

Article **Constructing Some Logical Algebras with Hoops**

M. Aaly Kologani¹, Seok-Zun Song^{2,*}, R. A. Borzooei³ and Young Bae Jun^{3,4}

- ¹ Hatef Higher Education Institute, Zahedan 9816848165, Iran; mona4011@gmail.com
- ² Department of Mathematics, Jeju National University, Jeju 63243, Korea
- ³ Department of Mathematics, Shahid Beheshti University, Tehran 1983969411, Iran; borzooei@sbu.ac.ir (R.A.B.); skywine@gmail.com (Y.B.J.)
- ⁴ Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
- * Correspondence: szsong@jejunu.ac.kr

Received: 12 November 2019; Accepted: 13 December 2019; Published: 16 December 2019

Abstract: In any logical algebraic structures, by using of different kinds of filters, one can construct various kinds of other logical algebraic structures. With this inspirations, in this paper by considering a hoop algebra or a hoop, that is introduced by Bosbach, the notion of co-filter on hoops is introduced and related properties are investigated. Then by using of co-filter, a congruence relation on hoops is defined, and the associated quotient structure is studied. Thus Brouwerian semilattices, Heyting algebras, Wajsberg hoops, Hilbert algebras and BL-algebras are obtained.

Keywords: hoop; co-filter; Brouwerian semilattice; Heyting algebra; Wajsberg hoop; Hilbert algebra; BL-algebra

MSC: 03G99; 06B10

1. Introduction

Non-classical logics (or called alternative logics) are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. Many-valued logics are non-classical logics which are similar to classical logic. Bosbach [1,2] proposed the concept of hoop which is a nice algebraic structure to research the many-valued logical system whose propositional value is given in a lattice. For various information on hoops, refer to [3–8].

In this paper, we introduce the notion of co-filter in hoops and we get some properties of it. Then we construct a congruence relation by using co-filters on hoops. Finally, we investigate under which conditions the quotient structure of this congruence relation will be Brouwerian semilattice, Heyting algebra, Wajsberg hoop, Hilbert algebra and BL-algebra.

2. Preliminaries

In this section, we recollect some definitions and results which will be used in the following and we shall not cite them every time they are used.

Definition 1 ([9]). A hoop is an algebraic structure $(\mathbb{H}, \odot, \rightarrow, 1)$ of type (2, 2, 0) such that, for all $\alpha, \beta, \gamma \in \mathbb{H}$ it satisfies in the following conditions:

(*HP*1) $(\mathbb{H}, \odot, 1)$ *is a commutative monoid.*

(*HP2*) $\alpha \rightarrow \alpha = 1$.

- (*HP3*) $(\alpha \odot \beta) \rightarrow \gamma = \alpha \rightarrow (\beta \rightarrow \gamma).$
- (*HP*4) $\alpha \odot (\alpha \rightarrow \beta) = \beta \odot (\beta \rightarrow \alpha).$

On hoop \mathbb{H} , a binary relation \leq is defined on \mathbb{H} such that $\alpha \leq \beta$ iff $\alpha \to \beta = 1$ and (\mathbb{H}, \leq) is a poset. If the least element $0 \in \mathbb{H}$ exists such that, for all $\alpha \in \mathbb{H}$, $0 \leq \alpha$, then \mathbb{H} is called a bounded hoop. We let $\alpha^0 = 1$ and $\alpha^n = \alpha^{n-1} \odot \alpha$, for any $n \in \mathbb{N}$. If \mathbb{H} is bounded, then, for all $\alpha \in \mathbb{H}$, the operation negation "' " is defined on \mathbb{H} by, $\alpha' = \alpha \to 0$. If $(\alpha')' = \alpha$, for all $\alpha \in \mathbb{H}$, then \mathbb{H} is said to have (DNP) property.

Proposition 1 ([1,2]). *Let* $(\mathbb{H}, \odot, \rightarrow, 1)$ *be a hoop. Then, for all* $\alpha, \beta, \gamma \in \mathbb{H}$ *, it satisfies in the following conditions:*

- (*i*) (\mathbb{H}, \leq) *is a meet-semilattice with* $\alpha \land \beta = \alpha \odot (\alpha \rightarrow \beta)$ *.*
- (*ii*) $\alpha \odot \beta \leq \gamma$ *iff* $\alpha \leq \beta \rightarrow \gamma$.
- (*iii*) $\alpha \odot \beta \leq \alpha, \beta$ and $\alpha^n \leq \alpha$, for any $n \in \mathbb{N}$.
- (*iv*) $\alpha \leq \beta \rightarrow \alpha$.
- (v) $1 \rightarrow \alpha = \alpha$ and $\alpha \rightarrow 1 = 1$.
- (vi) $\alpha \odot (\alpha \rightarrow \beta) \leq \beta$.
- (vii) $\alpha \to \beta \leq (\beta \to \gamma) \to (\alpha \to \gamma)$.
- (viii) $\alpha \leq \beta$ implies $\alpha \odot \gamma \leq \beta \odot \gamma$, $\gamma \rightarrow \alpha \leq \gamma \rightarrow \beta$ and $\beta \rightarrow \gamma \leq \alpha \rightarrow \gamma$.

Proposition 2 ([1,2]). *Let* \mathbb{H} *be a bounded hoop. Then, for any* $\alpha, \beta \in \mathbb{H}$ *, the following conditions hold:* (*i*) $\alpha \leq \alpha''$ and $\alpha \odot \alpha' = 0$

(i) $\alpha' \leq \alpha \rightarrow \beta$. (ii) $\alpha'' = \alpha'$. (iii) $\alpha''' = \alpha'$.

- (*iv*) If \mathbb{H} has (DNP), then $\alpha \to \beta = \beta' \to \alpha'$.
- (v) If \mathbb{H} has (DNP), then $(\alpha \to \beta) \to \beta = (\beta \to \alpha) \to \alpha$.

Proposition 3 ([10]). *Let* \mathbb{H} *be a hoop and for any* $\alpha, \beta \in \mathbb{H}$ *, define the operation* \vee *on* \mathbb{H} *as follows,*

$$\alpha \lor \beta = ((\alpha \to \beta) \to \beta) \land ((\beta \to \alpha) \to \alpha).$$

Then, for all $\alpha, \beta, \gamma \in \mathbb{H}$ *, the following conditions are equivalent:*

- (*i*) \lor *is associative,*
- (*ii*) $\alpha \leq \beta$ *implies* $\alpha \lor \gamma \leq \beta \lor \gamma$,
- (*iii*) $\alpha \lor (\beta \land \gamma) \le (\alpha \lor \beta) \land (\alpha \lor \gamma)$,
- (iv) ∨ is the join operation on 𝔄.
 A hoop 𝔄 is said to a ∨-hoop, if it satisfies one of the above equivalent conditions.

Proposition 4 ([10]). *Let* \mathbb{H} *be a* \lor *-hoop and* $\alpha, \beta, \gamma \in \mathbb{H}$. *Then* \lor *-hoop* (\mathbb{H}, \lor, \land) *is a distributive lattice and* $(\alpha \lor \beta) \to \gamma = (\alpha \to \gamma) \land (\beta \to \gamma)$.

Definition 2 ([10]). A non-empty subset *F* of a hoop \mathbb{H} is called a filter of \mathbb{H} if, for any $\alpha, \beta \in \mathbb{H}$, the following condition hold:

- (*F*1) $\alpha, \beta \in F$ implies $\alpha \odot \beta \in F$.
- (F2) $\alpha \leq \beta$ and $\alpha \in F$ imply $\beta \in F$.

The set of all filters of \mathbb{H} is denoted by $\mathcal{F}(\mathbb{H})$. Clearly, for any filter F of \mathbb{H} , $1 \in F$. F is called a proper filter if $F \neq \mathbb{H}$. So, if \mathbb{H} is a bounded hoop, then a filter is proper iff it does not contain 0. It is easy to see that $F \in \mathcal{F}(\mathbb{H})$ iff, for any $\alpha, \beta \in \mathbb{H}$, $1 \in F$ and if $\alpha, \alpha \rightarrow \beta \in F$, then $\beta \in F$.

