ mi + hlij ≤ mi + λhri ≤ mi + ((h+ 1)lij/ri− 1)ri = mi + (h+ 1)lij− ri ≤ (h+ 1)lij− 1 (45)

for each λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1, we have

{mi + λhri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}
⊂ {hlij + 1, hlij + 2, . . . , (h + 1)lij − 1} (46)

= {hlij, hlij + 1, . . . , (h + 1)lij − 1} ∩ {hlij + 1, hlij + 2, . . . , (h + 1)lij}
⊂ {hlij + τ, hlij + 1 + τ, . . . , (h + 1)lij − 1 + τ}.

By Equations (42), (44) and (46), we may rearrange the intersection of elements in Equation (41) by{
mj + τ + krj; k = 0, 1, . . . , k j

}⋂
{mi + kri; k = 0, 1, . . . , b(p−mi)/ric}

=
⋃

h=0,1,...,p/lij−1

({
mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1

}
(47)

⋂
{mi + λhri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}

)
.

Denote by ]E the number of elements in the set E. Since 0 < mi < ri and 0 ≤ [mj]gij + σ(k)gij < ri
for each k = 0, 1, . . . , ri/gij − 1, it follows from Equations (34) and (36) that

]

({
mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1

}
⋂
{mi + λhri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}

)
(48)

= ]

 ⋃
k=0,1,...,ri/gij−1

(
{[mj]gij + τ + σ(k)gij} ∩ {mi}

)
= ]

(
{[mj]gij + τ, [mj]gij + τ + gij, . . . , [mj]gij + τ + ri − gij} ∩ {mi}

)
for each h = 0, 1, . . . , p/lij − 1. It is readily seen that if

]
(
{[mj]gij + τ, [mj]gij + τ + gij, . . . , [mj]gij + τ + ri − gij} ∩ {mi}

)
= 1 (49)
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then [mi]gij = [[mj]gij + τ]gij = [mj + τ]gij . Conversely, if [mi]gij = [mj + τ]gij , then mi = [mj]gij + τ +

δgij for some δ ∈ Z. When τ = 0, it follows that

0 ≤ [mj]gij + τ + δgij < ri holds only for δ = 0, 1, . . . , ri/gij − 1. (50)

When τ = 1, it follows that

0 < [mj]gij + τ + δgij ≤ ri holds only for δ = 0, 1, . . . , ri/gij − 1. (51)

Since 0 < mi < ri, we conclude that there exists only one δ ∈ {0, 1, . . . , ri/gij − 1} such that
mi = [mj]gij + τ + δgij. Hence,

]
(
{[mj]gij + τ, [mj]gij + τ + gij, . . . , [mj]gij + τ + ri − gij} ∩ {mi}

)
= 1 if [mi]gij = [mj + τ]gij . (52)

Thus, the equality in Equation (48) can be rewritten by

]

({
mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1

}
⋂
{mi + λhri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}

)
(53)

=

{
1 if [mi]gij = [mj + τ]gij ,
0 otherwise

for each h = 0, 1, . . . , p/lij − 1. Combining Equations (47) and (53) gives

]

({
mj + τ + krj; k = 0, 1, . . . , k j

}⋂
{mi + kri; k = 0, 1, . . . , b(p−mi)/ric}

)
(54)

=

{
p/lij if [mi]gij = [mj + τ]gij ,
0 otherwise

for the case of mi 6= 0. Now, we turn to the case of mi = 0. Since b(p−mi)/ric = p/ri and τ ∈ {0, 1},
we have

{mi + kri; k = 0, 1, . . . , b(p−mi)/ric} (55)

=

( ⋃
h=0,1,...,p/lij−1

{(λh + τ)ri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}
)⋃
{(1− τ)p}

⊂
( ⋃

h=0,1,...,p/lij−1

{hlij + τ, hlij + 1 + τ, . . . , (h + 1)lij − 1 + τ}
)⋃
{(1− τ)p}.

