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Abstract: The present paper studies the fixed point property (FPP) for closed k-surfaces. We also
intensively study Euler characteristics of a closed k-surface and a connected sum of closed k-surfaces.
Furthermore, we explore some relationships between the FPP and Euler characteristics of closed
k-surfaces. After explaining how to define the Euler characteristic of a closed k-surface more precisely,
we confirm a certain consistency of the Euler characteristic of a closed k-surface and a continuous
analog of it. In proceeding with this work, for a simple closed k-surface in Z3, say Sk, we can see
that both the minimal 26-adjacency neighborhood of a point x ∈ Sk, denoted by Mk(x), and the
geometric realization of it in R3, denoted by Dk(x), play important roles in both digital surface theory
and fixed point theory. Moreover, we prove that the simple closed 18-surfaces MSS18 and MSS′18
do not have the almost fixed point property (AFPP). Consequently, we conclude that the triviality
or the non-triviality of the Euler characteristics of simple closed k-surfaces have no relationships
with the FPP in digital topology. Using this fact, we correct many errors in many papers written by
L. Boxer et al.

Keywords: fixed point property; almost (approximate) fixed point property; digital surface;
digital connected sum; geometric realization; Euler characteristic; minimal (3n − 1)-neighborhood;
digital topology

AMS Classification: 57M05; 55P10; 57M10

1. Introduction

In Z3, the concept of closed k-surface was established in References [1,2] and its digital topological
characterizations were also studied [3–7]. Many explorations of various properties of closed k-surfaces
have been proceeded from the viewpoints of digital topology and digital geometry [1–9]. Based on the
studies of the earlier works [3–5,10,11], given (digital) closed k-surfaces and connected sums of closed
k-surfaces, we will investigate the fixed point property (FPP) or the almost fixed point property (AFPP)
of them. Moreover, after explaining the Euler characteristic of a closed k-surface in Reference [5] more
precisely, we confirm strong relationships between the Euler characteristic of a closed k-surface and
that of the continuous analog (or geometric realization) of a closed k-surface.

Indeed, there are several kinds of approaches to establish a digital k-surface [3–6,12,13]. In digital
surface theory, we need to consider a binary digital image structure. To be precise, in the case of
X ⊂ Z3, we often assume a digital image X in the digital picture P,

P ∈ {(Z3, 26, 6, X), (Z3, 18, 6, X), (Z3, 6, 26, X)}. (1)
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Thus, we can study a (digital) closed k-surface with one of the above picture P. Moreover,
for a digital image (X, k), the notion of the Euler characteristic of (X, k) was proposed in several
ways [3–5,14–19]. The concept of digital connected sum of closed k-surfaces in Zn was firstly
introduced in Reference [3] by using several types of simple closed k-curves in Z2, k ∈ {4, 8}.

Hereafter, we denote a simple closed k-surface in Z3 (for more details, see Definition 6) with Sk.
Indeed, given an Sk, the studies of its Euler characteristic, an efficient formulation of a continuous
analog of it, and the FPP for Sk play important roles in digital geometry. Thus, we have the
following queries:

(Q1) How to establish a geometric realization of an Sk ?
(Q2) Does the geometric realization transform an Sk into a certain spherical (or a sphere-like)

polyhedron in R3 ?
(Q3) How to define the Euler characteristic of an Sk ?
(Q4) Are there certain relationships between the Euler characteristic of an Sk and that of a geometric

realization of an Sk ?
(Q5) What about the FPP or the AFPP for an Sk ?

To address these issues, Reference [5] introduced the Euler characteristic of an Sk, which can
facilitate the studies of both digital and typical surface theories. This paper continues a series of studies
of Euler characteristics of digital surfaces [5]. In order to prevent a certain misunderstanding or wrong
interpretation of the Euler characteristic of an Sk, after referring to several essential notions associated
with the Euler characteristic of an Sk, the present paper corrects some assertions in Reference [14]
involving the Euler characteristics of an Sk and a connected sum of closed k-surfaces. To be precise,
we will more precisely explain how to define the Euler characteristics of an Sk already introduced in
Reference [5] and a digital connected sum introduced in Reference [3]. Indeed, the Euler characteristic
of an Sk suggested in Reference [5] is proved to be consistent with the typical Euler characteristic of a
closed surface from the viewpoints of algebraic topology and polyhedral geometry.

The rest of the paper is organized as follows: Section 2 refers to some notions involving a
digital k-surface and a connected sum of two digital k-surfaces. Moreover, it confirms the pointed
18-contractibility of MSS′18 which will be used in the paper. Section 3 establishes the sets Mk(x) and
Dk(x) (see Definitions 8 and 9) to develop a 2-dimensional simplicial complex as a geometric realization
of a simple closed k-surface Sk. Section 4 studies the Euler characteristics of a closed k-surface and a
connected sum of two closed k-surfaces proposed in Reference [5]. In particular, given an Sk, using
the set {Dk(x) | x ∈ Sk}, we can characterize the Euler characteristic of an Sk. Section 5 studies the
FPP or the AFPP for several kinds of simple closed k-surfaces in Z3, MSS18, MSS′18, MSS6, and so on.
Finally, we prove that the simple closed 18-surfaces MSS18 and MSS′18 do not have the AFPP. Hence,
we conclude that, in digital topology, the triviality or the non-triviality of the Euler characteristics of
simple closed k-surfaces are irrelevant to the FPP or the AFPP. Furthermore, we corrects many errors
in the paper written by Boxer et al. in Reference [14] (see Remarks 11 and 12) and some mistakes in
Reference [3,4] (see Remark 10). Section 6 concludes the paper with some remarks.

2. Basic Notions Related to Digital k-Surfaces and a Connected Sum for k-Surfaces

In order to make the paper self-contained, let us now recall some terminology from digital
curve and digital surface theories. Let N and Z represent the sets of natural numbers and
integers, respectively.

Rosenfeld [20] called a set X(⊂ Zn) with a k-adjacency a digital image, denoted by (X, k).
In particular, in digital surface theory, let us consider a binary digital image (X, k) with a k-adjacency
in a digital picture (Zn, k, k̄, X) [17,20], where n ∈ N. Then, we call the pair (X, k) a digital image
with a k-adjacency (for short, digital image). In order to study (X, k) in Zn, n ≥ 1, we need k-adjacency
relations of Zn which are generalizations of the commonly used 4- and 8-adjacency of Z2, and 6-, 18-,
and 26-adjacency ofZ3. To be precise, we will say that distinct points p, q ∈ Zn are k-(or k(t, n)-)adjacent
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if they satisfy the following property [10] (for more details, see also Reference [21] as an advanced
representation of the k-adjacency relations of Zn in Reference [10]):

For a natural number t, 1 ≤ t ≤ n, we say that distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn (2)

are k(t, n)-(k-, for short)adjacent if at most t of their coordinates differs by ±1 and all others coincide.
Concretely, these k(t, n)-adjacency relations of Zn are determined according to the number t ∈

N [10] (see also Reference [21]). In the present paper, we will use the symbol “ :=” to introduce new
notions without proving the fact.