3. Co-Filters in Hoops

From here on, if there is no mention, \mathbb{H} denotes a bounded hoop.

We introduce the notion of co-filters on hoops, and it is proved that co-filters are not filters and some properties of them are studied. Moreover, a congruence relation is defined by them and is investigated the quotient structure of this congruence relation. **Definition 3.** A subset I of \mathbb{H} is said to be a co-filter of \mathbb{H} if, for any $\alpha, \beta \in \mathbb{H}$, (*CF*₁) $0 \in I$. (*CF*₂) $(\alpha \rightarrow \beta)' \in I$ and $\beta \in I$ imply $\alpha \in I$.

Example 1. Let $\mathbb{H} = \{0, a, b, c, d, 1\}$. Define the operations \odot and \rightarrow on \mathbb{H} as below,

\rightarrow	0	а	b	С	d	1	\odot	0	а	b	С	d	1
0	1	1	1	1	1	1	0	0	0	0	0	0	0
а	d	1	d	1	d	1	а	0	а	0	а	0	а
b	С	С	1	1	1	1	b	0	0	0	0	b	b
С	b	С	d	1	d	1	С	0	а	0	а	b	С
d	а	а	b	С	1	1	d	0	0	b	b	d	d
1	0	а	b	С	d	1	1	0	а	b	С	d	1

Then $(\mathbb{H}, \odot, \rightarrow, 0, 1)$ *is a hoop and* $I = \{0, b, d\}$ *is a co-filter of* \mathbb{H} *, which is not a filter of* \mathbb{H} *because* $1 \notin I$.

Note. For $S \subseteq \mathbb{H}$, define $S' = \{ \alpha \in \mathbb{H} \mid \alpha' \in S \}$.

Proposition 5. *If* \mathbb{H} *has (DNP) and* $\emptyset \neq I \subseteq \mathbb{H}$ *, then I is a filter of* \mathbb{H} *iff I' is a co-filter of* \mathbb{H} *.*

Proof. (\Rightarrow) Suppose $I \in \mathcal{F}(\mathbb{H})$. Then $1 \in I$, and so $0 = 1' \in I'$. Let $\alpha, \beta \in \mathbb{H}$ such that $(\alpha \to \beta)' \in I'$ and $\beta \in I'$. Since \mathbb{H} has (DNP), by Proposition 2(iv), $\beta' \to \alpha' = \alpha \to \beta \in I$, $\beta' \in I$ and since $I \in \mathcal{F}(\mathbb{H})$, by Definition 2, $\alpha' \in I$, and so $\alpha'' = \alpha \in I'$. Hence, I' is a co-filter of \mathbb{H} .

(\Leftarrow) Let *I*' be a co-filter of \mathbb{H} . Then $0 \in I'$, and so $1 \in I$. Now, suppose $\alpha, \beta \in A$ such that $\alpha, \alpha \to \beta \in I$. Thus $(\alpha \to \beta)' \in I'$ and $\alpha' \in I'$. Since \mathbb{H} has (DNP), by Proposition 2(iv), $(\beta' \to \alpha')' \in I'$, $\alpha' \in I'$ and since *I*' is a co-filter of \mathbb{H} , by definition, $\beta' \in I'$. Hemce, by (DNP), $\beta \in I$. Therefore, $I \in \mathcal{F}(\mathbb{H})$. \Box

If \mathbb{H} does not have (DNP), then Proposition 5 is not true, in general. We show this in the following example.

Example 2. Let $\mathbb{H} = \{0, a, b, 1\}$ be a chain such that $0 \le a \le b \le 1$ and two binary operations \odot and \rightarrow which are given below,

\rightarrow	0	а	b	1		\odot	0	а	b	1
0	1	1	1	1	-	0	0	0	0	0
а	а	1	1	1		а	0	0	а	а
b	0	а	1	1		b	0	а	b	b
1	0	а	b	1		1	0	а	b	1

By routine calculations, $(\mathbb{H}, \odot, \rightarrow, 0, 1)$ is a hoop that does not have (DNP). It is clear that \mathbb{H} is a co-filter of \mathbb{H} but $\mathbb{H}' = \{0, a, 1\}$ is not a filter of \mathbb{H} .

Note. If *F* is a proper filter of \mathbb{H} , then by Definition 2, $0 \notin F$. Thus, *F* is not a co-filter of \mathbb{H} . On the other hand, for any proper co-filter *I* of \mathbb{H} , if $1 \notin I$, then $I \notin \mathcal{F}(\mathbb{H})$.

Proposition 6. Let I be a co-filter of \mathbb{H} . Then the following statements hold:

(*i*) If $\alpha \leq \beta$ and $\beta \in I$, then $\alpha \in I$, for any $\alpha, \beta \in \mathbb{H}$.

(*ii*) If $\alpha \in I$, then $\alpha \odot \beta \in I$, for any $\beta \in \mathbb{H}$.

(*iii*) If \mathbb{H} is a \lor -hoop with (DNP), then $\alpha \lor \beta \in I$, for any $\alpha, \beta \in I$.

Proof. (*i*) Let $\alpha, \beta \in \mathbb{H}$ such that $\alpha \leq \beta$ and $\beta \in I$. Then $\alpha \to \beta = 1$, and so $(\alpha \to \beta)' = 0 \in I$. Since *I* is a co-filter of \mathbb{H} , $(\alpha \to \beta)' \in I$ and $\beta \in I$, we have $\alpha \in I$. (*ii*) Let $\alpha, \beta \in \mathbb{H}$ and $\alpha \in I$. By Proposition 1(iii), $\alpha \odot \beta \leq \alpha$. Since $\alpha \in I$, by (i), $\alpha \odot \beta \in I$. (*iii*) Suppose $\alpha, \beta \in I$. By Proposition 4,

$$(\alpha \lor \beta) \to \beta = (\alpha \to \beta) \land (\beta \to \beta) = \alpha \to \beta,$$

then $((\alpha \lor \beta) \to \beta)' = (\alpha \to \beta)'$. By Proposition 2(ii), $\alpha' \le \alpha \to \beta$, and so, by Proposition 1(viii) and (DNP), $(\alpha \to \beta)' \le \alpha'' = \alpha$. Hence, $((\alpha \lor \beta) \to \beta)' \le \alpha$. From *I* is a co-filter of \mathbb{H} and $\alpha \in I$, by (i) $((\alpha \lor \beta) \to \beta)' \in I$. Moreover, by assumption, $\beta \in I$ and *I* is a co-filter of \mathbb{H} . Therefore, $\alpha \lor \beta \in I$. \Box

Corollary 1. *If I is a co-filter of* \mathbb{H} *and* $1 \in I$ *, then* $I = \mathbb{H}$ *.*

Proof. By Proposition 6(i), the proof is straightforward. \Box

We provide conditions for a nonempty subset to be a co-filter.

Proposition 7. Let $\alpha, \beta \in \mathbb{H}$ and $\emptyset \neq I \subseteq \mathbb{H}$ such that I has the following properties,

(*i*) *if* $\alpha, \beta \in I$, then $\alpha' \to \beta \in I$, (*ii*) *if* $\alpha \leq \beta$ and $\beta \in I$, then $\alpha \in I$. Then I is a co-filter of \mathbb{H} .

Proof. Let $\alpha \in I$. Since, for all $\alpha \in \mathbb{H}$, $0 \le \alpha$, by (ii), $0 \in I$. Suppose $\alpha, \beta \in \mathbb{H}$ such that $(\alpha \rightarrow \beta)' \in I$ and $\beta \in I$. Then by (i),

$$\beta' \to (\alpha \to \beta)' = \beta' \to ((\alpha \to \beta) \to 0) \in I.$$

By (HP3), $(\alpha \to \beta) \to \beta'' \in I$. Moreover, by Propositions 2(i) and 1(viii), $\beta \leq \beta''$ and so $(\alpha \to \beta) \to \beta \leq (\alpha \to \beta) \to \beta'' \in I$, by (ii), $(\alpha \to \beta) \to \beta \in I$. Also, by Proposition 1(vi), $\alpha \leq (\alpha \to \beta) \to \beta$, and by (ii), $\alpha \in I$. Hence *I* is a co-filter of \mathbb{H} . \Box

By below example, we show that the converse of Proposition 7, is not true.

