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1. Introduction

Let (W, ρ) be a metric space. For each a ∈W and any nonempty subset M of W, let

ρ(a, M) = inf
b∈M

ρ(a, b).

Denote by N (W), the family of all nonempty subsets of W, and by CB(W), the class of all
nonempty closed and bounded subsets of W. A functionH : CB(W)× CB(W)→ [0,+∞) defined by

H(C, D) = max

{
sup
a∈D

ρ(a, C), sup
a∈C

ρ(a, D)

}

is said to be the Hausdorff metric on CB(W) induced by the metric ρ on W. A point z in W is a
fixed point of a mapping T if z = Tz (when T : W → W is a single-valued mapping) or z ∈ Tz
(when T : W → N (W) is a multivalued mapping). The set of fixed points of T is denoted by F (T).

Fixed point theory is a fascinating mathematical theory that has a wide range of applications
in many areas of mathematics, including nonlinear analysis, optimization, variational inequality
problems, integral and differential equations and inclusions, critical point theory, nonsmooth analysis,
dynamic system theory, control theory, economics, game theory, finance mathematics and so on.
The famous Banach contraction principle [1] is undoubtedly one of the most important and applicable
fixed point theorems which has played a significant role in nonlinear analysis and applied mathematical
analysis. Many authors have devoted their attentions to study generalizations in various different
directions of the Banach contraction principle; see, e.g., [2–23] and references therein.
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Theorem 1. (Banach [1]) Let (W, ρ ) be a complete metric space and T:W→W be a selfmapping. Assume that
there exists a nonnegative number λ < 1 such that

ρ(Ta, Tb) ≤ λρ(a, b) for all a, b ∈W.

Then T has a unique fixed point in W.

Nadler’s fixed point theorem [21] was established in 1969 to extend the Banach contraction
principle for multivalued mappings.

Theorem 2. (Nadler [21]) Let (W, ρ ) be a complete metric space and T : W → CB(W) be a multivalued
mapping. Suppose that there exists a nonnegative number λ < 1 such that

H(Ta, Tb) ≤ λρ(a, b) for all a, b ∈W.

Then T has a fixed point in W.

Later, in 1989, Mizoguchi and Takahashi [20] presented a celebrated generalization of
Nadler’s fixed point theorem. In 2008, Suzuki gave an example [22] (Example 1) to show that
Mizoguchi-Takahashi’s fixed point theorem is a real generalization of Nadler’s fixed point theorem.

Theorem 3. (MizoguchiandTakahashi [20]) Let (W, ρ) be a complete metric space and T : W → CB(W) be
a multivalued mapping. Assume that

H(Ta, Tb) ≤ µ(ρ(a, b))ρ(a, b) for all a, b ∈W,

where µ: [0,+∞) → [0, 1) is an MT -function; that is, µ satisfies lim sup
x→s+

µ(x) < 1 for all s ∈ [0,+∞).

Then T has a fixed point in W.

A number of generalizations of Mizoguchi-Takahashi’s fixed point theorem were studied;
see [2,4,8–13,15,16] and references therein. In 2016, Du and Hung [10] established the following
generalized Mizoguchi-Takahashi’s fixed point theorem.

Theorem 4. (Du and Hung [10]) Let (W, ρ) be a complete metric space, T : W → CB(W) be a multivalued
mapping and µ : [0,+∞)→ [0, 1) be anMT -function. Suppose that

min{H(Ta, Tb), ρ(a, Ta)} ≤ µ(ρ(a, b))ρ(a, b) for all a, b ∈W with a 6= b.

Then T admits a fixed point in W.

Theorem 4 is different from known generalizations in the existing literature and was illustrated
by [7] (Example A) in which Mizoguchi-Takahashi’s fixed point theorem is not applicable.

In this paper, we establish some new generalizations of Mizoguchi-Takahashi’s fixed point
theorem which also improve and extend Du-Hung’s fixed point theorem. Some new examples
illustrating our results are also given. By applying our new results, we obtained some new fixed point
theorems for essential distances and e0-metrics.

2. Preliminaries

Let (W, ρ) be a metric space. A real valued function f : W → R is called lower semicontinuous if
{x ∈ W : f (x) ≤ r} is closed for any r ∈ R. Recall that a function κ : W ×W → [0,+∞) is called a
w-distance [14,18], if the following are satisfied:
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(w1) κ(a, c) ≤ κ(a, b) + κ(b, c) for any a, b, c ∈W;
(w2) For any a ∈W, κ(a, ·) : W → [0,+∞) is lower semicontinuous;
(w3) For any ε > 0, there exists δ > 0 such that κ(c, a) ≤ δ and κ(c, b) ≤ δ imply ρ(a, b) ≤ ε.