Using the operator of Equation (2), the k-adjacency relations of Zn are obtained [10] (see also
References [21,22]), as follows

(a) k := k(t, n) =
n−1

∑
i=n−t

2n−iCn
i , where Cn

i =
n!

(n− i)! i!

or equivalently

(b) k := k(t, n) =
t

∑
i=1

2iCn
i , where Cn

i =
n!

(n− i)! i!
.


(3)

A digital image (X, k) in Zn can indeed be considered to be a set X(⊂ Zn) with the k-adjacency
relation of Equation (3). Using the k-adjacency relations of Zn of Equation (3), we say that a digital
k-neighborhood of p in Zn is the set [20]

Nk(p) := {q | p is k-adjacent to q} ∪ {p}.

Furthermore, we often use the notation [17]

N∗k (p) := Nk(p) \ {p}.

For a, b ∈ Z with a � b, the set [a, b]Z = {n ∈ Z | a ≤ n ≤ b} with 2-adjacency is called a digital
interval [17].

Let us now recall some terminology and notions which are used in this paper.

• We say that two subsets (A, k) and (B, k) of (X, k) are k-adjacent if A ∩ B = ∅ and that there are
points a ∈ A and b ∈ B such that a and b are k-adjacent [17]. In particular, in case B is a singleton,
say B = {x}, we say that A is k-adjacent to x.

• For a k-adjacency relation of Zn, a k-path with l + 1 elements in Zn is assumed to be a finite
sequence (xi)i∈[0,l]Z ⊂ Z

n such that xi and xj are k-adjacent if | i− j | = 1 [17].
• A digital image (X, k) is said to be k-connected if, for any distinct points such as x, y in (X, k),

there is a k-path (xi)i∈[0,l]Z ⊂ X such that x = x0 and y = xl .
• For a digital image (X, k), the k-component of x ∈ X is defined to be the largest k-connected

subset of (X, k) containing the point x.
• We say that a simple k-path is a finite set (xi)i∈[0,m]Z

⊂ Zn such that xi and xj are k-adjacent if and
only if | i− j | = 1 [17]. In the cases x0 = x and xm = y, we denote the length of the simple k-path
with lk(x, y) := m.

• A simple closed k-curve (or simple k-cycle) with l elements in Zn [10], denoted by SCn,l
k , l ≥ 4, l ∈

N0 \ {2}, N0 is the set of even natural numbers [10,17] and is the finite set (xi)i∈[0,l−1]Z such that
xi and xj are k-adjacent if and only if | i− j | = ±1(mod l) [10].

• For a digital image (X, k), a digital k-neighborhood of x0 ∈ X with radius ε is defined in X as the
following subset [10] of X:

Nk(x0, ε) := {x ∈ X | lk(x0, x) ≤ ε} ∪ {x0}, (4)
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where lk(x0, x) is the length of a shortest simple k-path from x0 to x and ε ∈ N. For instance,
for X ⊂ Zn, we obtain [10]

Nk(x, 1) = Nk(x) ∩ X. (5)

• Rosenfeld [20] defined the notion of digital continuity of a map f : (X, k0) → (Y, k1) by saying
that f maps every k0-connected subset of (X, k0) into a k1-connected subset of (Y, k1).

Motivated by the digital continuity proposed by Rosenfeld, in terms of the digital k-neighborhood
of a point with radius 1 (see Equation (5)), the digital continuity of a map between digital images was
represented, as follows:

Proposition 1 ([10,11]). Let (X, k0) and (Y, k1) be digital images in Zn0 and Zn1 , respectively. A function
f : (X, k0) → (Y, k1) is (digitally) (k0, k1)-continuous if and only if, for every x ∈ X, f (Nk0(x, 1)) ⊂
Nk1( f (x), 1).

In Proposition 1 in case n0 = n1 and k0 = k1 := k, the map f is called a ‘k-continuous map. Since
an n-dimensional digital image (X, k) is considered to be a set X in Zn with one of the k-adjacency
relations of Equation (3) (or a digital k-graph [23]), regarding a classification of n-dimensional digital
images, we use the term a (k0, k1)-isomorphism (or k-isomorphism) as in Reference [23] (see also
Reference [11]) rather than a (k0, k1)-homeomorphism (or k-homeomorphism) as in Reference [24].

Definition 1 ([23] (see also a (k0, k1)-homeomorphism in Reference [24])). Consider two digital images
(X, k0) and (Y, k1) in Zn0 and Zn1 , respectively. Then, a map h : X → Y is called a (k0, k1)-isomorphism if h
is a (k0, k1)-continuous bijection, and further, h−1 : Y → X is (k1, k0)-continuous. Then, we use the notation
X ≈(k0,k1)

Y. Moreover, in the case k0 = k1 := k, we use the notation X ≈k Y.

In References [23,25,26], we developed many notions from the viewpoint of digital graph theory,
such as graph (k0, k1)-homomorphism, graph (k0, k1)-isomorphism, and graph (k0, k1)-homotopy
which are, respectively, digital graphical versions of the (k0, k1)-continuity, (k0, k1)-homeomorphism,
and (k0, k1)-homotopy in digital topology. Since a digital image (X, k) can be recognized as a digital
k-graph [5,23], we mainly use the digital k-graphical method to study Euler characteristics of a closed
k-surface in this paper.

The following notion of interior is often used in establishing the notion of digital connected sum.

Definition 2 ([3]). Let c∗ := (x0, x1, · · · , xn) be a closed k-curve in (Z2, k, k̄, c∗). A point x of c̄∗,
the complement of c∗ in Z2, is said to be interior to c∗ if it belongs to the bounded k̄-connected component of c̄∗.

The following digital images MSC∗8 , MSC∗4 , and MSC′∗8 [3,4,10] play important roles in
establishing a connected sum and in studying the digital fundamental group of a digital connected
sum of closed k-surfaces. Thus, we will recall them.

(?) MSC∗8 := MSC8 ∪ Int(MSC8) [4], where MSC8 is a digital image 8-isomorphic to the digital
image, i.e., MSC8 := SC2,6

8 := {c0 = (0, 0), c1 = (1, 1), c2 = (1, 2), c3 = (0, 3), c4 = (−1, 2), c5 =

(−1, 1)};
(?) MSC∗4 := MSC4 ∪ Int(MSC4) [4], where MSC4 is a digital image 4-isomorphic to the digital

image, i.e., MSC4 := SC2,8
4 := {v0 = (0, 0), v1 = (1, 0), v2 = (2, 0), v3 = (2, 1), v4 = (2, 2), v5 =

(1, 2), v6 = (0, 2), v7 = (0, 1)}; and
(?) MSC′∗8 := MSC′8 ∪ Int(MSC′8) [4], where MSC′8 is a digital image 8-isomorphic to the digital

image, i.e., MSC′8 := SC2,4
8 := {w0 = (0, 0), w1 = (1, 1), w2 = (0, 2), w3 = (−1, 1)}.