Example 3. Let $\mathbb{H} = \{0, a, b, c, 1\}$ be a set with the following Cayley tabels:

\rightarrow	0	а	b	С	1		\odot	0	а	b	С	1
0	1	1	1	1	1	_	0	0	0	0	0	0
а	b	1	0	0	1		а	0	а	0	0	а
b	С	0	1	0	1		b	0	0	b	0	b
С	с	0	0	1	1		С	0	0	0	С	С
1	0	а	b	С	1		1	0	а	b	С	1

Then $(\mathbb{H}, \odot, \rightarrow, 0, 1)$ *is a hoop and* $I = \{0, a\}$ *is a co-filter of* \mathbb{H} *but* $a' \rightarrow 0 = b \rightarrow 0 = c \notin I$.

Proposition 8. Let \mathbb{H} has (DNP). Then I is a co-filter of \mathbb{H} iff for any $\alpha, \beta \in \mathbb{H}$, I has the following properties, (i) if $\alpha, \beta \in I$, then $\alpha' \to \beta \in I$.

(*ii*) *if* $\alpha \leq \beta$ *and* $\beta \in I$ *, then* $\alpha \in I$ *.*

Proof. (\Rightarrow) Let *I* be a co-filter of \mathbb{H} . Then by Proposition 6(i), item (ii) is clear. Suppose $\alpha, \beta \in I$. By Proposition 1(vi) and (viii), $((\alpha' \rightarrow \beta) \rightarrow \beta)' \leq \alpha''$. Since \mathbb{H} has (DNP), $((\alpha' \rightarrow \beta) \rightarrow \beta)' \leq \alpha$. By assumption, $\alpha \in I$, and so by Proposition 6(i), $((\alpha' \rightarrow \beta) \rightarrow \beta)' \in I$. Moreover, since $\beta \in I$ and *I* is a co-filter of $\mathbb{H}, \alpha' \rightarrow \beta \in I$.

(\Leftarrow) The proof is similar to the proof of Proposition 7. \Box

Theorem 1. Let I be a co-filter of \mathbb{H} . Then, for all $\alpha, \beta, \gamma \in \mathbb{H}$, the following statements hold: (i) $((\alpha \to \beta) \to \alpha)' \in I$ and $\alpha \in I$ imply $\beta \in I$. (ii) If $\alpha \to (\alpha \to \beta) \in I$, then $\alpha \to \beta \in I$. (iii) $((\beta \to (\beta \to \alpha)) \to \gamma)' \in I$ and $\gamma \in I$ imply $\beta \to \alpha \in I$.

(iv) If $(\alpha \to \beta)' \in I$, then $((\alpha \to \beta)' \to \beta)' \in I$.

Proof. (*i*) Let $\alpha, \beta \in \mathbb{H}$ such that $((\alpha \to \beta) \to \alpha)' \in I$ and $\alpha \in I$. Since *I* is a co-filter of $\mathbb{H}, \alpha \to \beta \in I$. By Proposition 1(iv), $\beta \leq \alpha \to \beta \in I$. From Proposition 6(i), $\beta \in I$. (*ii*) By Proposition 1(iii) and (viii), $\alpha^2 \leq \alpha$ and $\alpha \to \beta \leq \alpha^2 \to \beta = \alpha \to (\alpha \to \beta)$. Since $\alpha \to (\alpha \to \beta) \in I$, by Proposition 6(i), $\alpha \to \beta \in I$.

(*iii*) Suppose $\alpha, \beta, \gamma \in \mathbb{H}$ such that $((\beta \to (\beta \to \alpha)) \to \gamma)' \in I$ and $\gamma \in I$. Since *I* is a co-filter of \mathbb{H} , $\beta \to (\beta \to \alpha) \in I$, and so by (ii), $\beta \to \alpha \in I$.

(*iv*) Let $\alpha, \beta \in \mathbb{H}$ such that $(\alpha \to \beta)' \in I$. Then by (HP3), we have

$$\begin{array}{rcl} ((\alpha \to \beta)' \to \beta)' \to (\alpha \to \beta)' &=& (\alpha \to \beta) \to ((\alpha \to \beta)' \to \beta)'' & \text{ by Propositions 1(viii) and 2(i)} \\ &\geq& (\alpha \to \beta) \to ((\alpha \to \beta)' \to \beta) & \text{ by (HP3)} \\ &=& [(\alpha \to \beta) \odot (\alpha \to \beta)'] \to \beta & \text{ by Proposition 2(i)} \\ &=& 0 \to \beta \\ &=& 1 \end{array}$$

Thus, $((\alpha \to \beta)' \to \beta)' \to (\alpha \to \beta)' = 1$, and so $((\alpha \to \beta)' \to \beta)' \le (\alpha \to \beta)'$. Since $(\alpha \to \beta)' \in I$ and *I* is a co-filter of \mathbb{H} , by Proposition 6(i), $((\alpha \to \beta)' \to \beta)' \in I$. \Box

If $X \subseteq \mathbb{H}$, then the least co-filter of \mathbb{H} contains X is called the *co-filter generated by* X of \mathbb{H} and we show it by [X).

Theorem 2. *If* \mathbb{H} *has (DNP), then, for any* $a \in \mathbb{H}$ *,*

$$[a) = \{ \alpha \in A \mid \exists n \in \mathbb{N} \text{ such that } (a')^n \leq \alpha' \}.$$

Proof. Let $B = \{ \alpha \in A \mid \exists n \in \mathbb{N} \text{ such that } (a')^n \leq \alpha' \}$. Since $(a')^n \leq 1 = 0'$, for all $n \in \mathbb{N}$, we have $0 \in B$, and so $B \neq \emptyset$. Now, suppose $\alpha, \beta \in \mathbb{H}$ such that $(\alpha \to \beta)' \in B$ and $\beta \in B$. Then there exist $n, m \in \mathbb{N}$, such that $(a')^n \leq (\alpha \to \beta)''$ and $(a')^m \leq \beta'$. By Proposition 1(viii),

$$(a')^n \odot (a')^m \le (\alpha \to \beta)'' \odot (a')^m \le (\alpha \to \beta)'' \odot \beta'$$

By (HP3), we get

$$((\alpha \to \beta)'' \odot \beta') \to \alpha' = \beta' \to ((\alpha \to \beta)'' \to \alpha')$$

= $\beta' \to (\alpha \to (\alpha \to \beta)'')$ by Proposition 2(iii)
= $\beta' \to (\alpha \to (\alpha \to \beta)')$
= $\alpha \to (\beta' \to (\alpha \to \beta)')$
= $\alpha \to ((\alpha \to \beta) \to \beta'')$
= $(\alpha \to \beta) \to (\alpha \to \beta'')$ by Propositions 2(i) and 1(viii)
= 1