A function κ : W ×W → [0,+∞) is said to be a τ-function [2,3,6,8,9,17,19], if the following
conditions hold:

(τ1) κ(a, c) ≤ κ(a, b) + κ(b, c) for any a, b, c ∈W;
(τ2) If a ∈ W and {bn} in W with limn→∞ bn = b such that κ(a, bn) ≤ β for some β = β(a) > 0,

then κ(a, b) ≤ β;
(τ3) For any sequence {an} in W with lim supn→∞{κ(an, am) : m > n} = 0, if there exists a sequence

{bn} in X such that limn→∞ κ(an, bn) = 0, then limn→∞ ρ(an, bn) = 0;
(τ4) For a, b, c ∈W, κ(a, b) = 0 and κ(a, c) = 0 imply b = c.

It is obvious that the metric ρ is a w-distance and any w-distance is a τ-function, but the converse
is not true; see [2,17] for more details.

The following result is useful in our proofs.

Lemma 1. (See [6, Lemma 1.1].) If condition (τ4) is weakened to the following condition (τ4)′ :

(τ4)′ for any a ∈W with κ(a, a) = 0, if κ(a, b) = 0 and κ(a, c) = 0, then b = c,

then (τ3) implies (τ4)′.

In 2016, Du [6] introduced the concept of essential distance; see also [8].

Definition 1. (See [6] (Definition 1.2).) Let (W, d) be a metric space. A function κ : W ×W → [0,+∞) is
called an essential distance (abbreviated as “e-distance") if conditions (τ1), (τ2) and (τ3) hold.

Remark 1.

(i) Clearly, any τ-function is an e-distance.
(ii) By Lemma 1, we know that if κ is an e-distance, then condition (τ4)′ holds.

The following known result is crucial in this paper.

Lemma 2. (See [3] (Lemma 2.1).) Let (W, ρ) be a metric space and κ : W ×W → [0,+∞) be a function.
Assume that κ satisfies the condition (τ3). If a sequence {an} in W with lim

n→∞
sup{κ(an, am) : m > n} = 0,

then {an} is a Cauchy sequence in W.

In 2016, Du introduced the concept ofMT (λ)-function [5] as follows (see also [7]).

Definition 2. Let λ > 0. A function τ : [0,+∞) → [0, λ) is said to be an MT (λ)-function
[5] if lim sup

x→γ+

τ(x) < λ for all γ ∈ [0,+∞). As usual, we simply write “MT -function” instead of

“MT (1)-function”.

A useful characterization theorem for MT (λ)-functions was established by Du [5] in 2016
as follows.

Theorem 5. (See [5] (Theorem 2.4).) Let λ > 0 and let τ : [0,+∞)→ [0, λ) be a function. Then the following
statements are equivalent.

(1) τ is anMT (λ)-function.
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(2) λ−1τ is anMT -function.

(3) For each γ ∈ [0,+∞), there exists ξ
(1)
t ∈ [0, λ) and ε

(1)
t > 0 such that τ(x) ≤ ξ

(1)
t for all x ∈

(γ, γ + ε
(1)
t ).

(4) For each γ ∈ [0,+∞), there exists ξ
(2)
t ∈ [0, λ) and ε

(2)
t > 0 such that τ(x) ≤ ξ

(2)
t for all x ∈

[γ, γ + ε
(2)
t ].

(5) For each γ ∈ [0,+∞), there exists ξ
(3)
t ∈ [0, λ) and ε

(3)
t > 0 such that τ(x) ≤ ξ

(3)
t for all x ∈

(γ, γ + ε
(3)
t ].

(6) For each γ ∈ [0,+∞), there exists ξ
(4)
t ∈ [0, λ) and ε

(4)
t > 0 such that τ(x) ≤ ξ

(4)
t for all x ∈

[γ, γ + ε
(4)
t ).

(7) For any nonincreasing sequence {βn}n∈N in [0,+∞), we have 0 ≤ sup
n∈N

τ(βn) < λ.

(8) For any strictly decreasing sequence {βn}n∈N in [0,+∞), we have 0 ≤ sup
n∈N

τ(βn) < λ.

