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1. Introduction

Let (X, d) be a metric space. A geodesic path joining p1 ∈ X to p2 ∈ X (or, a geodesic from p1 to
p2) is a mapping g from a closed interval [0, l] ⊂ R to X such that g(0) = p1, g(l) = p2, and

d(g(t), g(t′)) = |t− t′|, ∀ t, t′ ∈ [0, l].

In particular, g is an isometry and d(p1, p2) = l. The image α of g is said to be a geodesic segment
(or metric segment) joining p1 and p2. When it is unique, this geodesic segment is denoted by [p1, p2].
The space (X, d) is called a geodesic space if every two points of X are joined by a geodesic segment,
and X is called a uniquely geodesic segment if there is exactly one geodesic segment joining p1 and p2

for each p1, p2 ∈ X. A subset Y ⊆ X is called convex if Y includes every geodesic segment joining any
two of its points.

A geodesic triangle4(p1, p2, p3) is a geodesic metric space (X, d) that consists of three vertices of
4 (the points p1, p2, p3 ∈ X) and the edges of4 (a geodesic segment between each pair of vertices).
A comparison triangle for the geodesic triangle 4(p1, p2, p3) in (X, d) is a triangle 4̄(p1, p2, p3) =

4( p̄1, p̄2, p̄3) in R2 such that

dR2( p̄i, p̄j) = d(pi, pj), i, j ∈ {1, 2, 3}.

A comparison triangle for the geodesic triangle always exists (see, [1,2]).
A geodesic metric space is called a CAT(0) space (this term is due to M. Gromov [3] and it

is an acronym for E. Cartan, A.D. Aleksandrov and V.A. Toponogov) if all geodesic triangles of
appropriate size satisfy the following CAT(0) comparison axiom.

Let4 be a geodesic triangle in (X, d) and let 4̄ ⊂ R2 be a comparison triangle for4. Then4 is
said to satisfy the CAT(0) inequality if for all vertices p1, p2 ∈ 4 and all comparison points p̄1, p̄2 ∈ 4̄,

d(p1, p2) ≤ dR2( p̄1, p̄2).
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Let p, p1, p2 be points of a CAT(0) space, if p0 is the midpoint of the segment [p1, p2], which we
will denote by p1⊕p2

2 , then the CAT(0) inequality implies

d2
(

p,
p1 ⊕ p2

2

)
= d2(p, p0) ≤

1
2

d2(p, p1) +
1
2

d2(p, p2)−
1
4

d2(p1, p2).

This inequality is called the (CN) inequality ([4]).

Remark 1. A geodesic metric space (X, d) is a CAT(0) space if and only if it satisfies the (CN) inequality
(cf. [1], p. 163).

The above (CN) inequality has been extended as

d2(p, αp1 ⊕ (1− α)p2)

≤ αd2(p, p1) + (1− α)d2(p, p2)− α(1− α)d2(p1, p2), ∀ p, p1, p2 ∈ X,
(CN∗)

for all 0 ≤ α ≤ 1 [5,6].
In recent years, CAT(0) spaces have attracted many researchers as they treated a very important

role in different directions of geometry and mathematics (see [1,7–10]). Complete CAT(0) spaces are
often called Hadamard spaces (see [10]).

It is well known that a normed linear space satisfies the (CN) inequality if and only if it satisfies
the parallelogram identity, i.e., it is a pre-Hilbert space [1]. Hence it is not so unusual to have an inner
product-like notion in Hadamard spaces. In [11], they introduced the concept of quasilinearization
as follows

Let us usually denote a pair (p, q) ∈ X2 = X×X by−→pq and call it a vector. Then quasilinearization
is defined as a mapping 〈·, ·〉 : X2 × X2 → R by

〈−→xy,−→uv〉 = 1
2
(d2(x, v) + d2(y, u)− d2(x, u)− d2(y, v)), ∀ x, y, u, v ∈ X.

It is easily seen that

〈−→xy,−→uv〉 = 〈−→uv,−→xy〉, 〈−→xy,−→uv〉 = −〈−→yx,−→uv〉

and

〈−→xy,−→uv〉 = 〈−→xw,−→uv〉+ 〈−→wy,−→uv〉

for all x, y, u, v, w ∈ X. We say that X satisfies the Cauchy–Schwarz inequality if

〈−→xy,−→uv〉 ≤ d(x, y)d(u, v), ∀ x, y, u, v ∈ X. (1)

Remark 2. A geodesically connected metric space is a CAT(0) space if and only if it satisfies the
Cauchy–Schwarz inequality ([11], Corollary 3).

In [12], the authors introduced the concept of duality mapping in CAT(0) spaces, by using the
concept of quasilinearization, and studied its relation with the subdifferential. Moreover, they proved
a characterization of metric projection in CAT(0) spaces as follows.