Then $(\alpha \to \beta)'' \odot \beta' \le \alpha'$, and so $(a')^n \odot (a')^m \le \alpha'$. Hence, $n + m \in \mathbb{N}$ exists such that $(a')^{n+m} \le \alpha'$. Therefore, $\alpha \in B$, and so *B* is a co-filter of \mathbb{H} . Also, by Proposition 1(iii), $(a')^n \le a'$. Thus, $a \in B$ and *B* is a co-filter of \mathbb{H} which containing *a*. Now, it is enough to prove that *B* is the least co-filter of \mathbb{H} which containing *a*. Suppose *C* is a co-filter of \mathbb{H} that contains *a*. We show that $B \subseteq C$. Let $\alpha \in B$. Then there exists $n \in \mathbb{N}$ such that $(a')^n \leq \alpha'$. Thus $(a')^n \rightarrow \alpha' = 1$. Since \mathbb{H} has (DNP), by (HP3) and Proposition 2(iv), we get

$$1 = (a')^n \to \alpha'$$

$$= ((a')^{n-1} \odot (a')) \to \alpha'$$

$$= (a')^{n-1} \to (a' \to \alpha')$$

$$= (a')^{n-1} \to (\alpha \to a'')$$

$$= (a')^{n-1} \to (\alpha \to a)$$

$$= ((a')^{n-2} \odot (a')) \to (\alpha \to a)$$

$$= (a')^{n-2} \to (a' \to (\alpha \to a))$$

$$= (a')^{n-2} \to ((\alpha \to a)' \to a'')$$

$$= (a')^{n-2} \to ((\alpha \to a)' \to a)$$

By continuing this method, we have

$$1 = ((((\alpha \to a)' \to a)' \to a)' \to ... \to a)' \to a$$

Hence,

$$[(((((\alpha \rightarrow a)' \rightarrow a)' \rightarrow a)') \rightarrow)...) \rightarrow a)' \rightarrow a]' = 1' = 0 \in C.$$

Since *C* is a co-filter of \mathbb{H} and $a \in C$, we obtain,

$$(((((\alpha \to a)' \to a)' \to a)') \to)...) \to a)' \in C.$$

By continuing this method, we can see that $(\alpha \to a)' \in C$. Since $(\alpha \to a)' \in C$, $a \in C$ and C is a co-filter of \mathbb{H} , we have $\alpha \in C$. Hence, $B \subseteq C$. Therefore, B = [a]. \Box

Corollary 2. Let \mathbb{H} has (DNP), $X \subseteq \mathbb{H}$ and $a \in \mathbb{H}$. Then the following statements hold: (i) $[X] = \{ \alpha \in A \mid \exists n \in \mathbb{N} \text{ and } a_1, ..., a_n \in X \text{ s.t, } a_1' \odot a_2' \odot ... \odot a_n' \leq \alpha' \}.$ (ii) $[I \cup \{a\}) = \{ \beta \in A \mid \exists n, m \in \mathbb{N} \text{ and } \alpha_1, ..., \alpha_m \in I \text{ s.t, } (\alpha'_1 \odot ... \odot \alpha'_m) \odot (\alpha')^n \leq \beta' \}.$

Proof. The proof is similar to the proof of Theorem 2. \Box

Example 4. Let A be the hoop as in Example 3. It is clear that A has (DNP). Since a' = d and $d \le d = a'$ and $d \le 1 = 0'$, we get $[a] = \{0, a\}$. Also, since d' = a and $a \le 1, a, c$, we have $[d] = \{0, b, d\}$.

Theorem 3. Let I be a co-filter of \mathbb{H} . We define the relation \equiv_I on \mathbb{H} as follows,

 $\alpha \equiv_I \beta$ iff $(\alpha \to \beta)' \in I$ and $(\beta \to \alpha)' \in I$, for all $\alpha, \beta \in \mathbb{H}$.

Then \equiv_I *is a congruence relation on* \mathbb{H} *.*

Proof. At first, we prove that \equiv_I is an equivalence relation on \mathbb{H} . Since, for all $\alpha \in \mathbb{H}$, $\alpha \to \alpha = 1$ and I is a co-filter of \mathbb{H} , $(\alpha \to \alpha)' = 0 \in I$. Thus, $\alpha \equiv_I \alpha$, and so \equiv_I is reflexive. It is obvious that \equiv_I is symmetric. For proving transitivity of \equiv_I , suppose $\alpha, \beta, \gamma \in \mathbb{H}$ such that $\alpha \equiv_I \beta$ and $\beta \equiv_I \gamma$. Hence, $(\alpha \to \beta)', (\beta \to \alpha)', (\beta \to \gamma)'$ and $(\gamma \to \beta)' \in I$ and by Proposition 1(vii) and (viii),

$$(\alpha \to \gamma)' \leq ((\alpha \to \beta) \odot (\beta \to \gamma))'.$$

By (HP3) and Propositions 1(vii), (viii) and 2(iii), we have,

$$\begin{array}{rcl} (((\alpha \to \beta) \to (\beta \to \gamma)') \to (\alpha \to \beta)')' & = & (((\alpha \to \beta) \to (\beta \to \gamma)') \to ((\alpha \to \beta) \to 0))' \\ & = & ([(\alpha \to \beta) \odot ((\alpha \to \beta) \to (\beta \to \gamma)')] \to 0)' \\ & \leq & (\beta \to \gamma)''' \\ & = & (\beta \to \gamma)' \in I. \end{array}$$

Thus, by Proposition 6(i),

$$(((\alpha \to \beta) \to (\beta \to \gamma)') \to (\alpha \to \beta)')' \in I.$$

Since $(\alpha \to \beta)' \in I$ and *I* is a co-filter of \mathbb{H} , $(\alpha \to \beta) \to (\beta \to \gamma)' \in I$. Moreover, $(\alpha \to \gamma)' \leq (\alpha \to \beta) \to (\beta \to \gamma)' \in I$, by Proposition 6(i), $(\alpha \to \gamma)' \in I$. By the similar way, $(\gamma \to \alpha)' \in I$. Hence, $\alpha \equiv_I \gamma$. Therefore, \equiv_I is an equivalence relation on \mathbb{H} . Now, let $\alpha \equiv_I \beta$, for some $\alpha, \beta \in \mathbb{H}$. Then $(\alpha \to \beta)', (\beta \to \alpha)' \in I$. Thus, by Proposition 1(vi), $\alpha \leq (\alpha \to \gamma) \to \gamma$, for all $\gamma \in \mathbb{H}$. So, by Proposition 1(vii), $\beta \to \alpha \leq \beta \to ((\alpha \to \gamma) \to \gamma)$. Then by Proposition 1(viii) and (HP3),

$$((\alpha \to \gamma) \to (\beta \to \gamma))' \le (\beta \to \alpha)'.$$

Since $(\beta \to \alpha)' \in I$ and *I* is a co-filter of \mathbb{H} , by Proposition 6(i), $((\alpha \to \gamma) \to (\beta \to \gamma))' \in I$. By the similar way, $((\beta \to \gamma) \to (\alpha \to \gamma))' \in I$. Hence, $\alpha \to \gamma \equiv_I \beta \to \gamma$. Suppose $\alpha \equiv_I \beta$, for some $\alpha, \beta \in \mathbb{H}$. Then $(\alpha \to \beta)', (\beta \to \alpha)' \in I$ and by Proposition 1(vii) and (HP3), $\alpha \to \beta \leq (\gamma \to \alpha) \to (\gamma \to \beta)$, for all $\gamma \in \mathbb{H}$. Also, by Proposition 1(viii),

$$((\gamma \to \alpha) \to (\gamma \to \beta))' \le (\alpha \to \beta)'.$$

From $(\alpha \to \beta)' \in I$ and *I* is a co-filter of \mathbb{H} , by Proposition 6(i), $((\gamma \to \alpha) \to (\gamma \to \beta))' \in I$. By the similar way, $((\gamma \to \beta) \to (\gamma \to \alpha))' \in I$. Hence, $\gamma \to \alpha \equiv_I \gamma \to \beta$. Finally, if $\alpha \equiv_I \beta$, for some $\alpha, \beta \in \mathbb{H}$, then $(\alpha \to \beta)', (\beta \to \alpha)' \in I$. From $\alpha \odot \gamma \leq \alpha \odot \gamma$, by Proposition 1(ii),(viii) and (HP3), $\alpha \leq \gamma \to (\alpha \odot \gamma)$, and so

$$\beta \to \alpha \leq \beta \to (\gamma \to (\alpha \odot \gamma)) = (\beta \odot \gamma) \to (\alpha \odot \gamma).$$

Then by Proposition 1(viii),

$$((\beta \odot \gamma) \to (\alpha \odot \gamma))' \le (\beta \to \alpha)'$$

Since $(\beta \to \alpha)' \in I$ and *I* is a co-filter of \mathbb{H} , by Proposition 6(i), $((\beta \odot \gamma) \to (\alpha \odot \gamma))' \in I$. Similarly, $((\alpha \odot \gamma) \to (\beta \odot \gamma))' \in I$. Hence, $\alpha \odot \gamma \equiv_I \beta \odot \gamma$. Therefore, \equiv_I is a congruence relation on \mathbb{H} . \Box

For any $\alpha \in \mathbb{H}$, I_{α} will denote the equivalence class of α with respect to \equiv_I . It is clear that

$$I_{\alpha} = \{\beta \in \mathbb{H} \mid \alpha \equiv_{I} \beta\} = \{\beta \in \mathbb{H} \mid (\alpha \to \beta)' \in I \text{ and } (\beta \to \alpha)' \in I\}.$$

Easily we can see that $I_0 = I$ and $I_1 = \{\beta \in \mathbb{H} \mid \beta' \in I\}$.