(9) For any eventually nonincreasing sequence {βn}n∈N (i.e., there exists α ∈ N such that βn+1 ≤ βn for all
n ∈ N with n ≥ α) in [0,+∞), we have 0 ≤ sup

n∈N
τ(βn) < λ.

(10) For any eventually strictly decreasing sequence {βn}n∈N (i.e., there exists α ∈ N such that βn+1 < βn

for all n ∈ N with n ≥ α) in [0,+∞), we have 0 ≤ sup
n∈N

τ(βn) < λ.

Let κ be an e-distance on a metric space (W, ρ). For each a ∈W and any nonempty subset G of W,
we define κ(a, G) by

κ(a, G) = inf
b∈G

κ(a, b).

The following Lemma is essentially proved in [2].

Lemma 3. (See [2] (Lemma 1.2).) Let G be a closed subset of a metric space (W, ρ) and κ be a function
satisfying the condition (τ3). Suppose that there exists c ∈W such that κ(c, c) = 0. Then κ(c, G) = 0 if and
only if c ∈ G.

Very recently, Du introduced and studied the concept of e0-distance [9].

Definition 3. (See [9] (Definition 1.3).) Let (W, ρ) be a metric space. A function κ : W ×W → [0,+∞)

is called an e0-distance if it is an e-distance on W with κ(a, a) = 0 for all a ∈W.

Remark 2. By applying Lemma 1, if κ is an e0-distance on W, then for a, b ∈W, κ(a, b) = 0⇐⇒ a = b.

Example 1. Let W = R with the metric ρ(a, b) = |a− b|. Then (W, ρ) is a metric space. Define the function
κ : W ×W → [0,+∞) by

κ(x, y) = max{9(x− y), 5(y− x)}.

Therefore κ is not a metric due to its asymmetry. It is easy to see that κ is an e0-distance on W.

The following concept of e0-metric was studied by Du in [9] which generalizes the concept of
Hausdorff metric.

Definition 4. (See [9] (Definition 1.4).) Let (W, ρ) be a metric space and κ be an e0-distance. For any E,
F ∈ CB(W), define a function Dκ : CB(W)× CB(W)→ [0,+∞) by

Dκ(E, F) = max{ξκ(E, F), ξκ(F, E)},

where ξκ(E, F) = supx∈E κ(x, F), and then Dκ is said to be the e0-metric on CB(W) induced by κ.
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The following result presented in [9] (Theorem 1.3) is quite important in our proofs. Although its
proof is similar to the proof of [2] (Theorem 1.2), we give it here for the sake of completeness and the
readers convenience.

Theorem 6. (See [9] (Theorem 1.3).) Let (W, ρ) be a metric space and Dκ be an e0-metric defined as in
Definition 4 on CB(W) induced by an e0-distance κ. Then, for E, F, G ∈ CB(W), the following hold:

(i) ξκ(E, F) = 0⇐⇒ E ⊆ F;
(ii) ξκ(E, F) ≤ ξκ(E, G) + ξκ(G, F);

(iii) Every e0-metric Dκ is a metric on CB(W).

Proof. To see (i), if ξκ(E, F) = 0, then κ(a, F) = 0 for all a ∈ E. By Lemma 3, we get E ⊆ F. Conversely,
if E ⊆ F, by Lemma 3 again, we obtain ξκ(E, F) = 0 and (i) is proven. Fix a ∈ E and c ∈ G.
Then we have

κ(a, F) ≤ κ(a, b) ≤ κ(a, c) + κ(c, b) for all b ∈ F,

which deduces
κ(a, F) ≤ κ(a, c) + κ(c, F).

So, for any a ∈ E, we obtain

κ(a, F) ≤ inf{κ(a, c) + κ(c, F) : c ∈ G} ≤ κ(a, G) + ξκ(G, F).

Taking the supremum on both sides of the last inequality over all a ∈ E, we can obtain (ii). Finally,
we verify (iii). Obviously, Dκ(E, F) ≥ 0 and Dκ(E, F) = Dκ(F, E). By using (i), we have Dκ(E, F) = 0
⇐⇒ E = F. Applying (ii), we have

Dκ(E, F) = max{ξκ(E, F), ξκ(F, E)}
≤ max{ξκ(E, G) + ξκ(G, F), ξκ(F, G) + ξκ(G, E)}
≤ Dκ(E, G) +Dκ(G, F).

These arguments show that Dκ is a metric on CB(W).