Theorem 1. ([12], Theorem 2.4) Let C be a nonempty convex subset of a complete CAT(0) space X. Then

p = PCx ⇔ 〈−→yp,−→px〉 ≥ 0, ∀ y ∈ C,

for all x ∈ X and p ∈ C.
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In 2015, using the concept of quasilinearization, Wangkeeree et al. [13] proved the strong
convergence theorems of the following Moudafi’s viscosity iterations for an asymptotically
nonexpansive mapping T: For given a contraction mapping f defined on C and 0 < αn < 1, let xn ∈ C
be the unique fixed point of the contraction x 7→ αn f (x)⊕ (1− αn)Tnx, i.e.,

xn = αn f (xn)⊕ (1− αn)Tnxn, ∀ n ≥ 1 (2)

and let x1 ∈ C be arbitrarily chosen and

xn+1 = αn f (xn)⊕ (1− αn)Tnxn, ∀ n ≥ 1. (3)

They proved the iterative schemes {xn} defined by Equations (2) and (3) strongly converge to the
same point x̄ ∈ F(T) with x̄ = PF(T) f (x̄), which is the unique solution of the variational inequality

〈
−−−→
x̄ f (x̄), xx̄〉 ≥ 0, x ∈ F(T),

where F(T) = {x : Tx = x}.
On the other hand, Shi et al. [14] studied the 4-convergence of the iteration scheme for

asymptotically nonexpansive mappings in CAT(0) spaces.
Let (X, d) be a metric space and C be a nonempty subset of X. A mapping f defined on C is called

a contraction with coefficient 0 < α < 1 if

d( f (u), f (v)) ≤ αd(u, v)

for all u, v ∈ C. A subset C is called a retract of X if there exists a continuous mapping P from X onto
C such that Pu = u for all u ∈ C. A mapping P : X → C is said to be a retraction if P2 = P. Moreover,
if a mapping P is a retraction, then Pv = v for all v in the range of P.

Definition 1. Let C be a nonempty subset of a metric space (X, d). Let P : X → C be a nonexpansive retraction
of X onto C.

(1) A nonself mapping T : C → X is said to be nonexpansive (cf. [15]) if

d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ C.
(2) A nonself mapping T : C → X is said to be asymptotically nonexpansive ([16]) if there exists a sequence

{kn} ⊂ [1, ∞) with limn→∞ kn = 1 such that

d(T(PT)n−1x, T(PT)n−1y) ≤ knd(x, y), ∀ n ∈ N,

for all x, y ∈ C.

Recently, Kim et al. [17] and Kim [18] presented the existence and4-convergence for asymptotically
nonexpansive nonself mappings in CAT(0) spaces.

Motivated and inspired by Wangkeeree et al. [13], Shi et al. [14], Kim et al. [17] and Kim [18],
the aim of this paper is to obtain the strong convergence theorems of the Moudafi’s viscosity
approximation methods for an asymptotically nonexpansive nonself mapping in CAT(0) spaces.

Let C be a nonempty closed convex subset of a complete CAT(0) space X. Let P : X → C
be a retraction mapping and T : C → X be an asymptotically nonexpansive nonself mapping.
Given a contraction mapping f defined on C and 0 < αn < 1, let xn ∈ C be the unique fixed point of
the contraction x 7→ αn f (x)⊕ (1− αn)T(PT)n−1x, i.e.,
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xn = αn f (xn)⊕ (1− αn)T(PT)n−1xn, ∀ n ≥ 1 (4)

and let x1 ∈ C be arbitrarily chosen and

xn+1 = αn f (xn)⊕ (1− αn)T(PT)n−1xn, ∀ n ≥ 1. (5)

The author proved that the iterative schemes {xn} defined by Equations (4) and (5) strongly
converge to the same point x∗ ∈ F (T) such that x∗ = PF (T) f (x∗) which is the unique solution of the
variational inequality

〈
−−−−→
x∗ f (x∗), xx∗〉 ≥ 0, x ∈ F (T),

where F (T) = {x : Tx = x}.

2. Preliminaries

Throughout this paper, N denotes the set of all positive integers. Let C be a nonempty subset of
a metric space (X, d). F (T) = {x : Tx = x} denotes the set of fixed points of T.

We write (1− t)p1 ⊕ tp2 for the unique point p in the geodesic segment joining from p1 to p2

such that

d(p, p1) = td(p1, p2) and d(p, p2) = (1− t)d(p1, p2).

We also denote by [p1, p2] the geodesic segment joining from p1 to p2, i.e., [p1, p2] = {(1− t)p1 ⊕
tp2 : T ∈ [0, 1]}. A subset C of a CAT(0) space is convex if [p1, p2] ⊂ C for all p1, p2 ∈ C.

In the sequel we need the following useful lemmas.

Lemma 1. ([1], Proposition 2.2, p. 176) Let X be a CAT(0) space, then the distance function d : X× X → R
is convex, i.e., given any pair of geodesics g : [0, 1]→ X and g′ : [0, 1]→ X, parameterized proportional to arc
length, the following inequality holds for all t ∈ [0, 1] :

d(g(t), g′(t)) ≤ (1− t)d(g(0), g′(0)) + td(g(1), g′(1)).