Based on the pointed digital homotopy in Reference [27] (see also Reference [24]), the following
notion of k-homotopy relative to a subset A ⊂ X is often used in studying k-homotopic properties of
digital images (X, k) in Zn. For a digital image (X, k) and A ⊂ X, we often call ((X, A), k) a digital
image pair.
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Definition 3 ([10] (see also [3])). Let ((X, A), k0) and (Y, k1) be a digital image pair and a digital image,
respectively. Let f , g : X → Y be (k0, k1)-continuous functions. Suppose there exist m ∈ N and a function
H : X× [0, m]Z → Y such that

• for all x ∈ X, H(x, 0) = f (x) and H(x, m) = g(x);
• for all x ∈ X, the induced function Hx : [0, m]Z → Y given by Hx(t) = H(x, t) for all t ∈ [0, m]Z is

(2, k1)-continuous;
• for all t ∈ [0, m]Z, the induced function Ht : X → Y given by Ht(x) = H(x, t) for all x ∈ X is

(k0, k1)-continuous. Then, we say that H is a (k0, k1)-homotopy between f and g [24].
• Furthermore, for all t ∈ [0, m]Z, assume that the induced map Ht on A is a constant which follows the

prescribed function from A to Y. To be precise, Ht(x) = f (x) = g(x) for all x ∈ A and for all t ∈ [0, m]Z.
Then, we call H a (k0, k1)-homotopy relative to A between f and g and we say that f and g are
(k0, k1)-homotopic relative to A in Y, f '(k0,k1)relA g in symbols.

In Definition 3, if A = {x0} ⊂ X, then we say that F is a pointed (k0, k1)-homotopy at {x0} [24].
When f and g are pointed (k0, k1)-homotopic in Y, we use the notation f '(k0,k1)

g. In the cases
k0 = k1 := k and n0 = n1, f and g are said to be pointed k-homotopic in Y and we use the
notations f 'k g and f ∈ [g], which denote the k-homotopy class of g. If, for some x0 ∈ X, 1X
is k-homotopic to the constant map in the space x0 relative to {x0}, then we say that (X, x0) is pointed
k-contractible [24]. The notion of digital homotopy equivalence was firstly introduced in Reference [25]
(see also Reference [26]), as follows:

Definition 4 ([25] (see also Reference [26])). For two digital images (X, k) and (Y, k) in Zn, if there are
k-continuous maps h : X → Y and l : Y → X such that the composite l ◦ h is k-homotopic to 1X and the
composite h ◦ l is k-homotopic to 1Y, then the map h : X → Y is called a k-homotopy equivalence and is denoted
by X 'k·h·e Y. Moreover, we say that (X, k) is k-homotopy equivalent to (Y, k).

Using the concept of digital k-homotopy equivalence, we can classify digital images [25]. Now,
we recall the notion of k-contractibility to be used later in this paper.

Definition 5 ([10,24,27]). For a digital image (X, k), if the identity map 1X is k-homotopic relative to {x0} in
X to a constant map with image consisting of some point x0 ∈ X, then (X, x0) is said to be pointed k-contractible.

The following are proven in References [3,5,10,11,24].

• In case X is pointed k-contractible, the k-fundamental group πk(X, x0) is trivial [24].
• MSC8 is not 8-contractible and MSC4 is not 4-contractible either [3,10].
• MSC′8 are 8-contractible [3,5,24].
• Owing to the digital (k0, k1)-covering theory in References [10,11], the k-fundamental groups of

SCn,l
k were proven such that πk(SCn,l

k ) is an infinite cyclic group [10,11].
• Motivated by the calculation of the digital k-fundamental group of SC2,l

k , i.e., πk(SC2,l
k ), k ∈ {4, 8}

in References [10,11], it turns out that SCn,l
k is not k-contractible if l ≥ 6.

In particular, both the non-8-contractibility of MSC8 and the non-4-contractibility of MSC4 play
important roles in formulating a connected sum of two closed k-surfaces.

In order to study a closed k-surface in Zn, let us recall some terminology, such as a k-corner,
a generalized simple closed k-curve, and so on. A point x ∈ (X, k) is called a k-corner if x is k-adjacent
to two and only two points y and z ∈ X such that y and z are k-adjacent to each other [2]. The k-corner
x is called simple if y and z are not k-corners and if x is the only point k-adjacent to both y and z. (X, k)
is called a generalized simple closed k-curve if what is obtained by removing all simple k-corners of X is a
simple closed k-curve [2,6]. For a k-connected digital image (X, k) in X ⊂ Z3, we recall

|X|x := N∗26(x) ∩ X = N26(x, 1) \ {x}, (6)
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where N∗26(x) := {x′ | x and x′ are 26-adjacent} [1,2]. In general, for a k-connected digital image (X, k)
in Zn, n ≥ 3, we can state [5]

|X|x = N∗3n−1(x) ∩ X = N3n−1(x, 1) \ {x}, (7)

where
N∗3n−1(x) = {x′ | x and x′ are (3n − 1)-adjacent}.

Hereafter, for a k-surface in Zn, n ∈ N \ {1, 2, 3} [3,4], we call the set |X|x of Equation (7) the
minimal (3n − 1)-adjacency neighborhood of x in X.

Reference [5] introduced the notion of a closed k-surface in Zn, n ≥ 3. However, in the present
paper, we will stress the study of closed k-surfaces inZ3 with the following approach in References [6,7].

Definition 6 ([3,7]). Let (X, k) be a digital image in Z3, and X̄ := Z3 \ X. Then, X is called a closed k-surface
if it satisfies the following:

(1) In case (k, k̄) ∈ {(26, 6), (6, 26)},

(a) for each point x ∈ X, |X|x has exactly one k-component k-adjacent to x;
(b) |X̄|x has exactly two k̄-components k̄-adjacent to x; we denote by Cx x and Dx x these two

components; and
(c) for any point y ∈ Nk(x) ∩ X (or Nk(x, 1) in (X, k)), Nk̄(y) ∩ Cx x 6= φ and Nk̄(y) ∩ Dx x 6= φ.

Furthermore, if a closed k-surface X does not have a simple k-point, then X is called simple.
(2) In case (k, k̄) = (18, 6),

(a) X is k-connected,
(b) for each point x ∈ X, |X|x is a generalized simple closed k-curve. Furthermore, if the image |X|x

is a simple closed k-curve, then the closed k-surface X is called simple.

From now on, we denote a closed k-surface in Z3 with Sk, k ∈ {6, 18, 26}, which will be used in
this paper. Namely, we will consider only simple closed k-surface in Z3 in the picture as referred to in
Equation (1), i.e.,

{(Z3, 26, 6, S26), (Z3, 18, 6, S18), (Z3, 6, 26, S6)}.

Definition 7 ([3]). InZ3, let Sk0 (resp. Sk1) be a closed k0-(resp. a closed k1-)surface, where k0 = k1 ∈ {6, 18, 26}.