Definition 5. Let U be a nonempty subset of a metric space (W, ρ) and κ be an e-distance on W. A multivalued
mapping T:U → N (W) is said to have the κ-approximate fixed point property in U provided inf

a∈U
κ(a, Ta) = 0.

In particular, if κ ≡ ρ, then T is said to have the approximate fixed point property in U.

Remark 3. Let U be a nonempty subset of a metric space (W, ρ) and T : U → N (W) be a multivalued
mapping. Clearly, F (T) ∩U 6= ∅ implies that T has the approximate fixed point property in U.

3. Main Results

In this section, we first prove a new generalized Mizoguchi-Takahashi’s fixed point theorem with
a new nonlinear condition.

Theorem 7. Let (W, ρ) be a metric space and Dκ be an e0-metric on CB(W) induced by an e0-distance κ.
Let T : W → CB(W) be a multivalued mapping and ϕ : [0,+∞)→ [0, 1) be anMT -function. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx (1)

and
min{Dκ(Tu, Tv), κ(u, Tu)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v. (2)

Then, the following statements hold:
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(a) For any z0 ∈ W, there exists a Cauchy sequence {zn}∞
n=0 in W started at z0 satisfying zn ∈ Tzn−1 for

each n ∈ N and

lim
n→∞

κ(zn, zn−1) = lim
n→∞

κ(zn−1, zn) = inf
n∈N

κ(zn, zn−1) = inf
n∈N

κ(zn−1, zn) = 0;

(b) T has the κ-approximate fixed point property in W.

Moreover, if W is complete and T further satisfies one of the following conditions:

(D1) T is closed; that is, GrT = {(a, b) ∈W ×W : b ∈ Ta}, the graph of T, is closed in W ×W;
(D2) The function f : W → R defined by f (a) = κ(a, Ta) is lower semicontinuous;
(D3) The function g : W → R defined by g(a) = ρ(a, Ta) is lower semicontinuous;
(D4) For each sequence {zn} in W with zn+1 ∈ Tzn, n ∈ N and limn→∞ zn = w, we have

limn→∞ κ(zn, Tw) = 0;
(D5) inf{κ(a, v) + κ(a, Ta) : a ∈W} > 0 for every v /∈ F (T),

then T admits a fixed point in W.

Proof. Let τ : [0,+∞)→ [0, 1) be defined by

τ(x) =
1
2
(ϕ(x) + 1) for all x ∈ [0,+∞).

Hence 0 ≤ ϕ(x) < τ(x) < 1 for all x ∈ [0, ∞). Given b ∈ W. Take z0 = b ∈ W and choose
z1 ∈ Tz0. If z1 = z0, then z0 ∈ F (T) and we are done. Otherwise, if z1 6= z0, then κ(z1, z0) > 0 and we
obtain from (2) that

min{Dκ(Tz1, Tz0), κ(z1, Tz1)} ≤ ϕ(κ(z1, z0))κ(z1, z0) < τ(κ(z1, z0))κ(z1, z0). (3)

Since
κ(z1, Tz1) ≤ sup

w∈Tx0

κ(w, Tz1) ≤ Dκ(Tz0, Tz1) = Dκ(Tz1, Tz0),

we get
min{Dκ(Tz1, Tz0), κ(z1, Tz1)} = κ(z1, Tz1). (4)

Hence, by (3) and (4), we obtain

κ(z1, Tz1) < τ(κ(z1, z0))κ(z1, z0),

which deduces that there exists z2 ∈ Tz1 such that

κ(z1, z2) < τ(κ(z1, z0))κ(z1, z0).

Since z2 ∈ Tz1, by (1), we have

κ(z2, z1) < τ(κ(z1, z0))κ(z1, z0).

Next, if z2 = z1, then z1 ∈ F (T) and we finish the proof. Otherwise, since

κ(z2, Tz2) = min{Dκ(Tz2, Tz1), κ(z2, Tz2)} < τ(κ(z2, z1))κ(z2, z1),

there exists z3 ∈ Tz2 such that
κ(z2, z3) < τ(κ(z2, z1))κ(z2, z1).

By (1), we have
κ(z3, z2) < τ(κ(z2, z1))κ(z2, z1).
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So, by induction, we can obtain a sequence {zn}n∈N∪{0} in W satisfying the following: for each
n ∈ N,

(i) zn ∈ Tzn−1 with zn 6= zn−1;
(ii) κ(zn, zn+1) < τ(κ(zn, zn−1))κ(zn, zn−1);

(iii) κ(zn+1, zn) < τ(κ(zn, zn−1))κ(zn, zn−1).