Lemma 2. ([6]) Let X be a CAT(0) space, p1, p2, z ∈ X and t ∈ [0, 1]. Then

(i) d(tp1 ⊕ (1− t)p2, z) ≤ td(p1, z) + (1− t)d(p2, z),
(ii) d2(tp1 ⊕ (1− t)p2, z) ≤ td2(p1, z) + (1− t)d2(p2, z)− t(1− t)d2(p1, p2).

Lemma 3. ([19]) Let X be a CAT(0) space, p1, p2, z ∈ X and t ∈ [0, 1]. Then

(i) d(tp1 ⊕ (1− t)p2, γp1 ⊕ (1− γ)p2) = |t− γ|d(p1, p2),
(ii) d(tp1 ⊕ (1− t)p2, tp1 ⊕ (1− t)z) ≤ (1− t)d(p2, z).

Now, we give the concept of4-convergence and its some basic properties.
Kirk and Panyanak [20] insisted the concept of 4-convergence in CAT(0) spaces that was

introduced by Lim [21] in 1976 is very similar to the weak convergence in a Banach space setting.
Let {xn} be a bounded sequence in CAT(0) space X. For p ∈ X, we set

r(p, {xn}) = lim sup
n→∞

d(p, xn).

The asymptotic radius Ar({xn}) of {xn} is given by

Ar({xn}) = inf {r(p, {xn}) : p ∈ X} ,
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and the asymptotic center Ac({xn}) of {xn} is the set

Ac({xn}) = {p ∈ X : r(p, {xn}) = Ar({xn})} .

It is well known that asymptotic center Ac({xn}) consists of exactly one point (see, e.g., [22],
Proposition 7, p. 767) in a complete CAT(0) space.

Definition 2. ([20]) A sequence {xn} in a complete CAT(0) space X is said to4-converge to x ∈ X if x is
the unique asymptotic center of {un} for every subsequence {un} of {xn}, i.e., Ac({un}) = {x}. In this case
one can write

xn
4−→ x or 4− lim

n→∞
xn = x

and call x the4-limit of {xn}.

Remark 3. In a CAT(0) space, strong convergence in the metric implies4-convergence (see, [23,24]).

For any bounded sequence {zn} in a CAT(0) space X, there exists x∗ ∈ X such that

ϕ(x∗) = inf {ϕ(x) : x ∈ X} ,

where

ϕ(x) = lim sup
n→∞

d(zn, x), x ∈ X.

Lemma 4. ([20]) Every bounded sequence in a complete CAT(0) space always has a4-convergent subsequence.

Now, we shall give the existence of a fixed point for asymptotically nonexpansive nonself mapping
T : C → X in a complete CAT(0) space.

Lemma 5. ([18]) Let C be a nonempty closed convex subset of a complete CAT(0) space X and let T : C → X
be an asymptotically nonexpansive nonself mapping with a sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1.
Then T has a unique fixed point in C. Moreover, the set F (T) is a closed and convex subset of X.

Before we state the next lemma, we need the following notation

{zn}⇀ x∗ ⇐⇒ ϕ(x∗) = inf {ϕ(x) : x ∈ C} ,

where C is a nonempty closed convex subset that contains the bounded sequence {zn} and ϕ(x) =
lim supn→∞ d(zn, x).

Lemma 6. Let X be a CAT(0) space and C be a nonempty closed convex subset of X. Let T : C → X be
an asymptotically nonexpansive nonself mapping with a sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1. If

lim
n→∞

d(zn, Tzn) = 0 and {zn}⇀ x∗,

then we have

T(x∗) = x∗.
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Proof. Since limn→∞ d(zn, Tzn) = 0, we have

ϕ(x) = lim sup
n→∞

d(T(PT)m−1zn, x), ∀m ≥ 1.

Hence

ϕ(T(PT)m−1x) = lim sup
n→∞

d(T(PT)m−1zn, T(PT)m−1x)

≤ lim sup
n→∞

kmd(zn, x) = km lim sup
n→∞

d(zn, x)

= km ϕ(x), ∀ x ∈ C.

In particular, we have

lim
m→∞

ϕ(T(PT)m−1x∗) = lim
m→∞

km ϕ(x∗) = ϕ(x∗). (6)

From Lemma 2-(ii),

d2
(

zn,
x∗ ⊕ T(PT)m−1x∗

2

)
≤ 1

2
d2(zn, x∗) +

1
2

d2(zn, T(PT)m−1x∗)

− 1
4

d2(x∗, T(PT)m−1x∗), ∀m, n ≥ 1.

Taking m as fixed and lim supn→∞ on both sides, we have

ϕ2
(

x∗ ⊕ T(PT)m−1x∗

2

)
≤ 1

2
ϕ2(x∗) +

1
2

ϕ2(T(PT)m−1x∗)

− 1
4

d2(x∗, T(PT)m−1x∗), ∀m ≥ 1.