Since Equations (40) and (44) hold also for the case mi = 0, they imply that{
mj + τ + krj; k = 0, 1, . . . , k j

}
=

⋃
h=0,1,...,p/lij−1

{
mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1

}
(56)

⊂
⋃

h=0,1,...,p/lij−1

{hlij + τ, hlij + 1 + τ, . . . , (h + 1)lij − 1 + τ}.
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The partition in Equation (42) and the inclusions in Equations (55) and (56) together imply that{
mj + τ + krj; k = 0, 1, . . . , k j

}⋂
{mi + kri; k = 0, 1, . . . , b(p−mi)/ric}

=
⋃

h=0,1,...,p/lij−1

({
mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1

}
(57)

⋂
{(λh + τ)ri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}

)
.

Fix h ∈ {0, 1, . . . , p/lij − 1}. Since τri ∈ {0, ri} and 0 ≤ [mj]gij + σ(k)gij < ri for each k = 0, 1, . . . ,
ri/gij − 1, it follows from Equations (34) and (36) that

]

({
mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1

}
⋂
{(λh + τ)ri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}

)
(58)

= ]

 ⋃
k=0,1,...,ri/gij−1

(
{[mj]gij + τ + σ(k)gij} ∩ {τri}

)
= ]

(
{[mj]gij + τ, [mj]gij + τ + gij, . . . , [mj]gij + τ + ri − gij} ∩ {τri}

)
.

It is readily seen that if

]
(
{[mj]gij + τ, [mj]gij + τ + gij, . . . , [mj]gij + τ + ri − gij} ∩ {τri}

)
= 1 (59)

then [mj + τ]gij = [[mj]gij + τ]gij = [τri]gij = 0. Conversely, if [mj + τ]gij = 0, then [mj]gij + τ = δgij for
some δ ∈ Z. When τ = 0, it follows that

0 ≤ [mj]gij = δgij < gij holds only for δ = 0. (60)

When τ = 1, it follows that

0 < [mj]gij + 1 = δgij ≤ gij holds only for δ = 1. (61)

This implies that [mj]gij + τ = τgij. Hence,

]
(
{[mj]gij + τ, [mj]gij + τ + gij, . . . , [mj]gij + τ + ri − gij} ∩ {τri}

)
= ]

(
{τgij, (τ + 1)gij, . . . , ri + (τ − 1)gij} ∩ {τri}

)
(62)

= 1 if [mj + τ]gij = 0.

Thus, the equality in Equation (58) can be rewritten by

]

({
mj + τ + hlij + krj; k = 0, 1, . . . , ri/gij − 1

}
⋂
{(λh + τ)ri; λh = hlij/ri, hlij/ri + 1, . . . , (h + 1)lij/ri − 1}

)
(63)

=

{
1 if [mj + τ]gij = 0,
0 otherwise.
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Combining Equations (57) and (63) gives

]

({
mj + τ + krj; k = 0, 1, . . . , k j

}⋂
{mi + kri; k = 0, 1, . . . , b(p−mi)/ric}

)
(64)

=

{
p/lij if [mi]gij = [mj + τ]gij ,
0 otherwise

for the case of mi = 0. Now, we split the argument into three cases.

Case 1. gij = 1. Then
[mj]gij = [mj + 1]gij = [mi + 1]gij = [mi]gij . (65)

By Equations (18), (19), (20), (54), and (64), we have

cij(Ω) = cji(Ω) = p/lij − p/lij = 0. (66)

Case 2. gij = 2. Then, exactly one of the following situations holds:

[mj]gij = [mi]gij or [mj + 1]gij = [mi]gij . (67)

Suppose that [mj]gij = [mi]gij . Then,

[mj + 1]gij 6= [mi]gij and [mi + 1]gij 6= [mj]gij . (68)

By Equations (18), (19), (20), (54), and (64), we have

cij(Ω) = cji(Ω) = p/lij. (69)

Suppose that [mj + 1]gij = [mi]gij . Then,

[mj]gij 6= [mi]gij and [mi + 1]gij = [mj]gij . (70)