By (iii), the sequence {κ(zn, zn−1)}n∈N is strictly decreasing in [0,+∞). Hence

lim
n→∞

κ(zn, zn−1) = inf
n∈N

κ(zn, zn−1) exists. (5)

Since ϕ is anMT -function, by applying (8) of Theorem 5 with λ = 1, we obtain

0 ≤ sup
n∈N

ϕ(κ(zn, zn−1)) < 1.

So we get

0 < sup
n∈N

τ(κ(zn, zn−1)) =
1
2

[
1 + sup

n∈N
ϕ(κ(zn, zn−1))

]
< 1.

Put γ := sup
n∈N

τ(κ(zn, zn−1)). Thus γ ∈ (0, 1). For any n ∈ N, by (iii) again, we have

κ(zn+1, zn) < τ(κ(zn, zn−1))κ(zn, zn−1) ≤ γκ(zn, zn−1). (6)

By (6), we get

κ(zn+1, zn) < γκ(zn, zn−1) < · · · < γnκ(z1, z0) for each n ∈ N. (7)

Since 0 < γ < 1, by taking the limit as n→ ∞ in (7), we obtain

lim
n→∞

κ(zn, zn−1) = 0. (8)

Taking into account (5) and (8), we obtain

lim
n→∞

κ(zn, zn−1) = inf
n∈N

κ(zn, zn−1) = 0.

On the other hand, from (ii) and using (1), we have

κ(zn, zn+1) < γκ(zn, zn−1) ≤ γκ(zn−1, zn) for each n ∈ N.

which shows that the sequence {κ(zn−1, zn)}n∈N is also strictly decreasing in [0,+∞), and hence, we
can deduce

κ(zn, zn+1) < γnκ(z0, z1) for each n ∈ N. (9)

So, by (9), we get
lim

n→∞
κ(zn−1, zn) = inf

n∈N
κ(zn−1, zn) = 0. (10)

Since zn ∈ Tzn−1 for all n ∈ N, by (10), we prove

inf
a∈W

κ(a, Ta) = inf
n∈N

κ(zn−1, zn) = 0;
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that is, T has the κ-approximate fixed point property in W. Next, we claim that {zn}n∈N∪{0} is a
Cauchy sequence in W. For m, n ∈ N with m > n, we have from (9) that

κ(zn, zm) ≤
m−1

∑
j=n

κ(zj, zj+1) <
γn

1− γ
κ(z0, z1). (11)

Since 0 < γ < 1, the last inequality implies

lim
n→∞

sup{κ(zn, zm) : m > n} = 0. (12)

Applying Lemma 2, we prove that {zn}n∈N∪{0} is a Cauchy sequence in W.
Now, we assume that W is complete. We want to show F (T) 6= ∅ if T further satisfies one of

conditions (D1)–(D5). Since {zn}n∈N∪{0} is Cauchy in W and W is complete, there exists w ∈W such
that zm → w as m→ ∞. From (τ2) and (11), we have

κ(zn, w) ≤ γn

1− γ
κ(z0, z1) for all n ∈ N. (13)

In order to finish the proof, it is sufficient to show w ∈ F (T). If (D1) holds, since T is closed and
zn ∈ Tzn−1 and zn → w as n → ∞, we get w ∈ Tw. If (D2) holds, by the lower semicontinuity of f ,
zn → w as n→ ∞ and (10), we obtain

κ(w, Tw) = f (w)

≤ lim inf
n→∞

κ(zn, Tzn)

≤ lim
n→∞

k(zn, zn+1) = 0.

By Lemma 3, w ∈ F (T). Suppose that (D3) is satisfied. Since {zn} is Cauchy, we have
limn→∞ ρ(zn, zn+1) = 0. So, by the lower semicontinuity of g and zn → w as n→ ∞, we get

ρ(w, Tw) = g(w) ≤ lim
n→∞

ρ(zn, zn+1) = 0.

By the closedness of Tw, we show w ∈ F (T). Assume that (D4) holds. By (12), there exists
{un} ⊂ {zn} with lim supn→∞{κ(un, um) : m > n} = 0 and {vn} ⊂ Tw such that limn→∞ κ(un, vn) =

0. By (τ3), limn→∞ ρ(un, vn) = 0. Since ρ(vn, w) ≤ ρ(vn, un) + ρ(un, w), we have vn → w as n → ∞.
By the closedness of Tw, we obtain w ∈ Tw. Finally, suppose that (D5) holds. If w /∈ Tw, then, by (11)
and (13), we obtain

0 < inf
a∈W
{k(a, w) + k(a, Ta)}

≤ inf
n∈N
{k(zn, w) + k(zn, Tzn)}

≤ inf
n∈N
{k(zn, w) + k(zn, zn+1)}

≤ lim
n→∞

2γn

1− γ
κ(z0, z1)

= 0,

which leads to a contradiction. Therefore, it must be w ∈ F (T). The proof is completed.