From the definition of x∗, we obtain

ϕ2(x∗) ≤ 1
2

ϕ2(x∗) +
1
2

ϕ2(T(PT)m−1x∗)

− 1
4

d2(x∗, T(PT)m−1x∗), ∀m ≥ 1,

which implies

d2(x∗, T(PT)m−1x∗) ≤ 2ϕ2(T(PT)m−1x∗)− 2ϕ2(x∗).

Taking limm→∞ on both sides, from Equation (6), we get

lim
m→∞

d(x∗, T(PT)m−1x∗) = 0,

that is

lim
m→∞

T(PT)m−1x∗ = x∗.

Since TP is a continuous mapping, we obtain

x∗ = lim
m→∞

T(PT)m−1x∗ = lim
m→∞

TP(T(PT)m−2x∗)

= (TP)x∗ = Tx∗.
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Lemma 7. ([23], Theorem 2.6) Let X be a complete CAT(0) space, {xn} be a sequence in X and x ∈ X.
Then {xn} 4-converges to x if and only if

lim sup
n→∞

〈−→xxn,−→xy〉 ≤ 0, ∀ y ∈ X.

Lemma 8. ([25]) Let {an}, {bn}, {cn} and {λn} be nonnegative sequences such that

an+1 ≤ (1− λn)an + λnbn + cn, n ≥ 0,

with {λn} ⊂ [0, 1], ∑∞
n=0 λn = ∞, limn→∞ bn = 0 and ∑∞

n=0 cn < ∞. Then limn→∞ an = 0.

The following two useful lemmas can be found in [13].

Lemma 9. ([13]) Let X be a complete CAT(0) space. Then the following inequality holds

d2(p, r) ≤ d2(q, r) + 2〈−→pq,−→pr〉, ∀ p, q, r ∈ X.

Lemma 10. ([13]) Let X be a CAT(0) space. For any l ∈ (0, 1) and x, y ∈ X, let

xl = lx⊕ (1− l)y.

Then, for all u, v ∈ X,

(i) 〈−→xlu,−→xlv〉 ≤ l〈−→xu,−→xlv〉+ (1− l)〈−→yu,−→xlv〉,
(ii) 〈−→xlu,−→xv〉 ≤ l〈−→xu,−→xv〉+ (1− l)〈−→yu,−→xv〉 and

〈−→xlu,−→yv〉 ≤ l〈−→xu,−→yv〉+ (1− l)〈−→yu,−→yv〉.

3. Main Results

In this section, we study the convergence theorems of Moudafi’s viscosity approximation methods
for asymptotically nonexpansive nonself mapping T : C → X in a complete CAT(0) space.

Theorem 2. Let C be a nonempty closed convex subset of a complete CAT(0) space X and let T : C → X be
an asymptotically nonexpansive nonself mapping with a sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1. Let f
be a contraction mapping defined on C with coefficient α ∈ (0, 1). Let {an} be a real valued sequence with
0 < an < 1. If it satisfies the following conditions

(i) kn−1
an

< 1− α < an(kn − α), ∀ n ∈ N,

(ii) an → 0, kn−1
an
→ 0 and |an−an−1|

an
→ 0 as n→ ∞,

then the following statements hold.

(1) There exists xn such that

xn = an f (xn)⊕ (1− an)T(PT)n−1xn, ∀ n ∈ N. (7)

(2) The sequence {xn} converges strongly to x∗ as n→ ∞ such that

x∗ = PF (T) f (x∗),

which is equivalent to the following variational inequality:

〈
−−−−→
x∗ f (x∗),

−→
xx∗〉 ≥ 0, ∀ x ∈ F (T). (8)
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Proof. I. For each integer n ≥ 1, we shall define a mapping Fn : C → X by

Fn(x) = an f (x)⊕ (1− an)T(PT)n−1x, ∀ x ∈ C.

First, we show that Fn is a contraction mapping. For any x, y ∈ C, by Lemma 1

d(Fn(x), Fn(y))

= d(an f (x)⊕ (1− an)T(PT)n−1x, an f (y)⊕ (1− an)T(PT)n−1y)

≤ and( f (x), f (y)) + (1− an)d(T(PT)n−1x, T(PT)n−1y)

≤ anαd(x, y) + (1− an)knd(x, y)

= ((1− an)kn + αan)d(x, y).

From the condition (i), we have (1− an)kn + αan < 1. So Fn is a contraction mapping. Thus there
exists a unique zn ∈ C such that

zn = Fn(zn),

that is

zn = an f (zn)⊕ (1− an)T(PT)n−1zn. (9)

II. Next, we show that {zn} is bounded. From Lemma 5, there exists v ∈ C which is a fixed point of
T with

v = Tv = (TP)v.

Taking TP mapping on the both sides, we have

v = (TP)v = (TP)(TP)v = T(PT)Pv = T(PT)v.