By Equations (18), (19), (20), (54), and (64), we have

cij(Ω) = cji(Ω) = −p/lij. (71)

Case 3. gij > 2. Suppose that [mj]gij = [mi]gij . Then,

[mj + 1]gij 6= [mi]gij and [mi + 1]gij 6= [mj]gij . (72)

By Equations (18), (19), (20), (54), and (64), we have

cij(Ω) = cji(Ω) = p/lij. (73)

Suppose that [mj + 1]gij = [mi]gij . Then,

[mj]gij 6= [mi]gij and [mi + 1]gij 6= [mj]gij . (74)

By Equations (18), (19), (20), (54), and (64), we have

cij(Ω) = −p/lij and cji(Ω) = 0. (75)

Suppose that [mj]gij 6= [mi]gij and [mj + 1]gij 6= [mi]gij . Then, by Equations (18), (19), (20), (54),
and (64), we have cij(Ω) = 0.



Mathematics 2019, 7, 1247 11 of 15

This completes the proof of Theorem 2.

As an implication, we consider a feedforward neural network consisting of many layers of neurons
firing in rhythm. Suppose that there are `k neurons in layer k for each k = 1, 2, . . . k̄, where layer 1
denotes the input layer and layer k̄ denotes the output layer of the feedforward neural network. Thus,
the coupling weight underlying the connection from the `th neuron in layer k̃ to the `′th neuron in
layer k̃ + 1 is referred to the entry aij, where i = ∑k=1,2,...,k̃ `k + `′ and j = ∑k=1,2,...,k̃−1 `k + `, in the
coupling weight matrix A. Thus, the coupling weight matrix A can be rewritten by



a11 · · · a1`1 0 · · · 0 0 · · · 0 0 · · · 0
. . . . . . . . . . . .

a`11 · · · a`1`1 0 · · · 0 0 · · · 0 0 · · · 0
a`1+1,1 · · · a`1+1,`1 0 · · · 0 0 · · · 0 0 · · · 0

. . . . . . . . . . . .
a`1+`2,1 · · · a`1+`2,`1 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 ∗ · · · ∗ 0 · · · 0 0 · · · 0
. . . . . . . . . . . .

0 · · · 0 ∗ · · · ∗ 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 a`1+···+`k̄−1+1,`1+···+`k̄−2+1 · · · a`1+···+`k̄−1+1,`1+···+`k̄−1

0 · · · 0
. . . . . . . . . . . .

0 · · · 0 0 · · · 0 a`1+···+`k̄ ,`1+···+`k̄−2+1 · · · a`1+···+`k̄ ,`1+···+`k̄−1
0 · · · 0



.

Specifically, we may equip the input layer with a two-layer substructure, given by

 a11 · · · a1`1
. . .

a`11 · · · a`1`1

 =



1 0 0 · · · 0 0
1 −1 0 · · · 0 0

1 0 −1
. . . 0 0

...
...

. . . . . . . . .
...

1 0 0
. . . −1 0

1 0 0 · · · 0 −1


, (76)

with the firing threshold satisfying 1 > bi > 0 for each neuron i = 1, 2, . . . , `1 and the updating s(t)
satisfying i ∈ s(t) ∩ s(t + 1) if t = mi + λri − 1; otherwise, i 6∈ s(t) ∩ s(t + 1) for each i = 1, 2, . . . , `1

and λ = 0, 1, . . . . Let m1 = 0 and r1 = 1. Then, neuron i in the input layer can fire in rhythm ri and
in phase mi for each i = 1, 2, . . . , `1. Neurons in the posterior layer receive signals from neurons in
the prior layer and fire correspondingly if the incoming signals are greater than the firing thresholds.
Note that since neurons in the prior layer fire in rhythm, the firing thresholds can be adjusted to
generate certain rhythmic firing patterns or combination of rhythmic firing patterns in the posterior
layer. Figure 1 depicts three layers of such a feedforward neural network, in which the coupling weight
matrix A is defined by