• Consider A′k0
⊂ Ak0 ⊂ Sk0 and take Ak0 \ A′k0

⊂ Sk0 , where Ak0 ≈(k0,4) MSC∗4 , Ak0 ≈(k0,8) MSC∗8 ,
or Ak0 ≈(k0,8) MSC′∗8 and, further, A′k0

≈(k0,4) Int(MSC4), A′k0
≈(k0,8) Int(MSC8), or A′k0

≈(k0,8)
Int(MSC′8), respectively.

• Let f : Ak0 → f (Ak0) ⊂ S′k1
be a (k0, k1)-isomorphism. Remove A′k0

and f (A′k0
) from Sk0 and Sk1 ,

respectively.
• Identify Ak0 \ A′k0

and f (Ak0 \ A′k0
) by using the (k0, k1)-isomorphism f . Then, the quotient space

S′k0
∪ S′k1

/ ∼ is obtained by i(x) ∼ f (x) ∈ S′k1
for x ∈ Ak0 \ A′k0

and is denoted by Sk0]Sk1 , where
S′k0

= Sk0 \ A′k0
, S′k1

= Sk1 \ f (A′k0
), and the map i : Ak0 \ A′k0

→ S′k0
is the inclusion map.

Owing to Definition 7, Sk0]Sk1 is obtained in Z3. Moreover, the digital topological type of Sk0]Sk1

absolutely depends on the choice of the subset Ak0 ⊂ Sk0 [5]. Furthermore, the k-adjacency of Sk0]Sk1

is required as follows:

Remark 1 ([3]). In the quotient space Sk0]Sk1 := S′k0
∪ S′k1

/ ∼, the subsets S′k0
\ (Ak0 \ A′k0

) and S′k1
\

f (Ak0 \ A′k0
) in Sk0]Sk1 are assumed to be disjoint and are not k-adjacent, where k0 = k1 := k. Then, the digital

image (Sk0]Sk1 , k) is called a (digital) connected sum of Sk0 and Sk1 .

Hereafter, we denote by MSSk a minimal simple closed k-surface in Z3 (see Figure 1). Furthermore,
we recall the following closed k-surfaces, k ∈ {6, 18, 26} [3]:
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• MSS6 ≈6 (MSC4 × [0, 2]Z) ∪ (Int(MSC4)× {0, 2}) [3,4].

Then, MSS6 is the minimal simple closed 6-surface which is not 6-contractible (see Figure 1c).
Namely, we obtain (MSS6, 6, 26,Z3) according to Equation (1).

Let us now recall two types of simple closed 18-surfaces which are pointed 18-contractible, e.g.,
MSS18 and MSS′18, as follows:

• MSS′18 ≈18 (MSC′8 × {1}) ∪ (Int(MSC′8)× {0, 2}) [3,4].

(a)
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Figure 1. (a) MSS18 [3,4]; (b) MSS′18 = MSS′26 [3,4]; (c) MSS6 [3].

Then, Reference [3,4] stated that MSS′18 is 18-contractible and that it is the minimal simple closed
18-surface (see Figure 1b), i.e., we obtain (MSS′18, 18, 6,Z3). Here, the term “minimal” comes from the
minimal cardinality of the given digital image as a closed 18-surface.

In order to use the pointed 18-contractibility of MSS′18 in this paper, we prove it more precisely,
as follows:

Lemma 1. MSS′18 is pointed 18-contractible.

Proof. Consider the map H : MSS′18 × [0, 2]Z → MSS′18 (see Figure 2a) such that
H(x, 0) = x for any x ∈ MSS′18,

H(x, 1) = e5 if x ∈ {e0, e3, e5}, and H(x, 1) = e2 if x ∈ {e1, e2, e4},
H(x, 2) = {e5}, for any x ∈ MSS′18,

 (8)

Then, the map H is an 18-homotopy relative to the set {e5} since it satisfies the following:

(1) for all x ∈ MSS′18, H(x, 0) = 1MSS′18
as an identity map on the set MSS′18, say 1MSS′18

,
and H(x, 2) = C{e5} as the constant map at the set {e5}

(2) for all x ∈ MSS′18, the induced function Hx : [0, 2]Z → MSS′18 given by Hx(t) = H(x, t) for all
t ∈ [0, 2]Z is (2, 18)-continuous;

(3) for all t ∈ [0, 2]Z, the induced function Ht : MSS′18 → MSS′18 given by Ht(x) = H(x, t) for all
x ∈ MSS′18 is 18-continuous.
Thus, we obtain H which is an 18-homotopy between 1MSS′18

and C{e5}.
(4) Furthermore, for all t ∈ [0, 2]Z, assume that the induced map Ht on {e5} is a constant.

Owing to properties (1)–(4), we prove that MSS′18 is 18-homotopy equivalent to {e5} and we
complete the proof.

In view of the proof of Lemma 1, although we proved the 18-contractibility of MSS′18 relative to
the set {e5}, we find that MSS′18 is indeed 18-homotopy equivalent to any singleton {x} ⊂ MSS′18.

Let us further introduce two simple closed k-surface, k ∈ {18, 26}, as follows:

• MSS18 ≈18 (MSC8 × {1}) ∪ (Int(MSC8)× {0, 2}) [3,4].
Then, MSS18 is indeed pointed 18-contractible (correction of the “non-18-contractibility” of MSS18

in Theorem 4.3(3) of Reference [3] and Theorem 4.2(3) of Reference [4]). Moreover, it is proved to
be a simple closed 18-surface (see Figure 1a) [3,4]. Using a method similar to the 18-homotopy
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of Equation (8), we observe that there is indeed an 18-homotopy relative to the set {c9} between
1MSS18 and C{c9}, which is the constant map at {c9} (see Figure 2b),

H : MSS18 × [0, 3]Z → MSS18, (9)

which implies the pointed 18-contractibility of MSS18. More precisely, starting with H(x, 0) as
the identity map 1MSS18 , Figure 2(b1) shows the process of H(x, 1) and Figure 2(b2) explains the
process of H(x, 2). Moreover, H(x, 3) means the constant map C{c9}. In addition, we observe
that MSS18 is indeed 18-homotopy equivalent to any singleton {x} ⊂ MSS18. Furthermore,
Reference [3] also already proved that MSS18 is simply 18-connected [4].

• MSS′26 := MSS′18, which is 26-contractible [3,4] and is the minimal simple closed 26-surface
(see Figure 1b). Finally, we obtain (MSS′26, 26, 6,Z3) according to Equation (1). Moreover, the proof
of the 26-contractibility of MSS′26 is trivially proceeded with the homotopy in Equation (8).
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Figure 2. Configuration of the pointed 18-contractibility of MSS′18 (a) and MSS18 (b).

Indeed, we point out that the digital 6-, 18-, and 26-sphere-like models MSS6, MSS18,
and MSS′18 := MSS′26 in Figure 1 were firstly introduced in References [3,4].

Remark 2. Let T be the set X× [0, 1]Z, where X = {c0 = (0, 0), c1 = (1, 0), c2 = (1, 1), c3 = (0, 1)}. Then,
we obtain the following:
(1) the digital image (T, 6) is not a closed 6-surface.
(2) (T, 6) is pointed 6-contractible.