Continuing this process, we obtain

v = T(PT)n−1v, n ∈ N. (10)

For any v ∈ F (T), we have

d(zn, v) = d(an f (zn)⊕ (1− an)T(PT)n−1zn, v)

≤ an[d( f (zn), f (v)) + d( f (v), v)] + (1− an)d(T(PT)n−1zn, v)

≤ αand(zn, v) + and( f (v), v) + (1− an)knd(zn, v)

= (kn − (kn − α)an)d(zn, v) + and( f (v), v).

Then

d(zn, v) ≤ an

(kn − α)an − (kn − 1)
d( f (v), v) =

1

kn − α− kn−1
an

d( f (v), v)

≤ 1
kn − α− (kn − 1)

d( f (v), v) =
1

1− α
d( f (v), v).
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Hence {zn} is bounded. So {Tzn} and { f (zn)} are bounded. For v ∈ F (T) and Equation (10),

d(T(PT)n−1zn, v) = d(T(PT)n−1zn, T(PT)n−1v)

≤ knd(zn, v)

≤ L · d(zn, v),

where L = supn kn. It follows that the sequence {T(PT)n−1zn} is bounded.
III. We shall claim that

lim
n→∞

d(zn, Tzn) = 0.

III-1. From Equation (9) and Lemma 2-(i), we get

d(zn, T(PT)n−1zn) = d(an f (zn)⊕ (1− an)T(PT)n−1zn, T(PT)n−1zn)

≤ and( f (zn), T(PT)n−1zn). (11)

On the other hand, since

d( f (zn), T(PT)n−1zn)

≤ d( f (zn), zn) + d(zn, T(PT)n−1zn)

= d( f (zn), an f (zn)⊕ (1− an)T(PT)n−1zn) + d(zn, T(PT)n−1zn)

≤ (1− an)d( f (zn), T(PT)n−1zn) + d(zn, T(PT)n−1zn),

we obtain

and( f (zn), T(PT)n−1zn) ≤ d(zn, T(PT)n−1zn). (12)

Since an → 0, from Equations (11) and (12), we have

lim
n→∞

and( f (zn), T(PT)n−1zn) = lim
n→∞

d(zn, T(PT)n−1zn) = 0. (13)

III-2. By condition limn→∞
kn−1

an
= 0, for any 0 < ε < 1− α, there exists a sufficiently large n ≥ 0, and

we have

kn − 1 ≤ anε. (14)

From Equation (9) and Lemma 3, we have

d(zn, zn−1)

= d(an f (zn)⊕ (1− an)T(PT)n−1zn, an−1 f (zn−1)⊕ (1− an−1)T(PT)n−1zn−1)

≤ d(an f (zn)⊕ (1− an)T(PT)n−1zn, an f (zn)⊕ (1− an)T(PT)n−1zn−1)

+ d(an f (zn)⊕ (1− an)T(PT)n−1zn−1, an f (zn−1)⊕ (1− an)T(PT)n−1zn−1)

+ d(an f (zn−1)⊕ (1− an)T(PT)n−1zn−1, an−1 f (zn−1)⊕ (1− an−1)T(PT)n−1zn−1)

≤ (1− an)d(T(PT)n−1zn, T(PT)n−1zn−1) + and( f (zn), f (zn−1)

+ |an − an−1|d( f (zn−1), T(PT)n−1zn−1)

≤ (1− an)knd(zn, zn−1) + anαd(zn, zn−1) + |an − an−1|M∗,



Mathematics 2019, 7, 1234 10 of 17

where M∗ = supn≥1 d( f (zn−1), T(PT)n−1zn−1). This implies that

(1− (1− an)kn − αan)d(zn, zn−1) ≤ |an − an−1|M∗.

From condition (i), we know

1− (1− an)kn − αan = an(kn − α)− (kn − 1) > 0

and from Equation (14), we have

an(kn − α)− (kn − 1) ≥ an(kn − α)− anε

= (kn − α− ε)an

≥ (1− α− ε)an.

Thus

d(zn, zn−1) ≤
|an − an−1|

1− (1− an)kn − αan
M∗

≤ 1
1− α− ε

· |an − an−1|
an

M∗

→ 0, as n→ ∞. (15)

III-3. Therefore, from Equations (13) and (15), we get

d(zn, Tzn) ≤ d(zn, T(PT)n−1zn) + d(T(PT)n−1zn, T(PT)n−1zn−1)

+ d(T(PT)n−1zn−1, Tzn)

≤ d(zn, T(PT)n−1zn) + knd(zn, zn−1)

+ d(T(PT)1−1(PT)n−1zn−1, T(PT)1−1zn)

≤ d(zn, T(PT)n−1zn) + knd(zn, zn−1)

+ k1d((PT)n−1zn−1, zn)

≤ d(zn, T(PT)n−1zn) + knd(zn, zn−1)

+ k1[d(T(PT)n−2zn−1, zn−1) + d(zn−1, zn)]

→ 0, as n→ ∞.