Theorem 4. Let $\mathbb{H}/I = \{I_{\alpha} \mid \alpha \in \mathbb{H}\}$. Define the operations \otimes and \rightsquigarrow on \mathbb{H}/I as follows:

$$I_{\alpha} \otimes I_{\beta} = I_{\alpha \odot \beta} \text{ and } I_{\alpha} \rightsquigarrow I_{\beta} = I_{\alpha \rightarrow \beta}.$$

Then $(\mathbb{H}/I, \otimes, \rightsquigarrow, I_0, I_1)$ *is a bounded hoop.*

Proof. The proof is straightforward.

Note. Let $\alpha, \beta \in \mathbb{H}$. Then the binary relation " \leq_I " is defined on \mathbb{H}/I as follows,

$$I_{\alpha} \leq_{I} I_{\beta} \text{ iff } (\alpha \rightarrow \beta)' \in I.$$

Then \leq_I is a partially order relation on \mathbb{H}/I . Since $(\alpha \to \alpha)' = 0 \in I$, for any $\alpha \in \mathbb{H}$, $I_{\alpha} \leq_I I_{\alpha}$. Suppose $I_{\alpha} \leq_I I_{\beta}$ and $I_{\beta} \leq_I I_{\alpha}$, for any $\alpha, \beta \in \mathbb{H}$. Then $(\alpha \to \beta)' \in I$ and $(\beta \to \alpha)' \in I$. Thus, $\alpha \equiv_I \beta$, and so $I_{\alpha} = I_{\beta}$. Now, let $I_{\alpha} \leq_I I_{\beta}$ and $I_{\beta} \leq_I I_{\gamma}$. Then $(\alpha \to \beta)' \in I$ and $(\beta \to \gamma)' \in I$. By Proposition 1(vii), for $\alpha, \beta, \gamma \in \mathbb{H}$, we have $(\alpha \to \beta) \odot (\beta \to \gamma) \leq \alpha \to \gamma$. Thus, by Proposition 1(viii) and (HP3),

$$(\alpha \to \gamma)' \leq ((\alpha \to \beta) \odot (\beta \to \gamma))',$$

and so

$$(\alpha \to \gamma)' \leq [((\alpha \to \beta) \odot (\beta \to \gamma)) \to 0]$$

Thus, $(\alpha \to \gamma)' \leq (\alpha \to \beta) \to ((\beta \to \gamma) \to 0)$. Moreover, by Proposition 1(ii),

$$lpha
ightarrow eta \leq (lpha
ightarrow \gamma)'
ightarrow (eta
ightarrow \gamma)'$$

Hence, by Proposition 1(viii), we obtain,

$$((\alpha \to \gamma)' \to (\beta \to \gamma)')' \le (\alpha \to \beta)' \in I.$$

Since $(\alpha \to \beta)' \in I$ and *I* is a co-filter of \mathbb{H} , by Proposition 6(i), $((\alpha \to \gamma)' \to (\beta \to \gamma)')' \in I$. Also, $(\beta \to \gamma)' \in I$, then $(\alpha \to \gamma)' \in I$. Hence, $I_{\alpha} \leq I_{\gamma}$. Therefore, \leq_I is a partially order relation on \mathbb{H}/I . For proving $(\mathbb{H}/I, \otimes, \rightsquigarrow, I_0, I_1)$ is a bounded hoop, we have $I_{\alpha} = I_{\beta}$ and $I_{\gamma} = I_{\delta}$ iff $\alpha \equiv_I \beta$ and $\gamma \equiv_I \delta$. Since \equiv_I is a congruence relation on \mathbb{H} , so all operations are well-defined. Thus, by routine calculations, we can see that $(\mathbb{H}/I, \otimes, I_1)$ is a commutative monoid and (HP2) holds. Let $I_{\alpha}, I_{\beta}, I_{\gamma} \in \mathbb{H}/I$, for any $\alpha, \beta, \gamma \in \mathbb{H}$. Since \mathbb{H} is a hoop, by (HP3) and (HP4) we have,

$$(I_{\alpha} \otimes I_{\beta}) \rightsquigarrow I_{\gamma} = I_{(\alpha \odot \beta)} \rightsquigarrow I_{\gamma} = I_{(\alpha \odot \beta) \to \gamma} = I_{\alpha \to (\beta \to \gamma)} = I_{\alpha} \rightsquigarrow (I_{\beta \to \gamma}) = I_{\alpha} \rightsquigarrow (I_{\beta} \rightsquigarrow I_{\gamma}).$$

Also, for any I_{α} , $I_{\beta} \in \mathbb{H}/I$, we get

$$I_{\alpha} \otimes (I_{\alpha} \rightsquigarrow I_{\beta}) = I_{\alpha} \otimes (I_{\alpha \to \beta}) = I_{\alpha \odot (\alpha \to \beta)} = I_{\beta \odot (\beta \to \alpha)} = I_{\beta} \otimes (I_{\beta \to \alpha}) = I_{\beta} \otimes (I_{\beta} \rightsquigarrow I_{\alpha}).$$

Therefore, $(\mathbb{H}/I, \otimes, \rightsquigarrow, I_0, I_1)$ is a bounded hoop. \Box

Example 5. Let A be the hoop as in Example 3. Then $I = \{0, b, d\}$ is a co-filter of A. Thus, by routine calculations, we can see that $[b] = [d] = [0] = \{0, b, d\}$ and $[a] = [c] = [1] = \{a, c, 1\}$. Hence, $\frac{A}{\equiv_I} = \{[0], [1]\}$. Therefore, $\frac{A}{\equiv_I}$ is a bounded hoop.

Example 6. Let A be the hoop as in Example 2. We can see that A does not have (DNP) property, in general. So by Proposition 5 and Example 2, filter and co-filter are different notions. Then A is a co-filter of A and the quotient is $\frac{A}{A} = \{[1]\}$ that is a hoop algebra. But $F = \{b, 1\}$ is a filter of A and the quotient $\frac{A}{\equiv_F} = \{[0], [a], [1]\}$ that is a hoop with (DNP).

4. Some Applications of Co-Filters

In this section, we try to investigate under which conditions the quotient structure of this congruence relation will be Brouwerian semilattice, Heyting algebra, Wajsberg hoop, Hilbert algebra and BL-algebra.

Definition 4 ([11]). A Brouwerian lattice is an algebra $(\mathbb{H}, \wedge, \vee, \rightarrow, ')$ with the lattice infimum (\wedge) and the lattice supremum (\vee) in which two operations " '" and " \rightarrow " are defined by $\alpha' = \alpha \rightarrow 0$ and

$$\alpha \wedge \beta \leq \gamma \text{ iff } \alpha \leq \beta \rightarrow \gamma$$

respectively.

Theorem 5. Let *I* be a co-filter of \mathbb{H} and for all $\alpha \in \mathbb{H}$, $\alpha^2 = \alpha$. Then \mathbb{H}/I is a Brouwerian semilattice.