Proof. (1) For any point t ∈ T, the set | T |t does not satisfy the properties Definition 6(1) (b) and (c).
(2) Using a method similar to the homotopy of Equation (8), we observe that there is a 6-homotopy

relative to any singleton {t} ⊂ T between the identity map 1T and the constant map C{t}. Thus, we
can conclude that (T, 6) is pointed 6-contractible relative to any singleton {t} ⊂ T.
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3. A Geometric Realization of a Simple Closed k-Surface

In order to address questions (Q1) and (Q2) in Section 1, given an Sk and for each point x ∈ Sk,
we need to establish a special kind neighborhood of x matching an open neighborhood of a certain
point of a typical surface (or a 2-dimensional topological manifold). Indeed, given a digital image
(X, k) in Z3, for each point x ∈ X, the set |X|x (see Equation (6)) plays an important role in examining
if (X, k) is a simple closed k-surface in Z3 (see Definition 6). This approach is quite different from one
examining if a topological space becomes a typical surface from the viewpoint of manifold theory.
However, motivations of the two approaches are similar to each other. Roughly saying, each point x
of a 2-dimensional topological manifold (or a surface) (X, TX) has an open neighborhood in (X, TX)

which is homeomorphic to an open disc in the 2-dimensional Euclidian topological space (R2, U).
In digital surface theory, we also follow this kind of approach under a certain digital situation.

In order to study the Euler characteristics of a simple closed k-surface and a connected sum of
two simple closed k-surfaces (see Reference [5]), let us now recall a geometric realization of a digital
image (X, k). For a digital image (X, k) and each point x(∈ X), owing to the set |X|x ∪ {x}, a special
kind of geometric realization can be considered. However, in digital surface theory, we have some
difficulties in establishing the so-called ‘digital k-neighborhood of a point’ in (X, k) matching an open
neighborhood of a point in a typical surface. Thus, motivated by the fact that, for an Sk and x ∈ Sk, we
observe that | Sk |x is an essentially important set guaranteeing the closed k-surface structure of the Sk
(see also Remarks 5 and 6). Motivated by this observation, let us now treat this issue with a special
kind of idea overcoming the difficulties. Roughly saying in advance, given a simple closed k-surface
Sk in Z3, consider it as a digital k-graph, denoted by Gk. First of all, let us take all minimal k-cycles in

(N26(x)∗ ∪ {x}) ∩ Sk, (10)

denoted by Mk(x) (see Definition 8). Hereafter, we need to remind that the set of Equation (10) is the
set N26(x, 1) in Sk. Next, we formulate a certain 2-dimensional simplicial complex in the 3-dimensional
real space, R3, say Dk(x), inherited from Mk(x) (see Definition 9). More precisely, each 2-dimensional
simplex in Dk(x) is a polygon in R3 formulated by the corresponding minimal k-cycle in Mk(x)
(see Definitions 8 and 9). Consequently, we have a geometric realization of Sk, denoted by | Sk |, which
is the union of all Dk(x), x ∈ Sk (see Definition 10). Then, we can observe that | Sk | is indeed a closed
2-dimensional simplicial complex, i.e., a sphere-like polygon in R3 (see Proposition 2).

Since the present paper focuses on the study of several types of connected sums of the simple
closed k-surfaces MSS6, MSS18, and MSS′18, hereafter, we only deal with simple closed k-surfaces in Z3,
denoted by Sk. As mentioned above, given an Sk, let us now propose the sets Mk(x) (see Definition 8)
and Dk(x) (see Definition 9) derived by the set | Sk |x, x ∈ Sk.

Definition 8. Given a simple closed k-surface Sk in Z3, for x ∈ Sk, let

Mk(x) := {Ck |Ck be a minimal k-cycle in (N26(x)∗ ∪ {x}) ∩ Sk.}. (11)

The set Mk(x) has its own features, as follows:

Remark 3. (1) Each of the minimal k-cycles in Mk(x), say Ck, associated with Equation (11) need not be a
simple closed k-cycle in Sk (see the 18-curve consisting of c0, c1, c9 of MSS18 in Figure 3)a.
(2) The term “minimal" comes from the ‘minimal k-cycles’ in Sk taken from the only one of the eight digital cubes

3

∏
i=1

[xi, xi ± 1]Z,

where x = (x1, x2, x3) ∈ Sk.
(3) The element Ck in Mk(x) need not contain the point x (see Example 1(3)).
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(4) Not every k-cycle Ck in Mk(x) is SC3,l
k , l ≥ 4 (see Example 1).

(5) Mk(x) may contain several k-cycles with different types depending on the situation (see Example 1).

Example 1. (1) In MSS18, for the point c1 in MSS18 in Figure 3a, we have M18(c1) as the set consisting of
four 18-cycles,

(c0, c1, c9), (c0, c1, c6), (c1, c2, c8, c9), and (c1, c2, c7, c6).

(2) In MSS′18, for the point e0 in MSS′18 in Figure 3b, we obtain M18(e0) as the set being composed of four
18-cycles,

(e0, e3, e5), (e0, e3, e4), (e0, e1, e5), and (e0, e1, e4).

(3) In MSS6, for the point d0 in Figure 3c, we have M6(d0) as the set consisting of twelve 6-cycles with
four elements,

(d0, d7, d8, d9), (d0, d1, d10, d9), (d1, d2, d11, d10), and so on.
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Figure 3. (a) Configuration of the elements of M18(c1) in MSS18 for the point c1 ∈ MSS18;
(b) explanation of the elements of M18(e0) in MSS′18 for the point e0 ∈ MSS′18 (or MSS′26);
and (c) configuration of the elements of M6(d0) for the point d0 ∈ MSS6.

Indeed, using each minimal k-cycle in Mk(x), we can produce a certain polygon (a solid triangle or
a solid rectangle) in R3. For instance, in Example 1(a)(1), the given 18-cycle (c0, c1, c9) produces a solid
triangle, say < c0, c1, c9 >:= (c0, c1, c9), and further, the 18-cycle (c1, c2, c8, c9) leads to a solid rectangle,
say < c1, c2, c8, c9 >:= (c1, c2, c8, c9) in R3. Motivated by this approach, we can define the following:

Definition 9. Given a simple closed k-surface Sk in Z3, for a point x ∈ Sk, let

Dk(x) :=
⋃

Ck∈Mk(x)

Ck,
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where Ck means the polygon formulated by the minimal k-cycle Ck ∈ Mk(x). Indeed, Dk(x) is the set as the
union of polygons (solid triangles or solid rectangles) formulated by the minimal k-cycles in Mk(x). Then, we
say that Dk(x) is a geometric realization of Mk(x).

In Definition 9, we observe that each minimal k-cycle Ck in Mk(x) produces only a polygon as
a subset of Dk(x) in R3. Thus, it turns out that Dk(x) is a simplicial complex inherited from Mk(x)
(see Example 2).