IV. Finally, we will show that {zn} contains a subsequence converge strongly to x∗ such that

x∗ = PF (T) f (x∗),

which is equivalent to the following variational inequality

〈
−−−−→
x∗ f (x∗),

−→
xx∗〉 ≥ 0, ∀ x ∈ F (T).

IV-1. Since {zn} is bounded, there exists a subsequence {zni} of {zn} which 4-converges to x∗.
By Lemmas 4 and 6, we may assume that {zni} 4-converges to a point x∗ and x∗ ∈ F (T). It follows
from Lemma 10-(i) and Equations (1) and (10) that
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d2(zni , x∗) = 〈
−−→
zni x

∗,
−−→
zni x

∗〉

≤ ani 〈
−−−−−→
f (zni )x∗,

−−→
zni x

∗〉+ (1− ani )〈
−−−−−−−−−−→
T(PT)ni−1zni x

∗,
−−→
zni x

∗〉

≤ ani 〈
−−−−−→
f (zni )x∗,

−−→
zni x

∗〉+ (1− ani )d(T(PT)ni−1zni , x∗)d(zni , x∗)

≤ ani 〈
−−−−−→
f (zni )x∗,

−−→
zni x

∗〉+ (1− ani )kni d
2(zni , x∗). (16)

Since

〈
−−−−−→
f (zni )x∗,

−−→
zni x

∗〉 = 〈
−−−−−−−→
f (zni ) f (x∗) +

−−−−→
f (x∗)x∗,

−−→
zni x

∗〉

= 〈
−−−−−−−→
f (zni ) f (x∗),

−−→
zni x

∗〉+ 〈
−−−−→
f (x∗)x∗,

−−→
zni x

∗〉

≤ d( f (zni ), f (x∗))d(zni , x∗) + 〈
−−−−→
f (x∗)x∗,

−−→
zni x

∗〉

≤ αd2(zni , x∗) + 〈
−−−−→
f (x∗)x∗,

−−→
zni x

∗〉,

combining Equation (16), it follows that

d2(zni , x∗) ≤ ani αd2(zni , x∗) + ani 〈
−−−−→
f (x∗)x∗,

−−→
zni x

∗〉+ (1− ani )kni d
2(zni , x∗).

Hence

d2(zni , x∗) ≤ ani

ani (kni − α)− (kni − 1)
〈
−−−−→
f (x∗)x∗,

−−→
zni x

∗〉

≤ 1
1− α

〈
−−−−→
f (x∗)x∗,

−−→
zni x

∗〉. (17)

Since {zni} 4-converges to x∗, by Lemma 7, we have

lim sup
i→∞

〈
−−−−→
f (x∗)x∗,

−−→
zni x

∗〉 ≤ 0.

It follows from Equation (17) that {zni} converges strongly to x∗.
IV-2. Next, we will show that x∗ solves the variational inequality of Equation (8). Applying Lemma
2-(ii), for any z ∈ F (T),

d2(zni , z) = d2(ani f (zni )⊕ (1− ani )T(PT)ni−1zni , z)

≤ ani d
2( f (zni ), z) + (1− ani )d

2(T(PT)ni−1zni , z)

− ani (1− ani )d
2( f (zni ), T(PT)ni−1zni )

≤ ani d
2( f (zni ), z) + (1− ani )k

2
ni

d2(zni , z)

− ani (1− ani )d
2( f (zni ), T(PT)ni−1zni ).

Thus, we have

ani (1− ani )d
2( f (zni ), T(PT)ni−1zni ) + ani k

2
ni

d2(zni , z)

≤ ani d
2( f (zni ), z) + (k2

ni
− 1)d2(zni , z),
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so

(1− ani )d
2( f (zni ), T(PT)ni−1zni ) + k2

ni
d2(zni , z) ≤ d2( f (zni ), z) +

k2
ni
− 1

ani

d2(zni , z)

≤ d2( f (zni ), z) +
kni − 1

ani

M, (18)

where M = (L + 1)d2(zni , z), L = supi≥1 kni . Since zni

4−→ x∗ and by Equation (13), we have

T(PT)ni−1zni

4−→ x∗. (19)

From the conditions kn → 1, an → 0, kn−1
an
→ 0, continuity of the metric d and Equation (19),

we have Equation (18) as follows

d2( f (x∗), x∗) + d2(x∗, z) ≤ d2( f (x∗), z).