Proof. Let *I* be a co-filter of \mathbb{H} . By Theorem 4, \mathbb{H}/I is a hoop. Thus, by Proposition 1(i), $(\mathbb{H}/I, \leq_I)$ is a meet-semilattice with $I_{\alpha} \wedge_I I_{\beta} = I_{\alpha} \otimes (I_{\alpha} \rightsquigarrow I_{\beta})$, for all $I_{\alpha}, I_{\beta} \in \mathbb{H}/I$. Now, we prove that, for all $I_{\alpha}, I_{\beta} \in \mathbb{H}/I$,

$$I_{\alpha} \wedge_I I_{\beta} \leq I_{\gamma} \text{ iff } I_{\alpha} \leq I_{\beta} \rightsquigarrow I_{\gamma}.$$

Since \mathbb{H}/I is a hoop, by Proposition 1(iii), $I_{\alpha} \otimes I_{\beta} \leq I_{\alpha} \wedge_{I} I_{\beta} \leq I_{\gamma}$. Thus, $I_{\alpha} \otimes I_{\beta} \leq I_{\gamma}$, and so by Proposition 1(ii), $I_{\alpha} \leq I_{\beta} \rightsquigarrow I_{\gamma}$. Conversely, suppose $I_{\alpha} \leq I_{\beta} \rightsquigarrow I_{\gamma}$, for all $I_{\alpha}, I_{\beta}, I_{\gamma} \in \mathbb{H}/I$. According to definition of \leq_{I} , $(\alpha \rightarrow (\beta \rightarrow \gamma))' \in I$. By Proposition 1(vii), $\beta \rightarrow \gamma \leq (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)$ and by (HP3), $\beta \rightarrow \gamma \leq (\alpha \odot (\alpha \rightarrow \beta)) \rightarrow \gamma$. Also, by Proposition 1(vii) and (HP3), we get

$$\alpha o (eta o \gamma) \leq lpha o ((lpha \odot (lpha o eta)) o \gamma),$$

and so

$$\alpha \to (\beta \to \gamma) \le (\alpha \odot (\alpha \odot (\alpha \to \beta)) \to \gamma)$$

Thus,

$$\alpha \to (\beta \to \gamma) \le (((\alpha \odot \alpha) \odot (\alpha \to \beta)) \to \gamma).$$

Since for any $\alpha \in \mathbb{H}$, $\alpha^2 = \alpha$, we obtain, $\alpha \to (\beta \to \gamma) \le ((\alpha \odot (\alpha \to \beta)) \to \gamma)$ and so,

$$\alpha \to (\beta \to \gamma) \le (\alpha \to \beta) \to (\alpha \to \gamma).$$

Hence, by Proposition 1(viii), we get $((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))' \leq (\alpha \rightarrow (\beta \rightarrow \gamma))'$. Since *I* is a co-filter of \mathbb{H} and $(\alpha \rightarrow (\beta \rightarrow \gamma))' \in I$, by Proposition 6(i), $((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))' \in I$, so $I_{\alpha} \rightsquigarrow I_{\beta} \leq I_{\alpha} \rightsquigarrow I_{\gamma}$. Thus, by Proposition 1(ii),(i) and (viii),

$$I_{\alpha} \wedge_{I} I_{\beta} = I_{\alpha} \otimes (I_{\alpha} \rightsquigarrow I_{\beta}) \leq I_{\alpha} \otimes (I_{\alpha} \rightsquigarrow I_{\gamma}) = I_{\alpha} \wedge I_{\gamma} \leq I_{\gamma}.$$

Hence, $I_{\alpha} \wedge_I I_{\beta} \leq I_{\gamma}$. Therefore, \mathbb{H}/I is a Brouwerian semilattice. \Box

Example 7. Let $\mathbb{H} = \{0, a, b, c, 1\}$ be a set with two operations which are given below:

\rightarrow	0	а	b	С	1		\odot	0	а	b	С	1
0	1	1	1	1	1	-	0	0	0	0	0	0
а	b	1	b	1	1		а	0	а	0	а	а
b	а	а	1	1	1		b	0	0	b	b	b
С	0	а	b	1	1		С	0	а	b	С	С
1	0	а	b	С	1		1	0	а	b	С	1

Thus, $(\mathbb{H}, \odot, \rightarrow, 0, 1)$ is a hoop and $\alpha^2 = \alpha$, for all $\alpha \in \mathbb{H}$. Then $I = \{0, a\}$ is a co-filter of \mathbb{H} , $I_0 = I_a = I$ and $I_b = I_c = I_1 = \{b, c, 1\}$. Hence, by Theorem 5, $\mathbb{H}/I = \{I_0, I_1\}$ is a Brouwerian semilattice.

Theorem 6. Let \mathbb{H} has (DNP) and \mathbb{H}/I be a Brouwerian semilattice. Then I is a co-filter of \mathbb{H} .

Proof. Let $I_{\alpha} \otimes_{I} I_{\beta} = I_{\alpha} \wedge_{I} I_{\beta}$, for all I_{α} , $I_{\beta} \in \mathbb{H}/I$. Then $I_{\alpha} \otimes_{I} I_{\alpha} = I_{\alpha} \wedge_{I} I_{\alpha} = I_{\alpha}$. Thus, $I_{\alpha^{2}} = I_{\alpha}$, and so $(\alpha^{2} \rightarrow \alpha)' \in I$. By Proposition 1(iii), $0 \in I$. Now, suppose $(\alpha \rightarrow \beta)'$ and $\beta \in I$, for some $\alpha, \beta \in \mathbb{H}$. Since $I = I_{0}$, we have $\beta \in I_{0}$. It means that $(\beta \rightarrow 0)' \in I$, and equivalently $I_{\beta} \leq I_{0}$. Moreover, $(\alpha \rightarrow \beta)' \in I$, then $I_{\alpha} \leq I_{\beta}$, and so $I_{\alpha} \leq I_{0}$ i.e., $(\alpha \rightarrow 0)' \in I$. Hence, $\alpha'' \in I$. Since \mathbb{H} has (DNP), we get $\alpha \in I$. Therefore, I is a co-filter of \mathbb{H} . \Box

Definition 5 ([11]). A hoop $(\mathbb{H}, \odot, \rightarrow, 1)$ is called Wajsberg if, for any $\alpha, \beta \in \mathbb{H}$,

$$(\alpha \rightarrow \beta) \rightarrow \beta = (\beta \rightarrow \alpha) \rightarrow \alpha.$$

Theorem 7. Let \mathbb{H} has (DNP). Then I is a co-filter of \mathbb{H} iff \mathbb{H}/I is a Wajsberg hoop.

Proof. (\Rightarrow) Since \mathbb{H} has (DNP), by Proposition 2(v), ($\alpha \rightarrow \beta$) $\rightarrow \beta = (\beta \rightarrow \alpha) \rightarrow \alpha$, for all $\alpha, \beta \in \mathbb{H}$. Thus,

$$(((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha))' = 0 \in I,$$

and so $(I_{\alpha} \rightsquigarrow I_{\beta}) \rightsquigarrow I_{\beta} \leq (I_{\beta} \rightsquigarrow I_{\alpha}) \rightsquigarrow I_{\alpha}$. By the similar way, $(I_{\beta} \rightsquigarrow I_{\alpha}) \rightsquigarrow I_{\alpha} \leq (I_{\alpha} \rightsquigarrow I_{\beta}) \rightsquigarrow I_{\beta}$. Thus, $(I_{\alpha} \rightsquigarrow I_{\beta}) \rightsquigarrow I_{\beta} = (I_{\beta} \rightsquigarrow I_{\alpha}) \rightsquigarrow I_{\alpha}$, for all $I_{\alpha}, I_{\beta} \in \mathbb{H}/I$. Therefore, \mathbb{H}/I is a Wajsberg hoop. (\Leftarrow) The proof is similar to the proof of Theorem 6. \Box

Example 8. In Example 1, \mathbb{H} is a hoop with (DNP). Since $I = \{0, b, d\}$ is a co-filter of \mathbb{H} , $I_0 = I_b = I_d = I$ and $I_a = I_c = I_1 = \{a, c, 1\}$. Hence, by Theorem 7, $\mathbb{H}/I = \{I_0, I_1\}$ is a Wajsberg hoop.