Owing to the definition of Mk(x), for an Sk, x ∈ Sk in Z3, it is obvious that the set Dk(x) consists
of triangles or rectangles with boundary in the subspace (Dk(x), UDk(x)), where UDk(x) is the subspace
topology induced by the 3-dimensional Euclidean topological space (R3, U). For instance, based on
the set Mk(x) in Figure 3, we obtain the following:

Example 2. Depending on the points x in MSS18, MSS′18 (or MSS′26), or MSS6, according to Mk(x) in
Figure 3, we have Dk(x), k ∈ {6, 18}, as follows:

(1) Based on MSS18, we observe that D18(c1) is the set as the union of polygons formulated by the 18-cycles
in M18(c1), i.e., the union of the two triangles with boundary generated by the two 18-cycles (c0, c1, c9)

and (c0, c1, c6) and the two rectangles with boundary formulated by the 18-cycles (c1, c2, c8, c9) and
(c1, c2, c7, c6).

(2) Based on MSS′18, we observe that D18(e0) is the set which is the union of four triangles with boundary
formulated by four 18-cycles in M18(e0).

(3) In terms of the methods used in Equations (1) and (2), based on MSS6, we observe that D6(d0) is the set
as the union of twelve polygons (or regular rectangles) formulated by the twelve 6-cycles in M6(d0).

Given an Sk, using Dk(x), x ∈ Sk, let us now establish a geometric realization of Sk, as follows:

Definition 10. Given a simple closed k-surface Sk in Z3, let

| Sk | =
⋃

x∈Sk

Dk(x). (12)

Then, we call the set | Sk | the geometric realization of Sk.

Proposition 2. Given a simple closed k-surface Sk in Z3, the geometric realization | Sk | is uniquely determined
as a connected 2-dimensional simplicial complex (or a sphere-like polyhedron) in R3.

Proof. Given a simple closed k-surface Sk in Z3, for each point x ∈ Sk, it is obvious that the set
Dk(x)(⊂ R3) is a simplicial complex consisting of triangles or rectangles with boundaries.

For two k-adjacent points x1 and x2 in Sk, Dk(x1) and Dk(x2) have a non-empty intersection, i.e.,

Dk(x1) ∩ Dk(x2) 6= ∅, (13)

which implies that | Sk | is connected. To be precise, the intersection Dk(x1) ∩ Dk(x2) of Equation (13)
is the union of the 2-dimensional simplexes (or polygons) derived from the minimal k-cycles in

Mk(x1) ∩Mk(x2) = [N26(x1)
∗ ∪ {x1}] ∩ [N26(x2)

∗ ∪ {x2}] ∩ Sk.

Namely, we observe the identity

Mk(x1) ∩Mk(x2) = N26(x1, 1) ∩ N26(x2, 1) in Sk.

Thus, Dk(x1) ∩ Dk(x2) has some 2-dimensional simplexes (or polygons) in common from each of
them. Since Sk is k-connected, for any two k-adjacent points in Sk, using the property of Equation (13),
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we can formulate a connected 2-dimensional simplicial complex because Dk(x) is a 2-dimensional
simplicial complex (see Definition 9), as follows

| Sk | :=
⋃

x∈Sk

Dk(x) as in (12)

from the given Sk according to Definition 9. To be precise, | Sk | has 0-dimensional simplexes derived
from each of all elements in Sk. The 1-dimensional simplexes of | Sk | are all line segments formulated
by all two k-adjacent points in Sk. Finally, the 2-dimensional simplexes of | Sk | come from the polygons
in Dk(x), x ∈ Sk. Obviously, owing to the definition of Sk and the notion of |X |x (see Definition 6),
there is no n-dimensional simplex in | Sk |, n ≥ 3.

According to Proposition 2, we obtain the following:

Remark 4. Given a simple closed k-surface Sk in Z3, k ∈ {6, 18, 26}, the geometric realization | Sk | is a
sphere-like polyhedron in R3.

Eventually, given an Sk, | Sk | is obtained in terms of the following process.

Sk → Gk → {Mk | x ∈ Sk} → {Dk | x ∈ Sk} → | Sk |. (14)

The term “generated” (see Definition 12 of Reference [5]) in Reference [5] means the process in
Equation (14).

Remark 5. In view of Definitions 9 and 10, we observe that, given an Sk and a point x ∈ Sk, the set
Int(Dk(x))(⊂ R3) can be considered a open neighborhood of x in | Sk | , where the term as “Int” means the
interior operator in the subspace (| Sk |, U| Sk |), where U| Sk | is the subspace topology on | Sk | induced by the
3-dimensional Euclidean topological space (R3, U). This approach can facilitate the study of some objects in
digital surface theory.

Remark 6 (Importance of the sets Mk(x) and Dk(x) with respect to a geometric realization of an Sk).
Unlike a typical surface (or a 2-dimensional topological manifold) in the Euclidean topological space (R3, U),
we observe that, given an Sk and x ∈ Sk motivated by the set, | Sk |x, the sets Mk(x) and Dk(x), x ∈ Sk play
important roles in establishing a geometric realization of the given Sk.

Owing to Proposition 2 and the process of Equation (14), given an Sk in Z3, we obtain
| Sk | (see Equation (13)) as a typical polyhedron without boundary in the subspace (| Sk |, U| Sk |)

(see Remark 4).

Example 3. For MSS18 in Figure 1a, we see that |MSS18| seems like to be a small rugby ball.

4. Euler Characteristics for Digital k-Surfaces and Connected Sums of Closed k-Surfaces

In order to address questions (Q3) and (Q4) in Section 1 and, further, to exactly understand the
notion of Euler characteristic of a simple closed k-surface Sk in Z3 (see Reference [5]), we now stress
that the geometric realization of Sk, | Sk |, is a sphere-like 2-dimensional simplicial complex generated
by the set {Dk(x) | x ∈ Sk} (see Proposition 2).

Given an Sk in Z3, a ‘2-dimensional digital k-simplex’ in Z3 is obviously defined as the set {x0, x1, x2}
contained in Nk(xi, 1) ⊂ Sk, i ∈ {0, 1, 2} (see Equation (5)) such that each of two elements of {x0, x1, x2}
are k-adjacent (see Reference [23]). Moreover, a ‘2-dimensional k-simplex’ in R3 is said to be a solid
triangle formulated by a “2-dimensional digital k-simplex”. Then, we can recognize some differences
between a 2-dimensional digital k-simplex (resp. a 2-dimensional k-simplex) and an element of Mk(x)
(resp. Dk(x)), as follows:
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Remark 7. Given an Sk, k ∈ {6, 18, 26}, not every element of Mk(x) becomes a 2-dimensional digital k-simplex
in Sk.

Proof. Consider MSS18 in Figure 3a. Whereas the set M18(c1) contains the minimal 18-cycle
(c1, c2, c8, c9) in MSS18 (see Figure 3a), the 18-cycle (c1, c2, c8, c9) is not a 2-dimensional digital
18-simplex in MSS18.

Based on the M18(x), x ∈ MSS18 in Figure 3a, we observe that, although the set D18(c1) contains
a rectangle (or a polygon), say < c1, c2, c8, c9 >:= (c1, c2, c8, c9), generated by the minimal 18-cycle
(c1, c2, c8, c9) in MSS18, the rectangle < c1, c2, c8, c9 > in D18(c1) is not formulated by any 2-dimensional
digital 18-simplex in MSS18.