Therefore

0 ≤ 1
2
(d2(x∗, x∗) + d2( f (x∗), z)− d2(x∗, z)− d2( f (x∗), x∗))

= 〈
−−−−→
x∗ f (x∗),

−→
zx∗〉, ∀ z ∈ F (T),

that is, x∗ solves Equation (8).
IV-3. Finally, we will show the uniqueness of the solution of the variational inequality of Equation (8).
Assume there exists a subsequence {znj} of {zn} which4-converges to ω by the same argument. We
know that ω ∈ F (T) and solves the variational inequality of Equation (8), i.e.,

〈
−−−−→
x∗ f (x∗),

−−→
x∗ω〉 ≤ 0 (20)

and

〈
−−−−→
ω f (ω),

−−→
ωx∗〉 ≤ 0. (21)

From Equations (20) and (21), we can obtain

0 ≥ 〈
−−−−→
x∗ f (x∗),

−−→
x∗ω〉 − 〈

−−−−→
ω f (ω),

−−→
x∗ω〉

= 〈
−−−−→
x∗ f (ω),

−−→
x∗ω〉+ 〈

−−−−−−→
f (ω) f (x∗),

−−→
x∗ω〉 − 〈

−−→
ωx∗,

−−→
x∗ω〉 − 〈

−−−−→
x∗ f (ω),

−−→
x∗ω〉

= 〈
−−→
x∗ω,

−−→
x∗ω〉 − 〈

−−−−−−→
f (ω) f (x∗),

−−→
ωx∗〉

≥ 〈
−−→
x∗ω,

−−→
x∗ω〉 − d( f (ω), f (x∗))d(ω, x∗)

≥ d2(x∗, ω)− αd2(ω, x∗)

= (1− α)d2(x∗, ω).

Since 0 < α < 1, we have

d(x∗, ω) = 0,

so

x∗ = ω.

Hence {zn} converges strongly to x∗, which solves the variational inequality of Equation (8).
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Now, we explain a strong convergence theorem for an asymptotically nonexpansive
nonself mapping.

Theorem 3. Let C be a nonempty closed convex subset of a complete CAT(0) space X and let T : C → X be
an asymptotically nonexpansive nonself mapping with a sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1. Let f
be a contraction mapping defined on C with coefficient α ∈ (0, 1). For the arbitrarily given initial point x0 ∈ C,
let {xn} be a sequence generated by

xn+1 = an f (xn)⊕ (1− an)T(PT)n−1xn, ∀ n ≥ 0

where {an} ⊂ (0, 1) satisfies the following conditions:

(i) limn→∞ an = 0,
(ii) limn→∞

kn−1
an

= 0.

Then the sequence {xn} converges strongly to x∗ as n→ ∞ such that

x∗ = PF (T) f (x∗),

which is equivalent to the variational inequality of Equation (8).

Proof. I. First, we show that the sequence {xn} is bounded. From Lemma 5, there exists q ∈ C which
is a fixed point of T with

q = Tq = (TP)q = T(PT)n−1q.

Since limn→∞
kn−1

an
, for any 0 < ε < 1− α, there exists a sufficiently large n ≥ 0, we have

kn − 1 ≤ anε. (22)

For any q ∈ F (T), from Equations (13) and (22), we get

d(xn+1, q) = d(an f (xn)⊕ (1− an)T(PT)n−1xn, q)

≤ and( f (xn), q) + (1− an)d(T(PT)n−1xn, q)

≤ an(d( f (xn), f (q)) + d( f (q), q)) + (1− an)knd(xn, q)

≤ anαd(xn, q) + and( f (q), q) + (1− an)knd(xn, q)

= (1 + (kn − 1)− an(kn − α))d(xn, q) + and( f (q), q)

≤ (1− an(kn − α− ε))d(xn, q) + and( f (q), q)

≤ (1− an(1− α− ε))d(xn, q) + and( f (q), q)

≤ max
{

d(xn, q),
1

1− α− ε
d( f (q), q)

}
,

for 0 ≤ an(1− α− ε) ≤ 1. Similarly, we can get

d(xn, q) ≤ max
{

d(xn−1, q),
1

1− α− ε
d( f (q), q)

}
.

Continuing this process, we obtain that

d(xn+1, q) ≤ max
{

d(x0, q),
1

1− α− ε
d( f (q), q)

}
, ∀ n ≥ 0.
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Thus, the sequence {xn} is bounded. So { f (xn)} and {Txn} are also bounded. From the fact
that {xn} is bounded and from Lemmas 4 and 6, there exists a subsequence {xni} of {xn} which
4-converges to q ∈ F (T).
II. Next, we prove that xn → q as n→ ∞. For any n ∈ N, we set

yn = anq + (1− an)T(PT)n−1xn.