Definition 6 ([11]). *A Heyting algebra is an algebra* $(A, \lor, \land, \rightarrow, 1)$ *, where* $(A, \lor, \land, 1)$ *is a distributive lattice with the greatest element and the binary operation* \rightarrow *on* A *verifies, for any* $x, y, z \in A$ *,*

$$x \leq y \rightarrow z$$
 iff $x \wedge y \leq z$.

Theorem 8. Let \mathbb{H} has (DNP) and $\alpha^2 = \alpha$, for all $\alpha \in \mathbb{H}$. Then I is a co-filter of \mathbb{H} iff \mathbb{H}/I is a Heyting algebra.

Proof. (\Rightarrow) Since *I* is a co-filter of \mathbb{H} and $\alpha^2 = \alpha$, for all $\alpha \in \mathbb{H}$, by Theorem 5, \mathbb{H}/I is a Brouwerian semilattice. Moreover, since \mathbb{H} has (DNP), by Theorem 7, \mathbb{H}/I is a Wajsberg hoop. Define $I_{\alpha} \vee_{I} I_{\beta} = (I_{\beta} \rightsquigarrow I_{\alpha}) \rightsquigarrow I_{\alpha}$, for all $I_{\alpha}, I_{\beta} \in \mathbb{H}/I$. Then by Propositions 3 and 4, $(\mathbb{H}/I, \wedge_{I}, \vee_{I})$ is a distributive lattice. Therefore, \mathbb{H}/I is a Heyting algebra.

(\Leftarrow) Since \mathbb{H}/I is a Heyting algebra, it is a Brouwerian semilattice. On the other side, \mathbb{H} has (DNP), then by Theorem 6, *I* is a co-filter of \mathbb{H} . \Box

Example 9. Let $\mathbb{H} = \{0, a, b, 1\}$ be a set with the following Cayley tabels,

\rightarrow	0	а	b	1	\odot	0	а	b	1
0	1	1	1	1	0	0	0	0	0
а	b	1	b	1	а	0	а	0	а
b	а	а	1	1	b	0	0	b	b
1	0	а	b	1	1	0	а	b	1

Then $(\mathbb{H}, \odot, \rightarrow, 0, 1)$ is a hoop with (DNP) and for any $\alpha \in \mathbb{H}$, $\alpha^2 = \alpha$. From $I = \{0, b\}$ is a co-filter of \mathbb{H} , $I_0 = I_b = I$ and $I_1 = I_a = \{1, a\}$. Then by Theorem 8, $\mathbb{H}/I = \{I, I_1\}$ is a Heyting algebra.

Definition 7 ([11]). A Hilbert algebra is a tripe $(A, \rightarrow, 1)$ of type (2, 0) such that, for all $x, y, z \in A$, the following three axioms are satisfied, (H1) $x \rightarrow (y \rightarrow x) = 1$. (H2) $x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$. (H3) If $x \rightarrow y = y \rightarrow x = 1$, then x = y.

The Hilbert algebra induces a partial order \leq on A, defined by, $x \leq y$ iff $x \rightarrow y = 1$ and 1 is the greatest element of the induced poset (A, \leq) . A Hilbert algebra A is bounded if there is an element $0 \in A$ such that, for any $x \in A$, $0 \leq x$.

Lemma 1. Let $\alpha^2 = \alpha$, for all $\alpha \in \mathbb{H}$. Then, for all $\alpha, \beta, \gamma \in \mathbb{H}$,

$$\alpha \to (\beta \to \gamma) = (\alpha \to \beta) \to (\alpha \to \gamma)$$

Proof. Let $\alpha \in \mathbb{H}$ such that $\alpha^2 = \alpha$. Then by Proposition 1(iv), $\beta \leq \alpha \rightarrow \beta$, for any $\alpha, \beta \in \mathbb{H}$ and by Proposition 1(viii), $\alpha \rightarrow ((\alpha \rightarrow \beta) \rightarrow \gamma) \leq \alpha \rightarrow (\beta \rightarrow \gamma)$. Then by (HP3), $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma) \leq \alpha \rightarrow (\beta \rightarrow \gamma)$. Conversely, by (HP3), for all $\alpha, \beta, \gamma \in \mathbb{H}$,

$$[\alpha \to (\beta \to \gamma)] \to [(\alpha \to \beta) \to (\alpha \to \gamma)] = [(\alpha \to \beta) \odot \alpha \odot (\alpha \to (\beta \to \gamma))] \to \gamma.$$

By Proposition 1(vii), $\alpha \odot (\alpha \to (\beta \to \gamma)) \le \beta \to \gamma$. Then by Proposition 1(viii) and (vii),

$$(\alpha \to \beta) \odot \alpha \odot (\alpha \to (\beta \to \gamma)) \le (\alpha \to \beta) \odot (\beta \to \gamma) \le \alpha \to \gamma$$

Thus, $\alpha^2 \odot (\alpha \to \beta) \odot (\alpha \to (\beta \to \gamma)) \le \gamma$. Since $\alpha^2 = \alpha$, we get $\alpha \odot (\alpha \to \beta) \odot (\alpha \to (\beta \to \gamma)) \le \gamma$. Hence, by (HP3), $\alpha \to (\beta \to \gamma) \le (\alpha \to \beta) \to (\alpha \to \gamma)$. \Box

Theorem 9. Let I be a co-filter of \mathbb{H} and $\alpha^2 = \alpha$, for all $\alpha \in \mathbb{H}$. Then \mathbb{H}/I is a Hilbert algebra.

Proof. Since *I* is a co-filter of \mathbb{H} , by Theorem 5, \mathbb{H}/I is a hoop. Thus by Proposition 1(iv), it is clear that $I_{\alpha} \rightsquigarrow (I_{\beta} \rightsquigarrow I_{\alpha}) = I_1$, for all $I_{\alpha}, I_{\beta} \in \mathbb{H}/I$. Let $I_{\alpha}, I_{\beta} \in \mathbb{H}/I$ such that $I_{\alpha} \rightsquigarrow I_{\beta} = I_{\beta} \rightsquigarrow I_{\alpha} = I_1$. Then $(\alpha \rightarrow \beta)' \in I$ and $(\beta \rightarrow \alpha)' \in I$ and so $\alpha \equiv_I \beta$. Hence, $I_{\alpha} = I_{\beta}$. Moreover, since $\alpha^2 = \alpha$, for all $\alpha \in \mathbb{H}$, by Lemma 1, $\alpha \rightarrow (\beta \rightarrow \gamma) = (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)$, for all $\alpha, \beta, \gamma \in \mathbb{H}$, and so

$$[(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))]' = 0 \in I.$$

Thus, by definition of I_1 ,

 $(I_{\alpha} \rightsquigarrow (I_{\beta} \rightsquigarrow I_{\gamma})) \rightsquigarrow ((I_{\alpha} \rightsquigarrow I_{\beta}) \rightsquigarrow (I_{\alpha} \rightsquigarrow I_{\gamma})) = I_{1}$

Therefore, \mathbb{H}/I is a Hilbert algebra. \Box

Definition 8 ([11]). A BL-algebra is an algebra $(A, \lor, \land, \odot, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) that, for any $x, y, z \in A$, it is satisfying the following axioms:

 $\begin{array}{ll} (BL1) & (A, \lor, \land, 0, 1) \text{ is a bounded lattice.} \\ (BL2) & (A, \odot, 1) \text{ is a commutative monoid.} \\ (BL3) & x \odot y \leq z \text{ iff } x \leq y \rightarrow z. \\ (BL4) & (x \rightarrow y) \lor (y \rightarrow x) = 1. \\ (BL5) & x \land y = x \odot (x \rightarrow y). \end{array}$

Theorem 10. Let \mathbb{H} be a \lor -hoop such that, for all $\alpha \in \mathbb{H}$, $\alpha^2 = \alpha$ and I be a co-filter of \mathbb{H} . Then \mathbb{H}/I is a *BL*-algebra.