Example 4. For the simple closed 18-surface MSS18 in Figure 1a, we have twelve polygons in |MSS18 | =⋃
ci∈MSS18

D18(ci) generated by the set consisting of the following 18-cycles in
⋃

ci∈MSS18

M18(ci)


{c0, c1, c9}, {c1, c2, c8, c9}, {c2, c3, c8}, {c3, c4, c8},
{c4, c5, c9, c8}, {c0, c5, c9}, {c0, c1, c6}, {c1, c2, c7, c6},
{c2, c3, c7}, {c3, c4, c7}, {c4, c5, c6, c7}, {c0, c5, c6}.

 (15)

However, in MSS18, we have only eight 2-dimensional digital 18-simplices, such as{
{c0, c1, c9}, {c2, c3, c8}, {c3, c4, c8}, {c0, c5, c9},
{c0, c1, c6}, {c2, c3, c7}, {c3, c4, c7}, {c0, c5, c6}.

}

Thus, the simplicial complex generated by the eight 2-dimensional 18-simplex is quite different from the
geometric realization |MSS18 | of [5] (or the current geometric realization |MSS18 |).

Remark 8 (Limitations of the approach of an Euler characteristic in Reference [14]). Given an Sk referred
to in Example 4, Reference [14] considered only the simplicial complexes formulated by only 2-dimensional
digital k-simplexes on Sk. Then, given an Sk in Z3, it is obvious that it need not produce a polyhedron in R3.
To be precise, according to the approach of Reference [14], since each of the sets

{c1, c2, c8, c9}, {c1, c2, c7, c6}, {c4, c5, c9, c8}, {c4, c5, c6, c7}

is not a 2-dimensional digital 18-simplex, the simplicial simplex induced by the 2-dimensional 18-simplices in
MSS18 is not even a polyhedron in R3.

For instance, suppose the set generated by only the 2-dimensional 18-simplices in Reference [14]{
{c0, c1, c9}, {c2, c3, c8}, {c3, c4, c8}, {c0, c5, c9},
{c0, c1, c6}, {c2, c3, c7}, {c3, c4, c7}, {c0, c5, c6}.

}
(16)

Then, the union of all polygons inherited from these eight 18-cycles is not a polyhedron in R3. This implies
that, given an Sk, the geometric approximation referred to in Reference [14] does not support a transformation
from Sk to a certain sphere-like polyhedron inR3. Hence, comparing Definition 10, the approach of Reference [14]
is very restrictive.

Hence, the current notions of Mk(x) and Dk(x) in Definitions 8 and 9 are substantially required in digital
surface theory.
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Using both the digital k-graph theoretical method in References [4,10] and the notions of Dk(x)
and Mk(x), x ∈ Sk, inherited from Gk (see Definitions 8 and 10 of the present paper), we can define the
Euler characteristic of an Sk. Owing to Definition 10 and Proposition 2, we can make the definition for
Euler characteristic of Sk in Reference [5] clear in the following way.

Definition 11 ([5]). For an Sk, the Euler characteristic of Sk is defined by

E(Sk) = E(|Sk|),

where E(|Sk|) = V − E + F and V means the number of the vertexes of |Sk|, E is the number of the k-edges of
|Sk|, and F is the number of the polygons in |Sk| =

⋃
x∈Sk

Dk(x).

Remark 9 (Advantages of the approach of the current Euler characteristic of an Sk (see also
Reference [5]). The approach using Definition 11 is consistent with the research of the Euler characteristic of a
typical closed surface from algebraic topology and polyhedron geometry.

Namely, for simple closed k-surfaces in Z3, the following assertion in Reference [5] is right with
the same proof as in Reference [5] according to the Definition 11 and Proposition 2.

Proposition 3. Given an Sk, we obtain E(Sk) = 2.

Proof. Using Proposition 2, given an Sk, since | Sk | is a sphere-like polyhedron in R3, we obtain
E(Sk) = 2.

Example 5. (1) E(MSS18) = 10− 20 + 12 = 2.
(2) E(MSS6) = 26− 48 + 24 = 2.

Owing to Proposition 2, the digital analogue of the Euler characteristic of a connected sum in
typical topology in References [28,29] was developed. Indeed, in Reference [3], we stated the simple
closed k-surface structure of a connected sum of two simple closed k-surfaces (see Theorem 5.4 of
Reference [3]). However, in order to use this fact in the present paper, we need to prove it more
precisely, as follows:

Theorem 1. Given two simple closed k-surfaces Sk and S′k, Sk]S′k is a simple closed k-surface in Z3.

Proof. (Case 1) In the case (k, k̄) ∈ {(26, 6), (6, 26)}, we observe that, for each point x ∈ Sk]S′k, | Sk]S′k |
x

has exactly one k-component k-adjacent to x. Moreover, |Sk]S′k|
x has exactly two k̄-components

k̄-adjacent to x. We denote these two components with Cx x and Dx x. Finally, for any point y ∈
Nk(x) ∩ (Sk]S′k) (or Nk(x, 1) in Sk]S′k), we obtain

Nk̄(y) ∩ Cx x 6= φ and Nk̄(y) ∩ Dx x 6= φ.

Since Sk]S′k does not have any simple k-point, Sk]S′k is a simple closed k-surface.
(Case 2) In the case (k, k̄) = (18, 6), Sk]S′k is obviously k-connected. Moreover, for each point

x ∈ Sk]S′k, in view of the process of Sk]S′k (see Definition 7 and Remark 1), |Sk]S′k|
x is exactly a simple

closed k-curve, which Sk]S′k is a simple closed k-surface.

Using Definition 11 and Theorem 1, as roughly proved in Reference [3], we obtain the following:

Corollary 1. (1) E(Sk]S′k) = E(Sk) + E(S′k)− 2 [4].
(2) E(Sk]S′k) = E(Sk) = E(S′k).
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Proof. Owing to Theorem 1, the proofs of Equations (1) and (2) are completed.

In view of Corollary 1, it turns out that the calculations of the Euler characteristics of connected
sums of simple closed k-surfaces suggested in Reference [5] obviously hold, as follows:

Example 6. (1) E(MSS6]MSS6) = 14− 28 + 16 = 2.
(2) E(MSS18]MSS18) = E(MSS18) = 2.
(3) E(MSS′18]MSS18) = E(MSS′18) = E(MSS18) = 2.

In digital surface theory, Reference [5] already proved that MSS18]MSS18 is simply 18-connected.
However, we now need to correct some errors in Reference [5] relating to the calculations of the digital
6-fundamental groups of MSS6 and MSS6]MSS6 in Reference [4]. Indeed, using trivial extensions in
Reference [24], the calculations should be proceeded, as follows:

Remark 10. (1) The 18-fundamental group of MSS6 should be calculated as a trivial group as in Reference [14]
instead of the free group generated by two cyclic groups (correction of Lemma 3.3(3) of Reference [5]).