Here, we give a simple example illustrating Theorem 7.
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Example 2. Let W = [0,+∞) with the metric ρ(x, y) = |x− y| for x, y ∈ W. Let Tx = [0, x] for x ∈ W.
It is obvious that each x ∈W is a fixed point of T. Let ϕ be anyMT -function. Let κ : W ×W → [0,+∞) be
defined by

κ(u, v) = max{9(u− v), 5(v− u)} for u, v ∈W.

Then, κ is an e0-metric on W. Given x ∈W. For any a ∈ Tx = [0, x], we have

κ(a, x) = 5(x− a) ≤ 9(x− a) = κ(x, a),

which shows that (1) holds. Clearly, the function x 7→ ρ(x, Tx) is a zero function on W, so it is lower
semicontinuous. Hence (D3) holds. We now claim

min{Dκ(Tu, Tv), κ(u, Tu)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v.

We consider the following two possible cases:

Case 1. If 0 ≤ u < v, we have
κ(u, Tu) = 0,

Dκ(Tu, Tv) = max

{
sup
z∈Tu

κ(z, Tv), sup
z∈Tv

κ(z, Tu)

}
= 9(v− u)

and
κ(u, v) = 5(v− u).

So, min{Dκ(Tu, Tv), κ(u, Tu)} = 0 ≤ ϕ(κ(u, v))κ(u, v).
Case 2. If 0 ≤ v < u, we obtain

κ(u, Tu) = 0,

Dκ(Tu, Tv) = 9(u− v)

and
κ(u, v) = 9(u− v).

Hence, min{Dκ(Tu, Tv), κ(u, Tu)} = 0 ≤ ϕ(κ(u, v))κ(u, v).

By Cases 1 and 2, our claim is verified, and hence, (2) holds. Therefore, all the assumptions of Theorem 7
are satisfied and we also show that T has a fixed point in W from Theorem 7. Notice that

H(T(5), T(9)) = 4 > ϕ(ρ(5, 9))ρ(5, 9),

so Mizoguchi-Takahashi’s fixed point theorem is not applicable here. This example shows that Theorem 7 is a real
generalization of Mizoguchi-Takahashi’s fixed point theorem.

Remark 4. Du-Hung’s fixed point theorem (i.e., Theorem 4) can be proven immediately from Theorem 7. Indeed,
let κ ≡ ρ. Then, (1) and (2), as in Theorem 7, are satisfied. We claim that (D4) as in Theorem 7 holds. Let {zn}
in X with zn+1 ∈ Tzn, n ∈ N and limn→∞ zn = w. We obtain

lim
n→∞

ρ(zn+1, Tw) ≤ lim
n→∞

H(Tzn, Tw)

≤ lim
n→∞
{ϕ(ρ(zn, w))ρ(zn, w)} = 0,

which shows that (D4) holds. Therefore, all the assumptions of Theorem 7 are satisfied. By applying Theorem 7,
we prove F (T) 6= ∅.

In Theorem 7, if T : W → W is a self-mapping, then we obtain the following new fixed point
theorem which generalizes Banach contraction principle.
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Corollary 1. Let (W, ρ) be a metric space, T : W → W be a self-mapping and ϕ : [0,+∞) → [0, 1) be an
MT -function. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx

and
min{κ(Tu, Tv), κ(u, Tu)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v.

Then the following statements hold:

(a) For any z0 ∈ W, there exists a Cauchy sequence {zn}∞
n=0 in W started at z0 satisfying zn = Tzn−1 for

each n ∈ N and

lim
n→∞

κ(zn, zn−1) = lim
n→∞

κ(zn−1, zn) = inf
n∈N

κ(zn, zn−1) = inf
n∈N

κ(zn−1, zn) = 0;

(b) T has the κ-approximate fixed point property in W.

Moreover, if W is complete and T further satisfies one of conditions (D1)-(D5) as in Theorem 7, then T
admits a fixed point in W.