It follows from Lemmas 9 and 10 that

d2(xn+1, q) ≤ d2(yn, q) + 2〈−−−−→xn+1yn,−−−→xn+1q〉
≤ (and(q, q) + (1− an)d(T(PT)n−1xn, q))2

+ 2
[

an〈
−−−−→
f (xn)yn,−−−→xn+1q〉+ (1− an)〈

−−−−−−−−−→
T(PT)n−1xnyn,−−−→xn+1q〉

]
≤ (1− an)

2k2
nd2(xn, q)

+ 2
[

a2
n〈
−−−→
f (xn)q,−−−→xn+1q〉+ an(1− an)〈

−−−−−−−−−−−→
f (xn)T(PT)n−1xn,−−−→xn+1q〉

+ (1− an)an〈
−−−−−−−−→
T(PT)n−1xnq,−−−→xn+1q〉

+ (1− an)
2〈
−−−−−−−−−−−−−−−−→
T(PT)n−1xnT(PT)n−1xn,−−−→xn+1q〉

]
= (1− an)

2k2
nd2(xn, q)

+ 2
[

a2
n〈
−−−→
f (xn)q,−−−→xn+1q〉+ an(1− an)〈

−−−−−−−−−−−→
f (xn)T(PT)n−1xn,−−−→xn+1q〉

+ (1− an)an〈
−−−−−−−−→
T(PT)n−1xnq,−−−→xn+1q〉

]
= (1− an)

2k2
nd2(xn, q) + 2

[
a2

n〈
−−−→
f (xn)q,−−−→xn+1q〉+ an(1− an)〈

−−−→
f (xn)q,−−−→xn+1q〉

]
= (1− an)

2k2
nd2(xn, q) + 2an〈

−−−→
f (xn)q,−−−→xn+1q〉

= (1− an)
2k2

nd2(xn, q) + 2an〈
−−−−−−→
f (xn) f (q),−−−→xn+1q〉+ 2an〈

−−−→
f (q)q,−−−→xn+1q〉

≤ (1− an)
2k2

nd2(xn, q) + 2anαd(xn, q)d(xn+1, q) + 2and( f (q), q)d(xn+1, q)

≤ (1− an)
2k2

nd2(xn, q) + anα(d2(xn, q) + d2(xn+1, q)) + 2and( f (q), q)d(xn+1, q)

which implies

(1− αan)d2(xn+1, q) ≤ ((1− an)
2k2

n + αan)d2(xn, q) + 2and( f (q), q)d(xn+1, q),

d2(xn+1, q) ≤ (1− an)2k2
n + αan

1− αan
d2(xn, q) +

2an

1− αan
d( f (q), q)d(xn+1, q)

≤ (1− an)k2
n + α

1− αan
d2(xn, q) +

2an

1− αan
d( f (q), q)d(xn+1, q)

=

(
1− an(k2

n − α) + (1− k2
n − α)

1− αan

)
d2(xn, q)

+
2an

1− αan
d( f (q), q)d(xn+1, q).
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Now, taking

λn =
an(k2

n − α) + (1− k2
n − α)

1− αan
,

bn =
2an

an(k2
n − α) + (1− k2

n − α)
d( f (q), q)d(xn+1, q),

by Lemma 8, we can conclude that

lim
n→∞

xn = q.

III. Finally, from the proof of IV-2 and IV-3 in Theorem 2, we can easily show that q ∈ F (T) is the
unique solution satisfying the variational inequality of Equation (8). This completes the proof of
Theorem 3.

If a mapping T : C → C is a self mapping, then P becomes the identity mapping. Thus we have
the following corollaries (cf. [13,26]).

Corollary 1. Let C be a nonempty closed convex subset of a complete CAT(0) space X and let T : C → C
be an asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1. Let f be
a contraction defined on C with coefficient 0 < α < 1. Let {an} be a sequence of real numbers with 0 < an < 1.
If it satisfies the following conditions

(i) kn−1
an

< 1− α < an(kn − α), ∀ n ∈ N,
(ii) an → 0, kn−1

an
→ 0 and |an−an−1|

an
→ 0 as n→ ∞,

then the following statements hold.

(1) There exists xn such that

xn = an f (xn)⊕ (1− an)Tnxn, ∀ n ∈ N.

(2) The sequence {xn} converges strongly to x∗ as n→ ∞ such that

x∗ = PF (T) f (x∗),

which is equivalent to the following variational inequality:

〈
−−−−→
x∗ f (x∗),

−→
xx∗〉 ≥ 0, ∀ x ∈ F (T).

Corollary 2. Let C be a nonempty closed convex subset of a complete CAT(0) space X and let T : C → C
be an asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1. Let f be
a contraction defined on C with coefficient 0 < α < 1. For the arbitrary initial point x0 ∈ C, let {xn} be
generated by

xn+1 = an f (xn)⊕ (1− an)Tnxn, ∀ n ≥ 0

where {an} ⊂ (0, 1) satisfies the following conditions:

(i) limn→∞ an = 0,
(ii) limn→∞

kn−1
an

= 0.

Then the sequence {xn} converges strongly to x∗ as n→ ∞ such that

x∗ = PF (T) f (x∗),

which is equivalent to the variational inequality of Equation (8).
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4. Conclusions

Theorems 2 and 3 generalize and improve the results which are discussed in Wangkeeree et al. [13],
Shi et al. [14], Kim et al. [17], Kim [18] and others.

The strong convergence theorems of the Moudafi’s viscosity approximation methods apply
various classes of variational inequalities and optimization problems, its results proved in this paper
continue to hold for these problems. It is expected that this class will inspire and motivate further
research in this area.
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