A =



1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
1 0 0 0 −1 0 0 0
0 5 3 −1 1 0 0 0
0 1 −2 2 0 0 0 0
0 0 0 0 0 −1 3 0


, (77)
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the firing threshold is defined by b = (0.5, 0.5, 0.5, 0.5, 0.5, 5, 2.5, 2.5), the updating is defined initially
by s(0) = {1, 2, 6, 7, 8}, and

s(12τ + 1) = {1, 2, 3, 6, 7, 8}, s(12τ + 2) = {1, 3, 4, 6, 7, 8}, s(12τ + 3) = {1, 2, 4, 5, 6, 7, 8}, (78)

s(12τ + 4) = {1, 2, 3, 5, 6, 7, 8}, s(12τ + 5) = {1, 3, 6, 7, 8}, s(12τ + 6) = {1, 2, 4, 6, 7, 8}, (79)

s(12τ + 7) = {1, 2, 3, 4, 6, 7, 8}, s(12τ + 8) = {1, 3, 6, 7, 8}, s(12τ + 9) = {1, 2, 5, 6, 7, 8}, (80)

s(12τ + 10) = {1, 2, 3, 4, 5, 6, 7, 8}, s(12τ + 11) = {1, 3, 4, 6, 7, 8}, s(12τ + 12) = {1, 2, 6, 7, 8} (81)

for each τ = 0, 1, . . . .
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Figure 1. Rhythmic firing in a feedforward neural network.

Given an initial neural firing state x(0) = (1, 0, 0, 0, 0, 0, 0, 0), the dynamical Equation (1) ensures
that neurons 1, 2, . . . , 5 in the input layer fire in rhythm r1 = 1, r2 = 3, r3 = 3, r4 = 4, r5 = 6 and in
phase m1 = 0, m2 = 1, m3 = 2, m4 = 3, m5 = 4, respectively. In addition, since

x6(t + 1) = 1l (5x2(t) + 3x3(t)− x4(t) + x5(t)− 5) , (82)

x7(t + 1) = 1l (x2(t)− 2x3(t) + 2x4(t)− 2.5) , (83)

neurons 6, 7 in layer 2 fire in rhythm r6 = 6, r7 = 12 and in phase m6 = 5, m7 = 8, respectively. This is
feasible when the summation of incoming signals from neurons 2, 5 to 6 (respectively, from neurons
2, 4 to 7) is largest, and then the firing threshold of neuron 6 (respectively, neuron 7) can be adjusted to
sieve out such a rhythmic firing pattern. Similar results can be found on neuron 8 in layer 3, which fires
in rhythm r8 = 12 and in phase m8 = 9 according to

x8(t + 1) = 1l (−x6(t) + 3x7(t)− 2.5) . (84)

Denote by Ω the resulting flow of rhythmic neural firing states from time τ to τ + 11. According to the
formula of the pruning map proved in Theorem 2, we see that

gcd(r6, r2) = 3 and [m2 + 1]gcd(r6,r2)
= [m6]gcd(r6,r2)

= 2, (85)

gcd(r6, r3) = 3 and [m3]gcd(r6,r3)
= [m6]gcd(r6,r3)

= 2, (86)

gcd(r6, r4) = 2 and [m4]gcd(r6,r4)
= [m6]gcd(r6,r4)

= 1, (87)

gcd(r6, r5) = 6 and [m5 + 1]gcd(r6,r5)
= [m6]gcd(r6,r5)

= 5, (88)

gcd(r7, r2) = 3 and [m2 + 1]gcd(r7,r2)
= [m7]gcd(r7,r2)

= 2, (89)

gcd(r7, r3) = 3 and [m3]gcd(r7,r3)
= [m7]gcd(r7,r3)

= 2, (90)

gcd(r7, r4) = 4 and [m4 + 1]gcd(r7,r4)
= [m7]gcd(r7,r4)