By applying Theorem 7, we establish some new fixed point theorems for e0-metrics and
e0-distances.

Corollary 2. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx

and
Dκ(Tu, Tu) + κ(u, Tu) ≤ 2ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v. (14)

Then T admits a fixed point in W.

Proof. For any u, v ∈W with u 6= v, by (14), we have

min{Dκ(Tu, Tv), κ(u, Tu)} ≤ 1
2
(Dκ(Tu, Tu) + κ(u, Tu)) ≤ ϕ(κ(u, v))κ(u, v).

Hence the condition (2) in Theorem 7 holds. Therefore, the conclusion is immediate from
Theorem 7.

Corollary 3. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx

and √
Dκ(Tu, Tv)κ(u, Tu) ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v. (15)

Then T admits a fixed point in W.

Proof. For any u, v ∈W with u 6= v, from (15), we obtain

min{Dκ(Tu, Tv), κ(u, Tu)} ≤
√
Dκ(Tu, Tv)κ(u, Tu) ≤ ϕ(κ(u, v))κ(u, v).
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So the condition (2) in Theorem 7 holds. Hence, the conclusion is immediate from Theorem 7.

In fact, we can establish a wide generalization of Corollary 2 as follows.

Corollary 4. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : X → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx

and
sDκ(Tu, Tv) + tκ(u, Tv)

s + t
≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v, (16)

where s, t ≥ 0 with s + t > 0. Then T admits a fixed point in W.

Proof. For any u, v ∈W with u 6= v, by (16), we get

min{Dκ(Tu, Tv), κ(u, Tu)} ≤ sDκ(Tu, Tv) + tκ(u, Tv)
s + t

≤ ϕ(κ(u, v))κ(u, v),

and hence the condition (2) in Theorem 7 is satisfied. So the desired conclusion follows from Theorem 7
immediately.

Now, we focus the following new fixed point theorem without the assumption (1) and satisfy
another new condition

min{Dκ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v,

which is different from (2) as in Theorem 7. It is worth mentioning that this new fixed point theorem is
meaningful because an e0-distance is asymmetric in general.

Theorem 8. Let (W, ρ) be a metric space and Dκ be an e0-metric on CB(W) induced by an e0-distance κ.
Let T : W → CB(W) be a multivalued mapping and ϕ : [0,+∞)→ [0, 1) be anMT -function. Assume that

min{Dκ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v. (17)

Then the following statements hold:

(a) For any z0 ∈ W, there exists a Cauchy sequence {zn}∞
n=0 in W started at z0 satisfying zn ∈ Tzn−1 for

each n ∈ N and
lim

n→∞
κ(zn−1, zn) = inf

n∈N
κ(zn−1, zn) = 0;

(b) T has the κ-approximate fixed point property in W.

Moreover, if W is complete and T further satisfies one of conditions (D1)-(D5) as in Theorem 7,
then F (T) 6= ∅.

Proof. Define τ(x) = 1
2 (ϕ(x) + 1) for all x ∈ [0,+∞). Then 0 ≤ ϕ(x) < τ(x) < 1 for all x ∈ [0,+∞).

Let b ∈ W. Take z0 = b ∈ W and choose z1 ∈ Tz0. If z1 = z0, then z0 ∈ F (T) and we are done.
Otherwise, if z1 6= z0, then κ(z0, z1) > 0. By (17), we have

κ(z1, Tz1) = min{Dκ(Tz0, Tz1), κ(z1, Tz1)}
≤ ϕ(κ(z0, z1))κ(z0, z1)

< τ(κ(z0, z1))κ(z0, z1),
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from which one can deduce that there exists z2 ∈ Tz1 such that

κ(z1, z2) < τ(κ(z0, z1))κ(z0, z1).

Next, if z2 = z1, then z1 ∈ F (T), and we finish the proof. Otherwise, since

κ(z2, Tz2) = min{Dκ(Tz1, Tz2), κ(z2, Tz2)} < τ(κ(z1, z2))κ(z1, z2),

then there exists z3 ∈ Tz2 such that

κ(z2, z3) < τ(κ(z1, z2))κ(z1, z2).

Hence, by induction, we can obtain a sequence {zn}n∈N∪{0} satisfying the following: for each
n ∈ N,

(iv) zn ∈ Tzn−1 with zn 6= zn−1;
(v) κ(zn, zn+1) < τ(κ(zn−1, zn))κ(zn−1, zn).