(2) The 6-fundamental group of MSS6]MSS6 should be calculated as a trivial group as in Reference [14]
instead of the free group generated by two cyclic groups (correction of Theorem 3.4(1) of Reference [5]).

5. The (Almost) Fixed Point Property for Digital k-Surfaces and Connected Sums of Closed
k-Surfaces

In order to address the query (Q5) in Section 1, let us now recall the fixed point property and the
almost fixed point property from the viewpoint of digital topology.

• We say that a digital image (X, k) in Zn has the fixed point property (FPP) [30] if, for every
k-continuous map f : (X, k)→ (X, k), there is a point x ∈ X such that f (x) = x.

• We say that a digital image (X, k) in Zn has the almost fixed point property (AFPP) [30,31] if, for every
k-continuous self-map f of (X, k), there is a point x ∈ X such that f (x) = x or f (x) is k-adjacent
to x. In general, we observe that the AFPP is a more generalized concept than the FPP.

By Proposition 3 and Example 5, it turns out that each of E(MSS6), E(MSS18), and E(MSS′18) is
not trivial. Despite this situation, in this section, we prove that each of MSS6, MSS18, and MSS′18 does
not have the FPP (see Theorem 2).

Theorem 2. (1) MSS18 does not have the AFPP.
(2) MSS′18 does not have the AFPP.

Proof. (1) Let us consider the self-bijection f of MSS18 using the composite of the three different types
of reflections F1, F2, and F3 of MSS18, as follows (see Figure 4a):

F1, F2, F3 : MSS18 → MSS18

is defined as
F1 : c6 ↔ c9, c7 ↔ c8 and F1(x) = x, for x ∈ MSS18 \ {c6, c7, c8, c9},
F2 : c1 ↔ c5, c2 ↔ c4, and F2(x) = x, for x ∈ MSS18 \ {c1, c2, c4, c5},
F3 : c0 ↔ c3, F1(c6)↔ F1(c7), F1(c9)↔ F1(c8), F2(c1)↔ F2(c2), F2(c5)↔ F2(c4),

 (17)

where the notation “p↔ q” in Equation (17) means a mapping from p to q and vice versa by using the
given maps, F1, F2, and F3, where p, q ∈ MSS18.
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Then, we observe that the maps F1, F2, and F3 are special kinds of reflections which are
18-continuous self-bijections of MSS18. Then, we obtain the composite

f := F3 ◦ F2 ◦ F1 : MSS18 → MSS18

which is also an 18-continuous self-bijection of MSS18 (see Figure 4a). However, the map f does not
support the AFPP for MSS18. To be precise, we observe that there is no point x ∈ MSS18 such that
f (x) = x or f (x) is 18-adjacent to x.

(2) Let us consider the self-bijection g of MSS′18 in the following way (see Figure 4b):

g : MSS′18 → MSS′18

is defined as {
g(e0) = e2, g(e2) = e0, g(e1) = e3, g(e3) = e1, g(e4) = e5, g(e5) = e4,

i.e., e0 ↔ e2, e1 ↔ e3, e4 ↔ e5.

}
(18)

Then, we observe that the map g is an 18-continuous bijection on MSS′18. However, we find that
the map g does not support the AFPP for MSS′18. To be specific, we observe that there is no point
x ∈ MSS′18 such that g(x) = x or g(x) is 18-adjacent to x.
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Figure 4. Explanations of the non-almost fixed point property (AFPP) of MSS18 (a) MSS′18
(or MSS′26) (b).

It is obvious that MSS6 does not have the FPP. However, owing to Proposition 2 and Definition 11,
we obtain E(MSS6) = 2. Thus, owing to Proposition 3, Theorem 2 and Examples 5 and 6, we have
the following:

Corollary 2. For an Sk, the non-triviality of the Euler characteristic of an Sk implies neither the FPP nor the
AFPP of the given Sk.

As stated above, in view of the feature of the Euler characteristics of digital k-surfaces, we can
stress that the study of fixed point theory using the current Euler characteristic is quite different from
the approach of the typical fixed point theory. Moreover, based on Remarks 5 and 6, we can also point
out the following:
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Remark 11. (1) The authors of Reference [14] studied a certain Euler characteristic of a digital image (X, k)
using digital homology groups of (X, k) (see Section 6 of Reference [14]). Moreover, they urged to establish some
connection between the Euler characteristic of a k-surface in Reference [5] (or the current version of Definition 11
in the present paper) and their Euler characteristic using the digital homology referred to in Reference [14].
However, it turns out that they are totally different. Thus, in view of Theorem 2 and Corollary 2, their assertions
in Reference [14] involving the Euler characteristic of Sk of Reference [5] are too far from the approach of
Reference [5] (or the current one). Indeed, we find that their approach in Reference [14] is irrelevant to the
current Euler characteristic in Reference [5] (or the current one).

(2) In view of Remarks 8 and 9, Definition 11, and Theorem 2, the current Euler characteristic of Sk
facilitates the study of digital surfaces of from the viewpoints of digital surface and typical surface theories.

Remark 12. (1) The digital homology in Reference [14] is indeed quite different from the typical homology
group in algebraic topology (for more details, see Section 1 of Reference [32]). Furthermore, the digital homology
referred to in Reference [14] is also different from the simplicia homology in algebraic topology. Moreover, in view
of this situation, the comment in Reference [14] involving his approach to the Euler characteristic of an Sk with
the Euler characteristic in Reference [5] (or the current approach) can be incorrect.

(2) The digital 6-, 18-, and 26-sphere-like models, MSS6, MSS18, MSS′18 (or MSS′26, in Figure 1 were
firstly introduced in Reference [3,4]. However, the authors used them in Reference [14] with their attribution.

6. Conclusions and a Further Work

The present paper intensively explained the process of a geometric realization of an Sk in Z3.
Using this frame, we showed that the current Euler characteristic of a simple closed k-surface is
consistent with that of the typical surface in algebraic topology. Indeed, we also confirmed that the set
Int(Dk(x)) (see Definition 9) plays important role in establishing | Sk | (see Remark 5). Moreover, we
also have proved that the simple closed 18-surfaces MSS18 and MSS′18 do not have the AFPP. Finally,
it turns out that the non-triviality of the Euler characteristics of simple closed k-surfaces, MSS6, MSS18,
and MSS′18, implies neither the FPP nor the AFPP (see Theorem 2).

The recent paper [33] established many kinds of digital topological structures on Zn which are
not homeomorphic to the n-dimensional Khalimsky topological space. Moreover, References [34,35]
developed the notion of digital rough approximations using Khalimsky and Marcus–Wyse topological
structure. As a further work, using the methods in References [33,36], we can further study
the following:

• a development of a new type digital surface associated with a Khalimsky manifold.
• fixed point theory for many kinds of digital topological structures on Zn in [33].
• given a typical surface X in pure topology and geometry, after developing a new type

of LF-topological structure on X, T(X), we can explore some connections related to Euler
characteristics between X and T(X).

• after improving the earlier digital homology groups [14] for digital images, we can propose
some relationships between the current Euler characteristic and a certain invariant involving new
homology groups for digital closed k-surfaces.
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