Proof. Let \mathbb{H} be a \lor -hoop. Then \mathbb{H}/I is a \lor_I -hoop. Thus, by Proposition 4, $(\mathbb{H}/I, \land_I, \lor_I, I_0, I_1)$ is a bounded distributive lattice. Now, we prove that \mathbb{H}/I is a BL-algebra. For this, it is enough to prove that

 $(I_{\alpha} \rightsquigarrow I_{\beta}) \lor_{I} (I_{\beta} \rightsquigarrow I_{\alpha}) = I_{1}$, for all $I_{\alpha}, I_{\beta} \in \mathbb{H}/I$. Equivalently, we show that $((\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha))' \in I$, for all $\alpha, \beta \in \mathbb{H}$. Since for all $\alpha, \beta \in \mathbb{H}$,

$$(\alpha \rightarrow \beta), (\beta \rightarrow \alpha) \leq (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha),$$

by Proposition 1(viii),

$$((\alpha \to \beta) \lor (\beta \to \alpha))' \le (\alpha \to \beta)' \land (\beta \to \alpha)'.$$

On the other hand, by Proposition 1(iv), $\beta \leq \alpha \rightarrow \beta$ and by Proposition 2(ii), $\beta' \leq \beta \rightarrow \alpha$, then by Proposition 1(viii), $(\alpha \rightarrow \beta)' \leq \beta'$ and $(\beta \rightarrow \alpha)' \leq \beta''$. Thus, by Propositions 1(i), 2(i) and $\alpha^2 = \alpha$, for all $\alpha \in \mathbb{H}$, we have

$$\begin{aligned} ((\alpha \to \beta) \lor (\beta \to \alpha))' &\leq (\alpha \to \beta)' \land (\beta \to \alpha)' \\ &\leq \beta' \land \beta'' \\ &= \beta' \odot (\beta' \to \beta'') \quad \text{by Proposition 1}(i) \\ &= \beta' \odot (\beta' \to (\beta' \to 0)) \quad \text{by (HP3)} \\ &= \beta' \odot ((\beta')^2 \to 0) \quad \text{by } \alpha^2 = \alpha \\ &= \beta' \odot (\beta' \to 0) \quad \text{by Proposition 2}(i) \\ &= \beta' \odot \beta'' \\ &= 0. \end{aligned}$$

Then $((\alpha \to \beta) \lor (\beta \to \alpha))' = 0 \in I$. Therefore, \mathbb{H}/I is a BL-algebra. \Box

Theorem 11. Let \mathbb{H} has (DNP) and $\alpha^2 = \alpha$, for all $\alpha \in \mathbb{H}$. Then I is a co-filter of \mathbb{H} iff \mathbb{H}/I is a BL-algebra.

Proof. (\Rightarrow) Since \mathbb{H} has (DNP) and *I* is a co-filter of \mathbb{H} , by Theorem 7, \mathbb{H}/I is a Wajsberg hoop. Define $I_{\alpha} \vee_{I} I_{\beta} = (I_{\alpha} \rightsquigarrow I_{\beta}) \rightsquigarrow I_{\beta}$ for all $I_{\alpha}, I_{\beta} \in \mathbb{H}/I$. Then by Proposition 3, \mathbb{H}/I is a \vee_{I} -hoop, and so by Proposition 4, $(\mathbb{H}/I, \wedge_{I}, \vee_{I}, I_{0}, I_{1})$ is a bounded lattice. On the other side, since $\alpha^{2} = \alpha$, for all $\alpha \in \mathbb{H}$, by Theorem 10, \mathbb{H}/I is a BL-algebra.

(\Leftarrow) Since \mathbb{H} has (DNP) and \mathbb{H}/I is a BL-algebra, \mathbb{H}/I is a distributive lattice. Thus, by Theorem 6, *I* is a co-filter of \mathbb{H} . \Box

Remark 1. As you see in this section, we investigated the relation among the quotient hoop $\frac{A}{T}$ that is made by a co-filter I with other logical algebras such as Brouwerian semi-lattice, Heyting algebra, Hilbert algebra, Wajsberg hoop and BL-algebra. Clearly these conditions are similar and we know that for example if A has Godel condition $(x^2 = x)$ then $\frac{A}{T}$ is Hilbert algebra and by adding (DNP) property to A we obtain that $\frac{A}{T}$ is Heyting algebra.

5. Conclusions and Future Works

We have introduced the notion of co-filter of hoops and a congruence relation on hoop, and then we have constructed the quotient structures by using co-filters. We have considered the relation between filters and co-filters in a hoop with (DNP) property. We have provided conditions for a subset to be a co-filter. We have discussed characterizations of a co-filter. We have studied the relation among this structure and other algebraic structures. Using the notion of co-filters, we have established the quotient Brouwerian semilattice, the quotient Hilbert algebra and the quotient BL-algebra. We have induced a co-filter from a quotient Brouwerian semilattice. In our subsequent research, we will study some kinds of co-filter such as, implicative, ultra and prime one and investigate the relation between them. Also, we will discuss fuzzy co-filters and fuzzy congruence relation by them and study the quotient structure of this fuzzy congruence relation.

Author Contributions: Creation and Mathematical Ideas, R.A.B.; writing–original draft preparation, M.A.K.; writing–review and editing, S.-Z.S. and Y.B.J.; funding acquisition, S.-Z.S.

Funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(No. 2016R1D1A1B02006812).

Acknowledgments: The authors express their sincere gratitude to the unknown reviewers for their detailed reading and valuable advice.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Bosbach, B. Komplementäre Halbgruppen. Kongruenzen und Quatienten. *Funda. Math.* **1970**, *69*, 1–14. [CrossRef]
- 2. Bosbach, B. Komplementäre Halbgruppen. Axiomatik und Arithmetik. *Funda. Math.* **1969**, *64*, 257–287. [CrossRef]
- 3. Aaly Kologani, M.; Borzooei, R.A. On ideal theory of hoops. Math. Bohem. 2019. [CrossRef]
- 4. Borzooei, R.A.; Aaly kologani, M. Filter theory of hoop-algebras. *J. Adv. Res. Pure Math.* **2014**, *6*, 1–15. [CrossRef]
- 5. Alavi, S.Z.; Borzooei, R.A.; Aaly Kologani, M. Filter theory of pseudo hoop-algebras. *Ital. J. Pure Appl. Math.* **2017**, *37*, 619–632.
- 6. Namdar, A.; Borzooei, R.A. Nodal filters in hoop algebras. *Soft Comput.* **2018**, *22*, 7119–7128. [CrossRef]
- 7. Namdar, A.; Borzooei, R.A.; Borumand Saeid, A.; Aaly Kologani, M. Some results in hoop algebras. *J. Intell. Fuzzy Syst.* **2017**, *32*, 1805–1813. [CrossRef]
- 8. Rezaei, A.; Borumand Saeid, A.; Borzooei, R.A. Some types of filters in BE-algebras. *Math. Comput. Sci.* **2013**, 7, 341–352.
- 9. Aglianò, P.; Ferreirim, I.M.A.; Montagna, F. Basic hoops: An Algebraic Study of Continuous *T*-Norms. *Stud. Log.* **2007**, *87*, 73–98. [CrossRef]
- 10. Georgescu, G.; Leustean, L.; Preoteasa, V. Pseudo-hoops. J. Mult.-Valued Log. Soft Comput. 2005, 11, 153–184.
- 11. Iorgulescu, A. *Algebras of logic as BCK-algebras*; Editura ASE: Bucharest, Romania, 2008.

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).