= 0, (91)

gcd(r8, r7) = 12 and [m7 + 1]gcd(r8,r7)
= [m8]gcd(r8,r7)

= 9, (92)
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and hence

c62(Ω) < 0, c63(Ω) > 0, c64(Ω) > 0, c65(Ω) < 0, (93)

c72(Ω) < 0, c73(Ω) > 0, c74(Ω) < 0, c87(Ω) < 0. (94)

Then, by neural path pruning described in Equations (7) and (8), the coupling operator can be
given by

d62 > 0, d63 < 0, d64 < 0, d65 > 0 and d72 > 0, d73 < 0, d74 > 0, d87 > 0 (95)

which maintain the rhythmic firing pattern of neuron 6 (respectively, neuron 7 and neuron 8) by
keeping the largest summation of incoming signals from neurons 2, 5 to 6 (respectively, from neurons
2, 4 to 7 and from neuron 7 to 8). As illustrated by the orange, green, and purple boxes in Figure 1,
the coupling operator in Equation (95) fits well with the neurobiological concept of Hebbian synaptic
plasticity, meaning that when neurons 2, 5 (respectively, neurons 2, 4 and neuron 7) repeatedly or
persistently take part in firing neuron 6 (respectively, neuron 7 and neuron 8), the coupling weights
between them are strengthened. Such activity-dependent plasticity between layers of neurons is prone
to keep neurons firing in rhythm in the posterior layer.

An experimental setting is defined as follows, showing the performance of rhythm formation
in feedforward neural networks. The input rhythm and the layer architecture of feedforward neural
networks are specified as in Figure 1. Initially, the coupling weights from prior layers to posterior
layers and the firing thresholds of neurons are selected randomly from the interval [−0.5, 0.5]. When a
neuron in layer 2 or 3 fires dynamically, its firing threshold will be adjusted by a positive value 1,
otherwise a negative value −0.1. In addition, the coupling weights are adjusted according to the
coupling operators (with intensity 1 or −1) derived from neural path pruning. The transition function
of a neuron i is selected to be the Heaviside function defined by Equation (2) or the sigmoid function
S defined by

xi(t + 1) = S
(

n

∑
j=1

aijxj(t)− bi

)
=

1

1 + e−α(∑n
j=1 aijxj(t)−bi)

, t = 0, 1, . . . , (96)

where α is a positive real number. For each round of simulation, we say that rhythm formation
occurs in the feedforward neural network if the neuron in layer 3 can persistently fire in rhythm for
certain time steps. Specifically, a criterion is defined by k times of neural firing (with the firing state
x8(t) > 0.8) in rhythm r with k · r > 500 during time steps t = 1001 to 2000. Figure 2 shows the
successful rates for rhythm formation in feedforward neural networks, with neurons activating via the
Heaviside functions (red line, 100, 000 rounds of simulation) or the sigmoid functions with a selected
α = 0.01, 0.02, . . . , 0.99, 1, 2, . . . , 500 (blue line, 1000 rounds of simulation per α). It reveals that rhythm
formation can robustly occur in feedforward neural networks, even under the change of the transition
functions from the Heaviside functions to the sigmoid functions.
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Figure 2. Successful rates for generating rhythmic firing in feedforward neural networks.

4. Conclusions

For neurons firing in rhythm, the pruning map can be formulated in terms of quantities related to
rhythmic neural firing. This formulation has the potential to feed crucial control of coupling weights
to support the consolidation of rhythms in feedforward neural networks. It reveals a learning rule of
feedforward neural networks, which fits well with Hebbian synaptic plasticity for rhythmic pattern
formation. Such neural network models can be implemented in relating different kinds of rhythms
from input signals to output signals, and hence may be applied to the issues concerning the robot
control or pattern recognition with rhythm. We hope that the analysis of pruning maps will stimulate
further studies of underlying principles of neural networks concerning how the rhythms interact
with each other and organize themselves, providing a theoretical framework mimicking the roles of
rhythms in the information processing systems of living organisms.
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