By (v), the sequence {κ(zn−1, zn)}n∈N is strictly decreasing in [0,+∞). So

lim
n→∞

κ(zn−1, zn) = inf
n∈N

κ(zn−1, zn) exists. (18)

Since ϕ is anMT -function, by applying (8) of Theorem 5 with λ = 1, we obtain

0 ≤ sup
n∈N

ϕ(κ(zn−1, zn)) < 1.

So we get

0 < sup
n∈N

τ(κ(zn−1, zn)) =
1
2

[
1 + sup

n∈N
ϕ(κ(zn−1, zn))

]
< 1.

Hence c := sup
n∈N

τ(κ(zn−1, zn)) ∈ (0, 1). For any n ∈ N, by (v) again, we obtain

κ(zn, zn+1) < τ(κ(zn−1, zn))κ(zn−1, zn) ≤ cκ(zn−1, zn).

which implies
κ(zn, zn+1) < cnκ(z0, z1) for each n ∈ N. (19)

Since 0 < c < 1, by taking the limit as n→ ∞ in (19), we have

lim
n→∞

κ(zn, zn+1) = 0. (20)

Combining (18) and (20), we obtain

lim
n→∞

κ(zn−1, zn) = inf
n∈N

κ(zn−1, zn) = 0 (21)

and hence (a) is proven. To see (b), since zn ∈ Tzn−1 for all n ∈ N, by (21), we show that

inf
a∈W

κ(a, Ta) = inf
n∈N

κ(zn−1, zn) = 0.

Using a similar argument as in the proof of Theorem 7, one can verify that F (T) 6= ∅ and finish
this proof.

The following example not only illustrates Theorem 8 but also shows that Theorem 8 is different
from Theorem 7.
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Example 3. Let W = [0,+∞) with the metric ρ(x, y) = |x− y| for x, y ∈ W. Let Tx = [0, x] for x ∈ W.
So each x ∈W is a fixed point of T. Let ϕ be anyMT -function. Let κ : W ×W → [0,+∞) be defined by

κ(u, v) = max{4(u− v), 7(v− u)} for u, v ∈W.

Then κ is an e0-metric on W. Clearly, the function x 7→ ρ(x, Tx) is a zero function on W, so it is lower
and semicontinuous. Hence, (D3) holds. Using a similar argument as in Example 2, we can prove that

min{Dκ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v.

Hence, all the assumptions of Theorem 8 are satisfied. Applying Theorem 8, we also prove that T has a fixed
point in W. Notice that 1 ∈ T(2) = [0, 2] and

κ(1, 2) = 7 > 4 = κ(2, 1),

so (1) does not hold and hence Theorem 7 is not applicable here. Moreover, since

H(T(3), T(8)) = 5 > ϕ(ρ(3, 8))ρ(3, 8),

Mizoguchi-Takahashi’s fixed point theorem is also not applicable.

Some new fixed point theorems are established by Theorem 8 immediately.

Corollary 5. Let (W, ρ) be a metric space, T : W → W be a selfmapping and ϕ : [0,+∞) → [0, 1) be an
MT -function. Assume that

min{κ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v.

Then the following statements hold:

(a) For any z0 ∈ W, there exists a Cauchy sequence {zn}∞
n=0 in W started at z0 satisfying zn = Tzn−1 for

each n ∈ N and
lim

n→∞
κ(zn−1, zn) = inf

n∈N
κ(zn−1, zn) = 0;

(b) T has the κ-approximate fixed point property in W.

Moreover, if W is complete and T further satisfies one of conditions (D1)-(D5) as in Theorem 7, then T
admits a fixed point in W.

Corollary 6. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)–(D5) as in Theorem 7. Assume that

Dκ(Tu, Tv) + κ(v, Tv) ≤ 2ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v.

Then F (T) 6= ∅.

Corollary 7. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that√

Dκ(Tu, Tv)κ(v, Tv) ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v.

Then F (T) 6= ∅.
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Corollary 8. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that

sDκ(Tu, Tv) + tκ(v, Tv)
s + t

≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈W with u 6= v,

where s, t ≥ 0 with s + t > 0. Then F (T) 6= ∅.

Remark 5.

(a) Theorem 7, Corollary 4, Theorem 8 and Corollary 8 all generalize and extend Mizoguchi-Takahashi’s fixed
point theorem;

(b) All results in [10] are special cases of our results established in this paper.
(c) Theorems 7 and 8 improve and generalize some of the existence results on the topic in the literature; see,

e.g., [1,2,4,7,8,10,11,13–16,20–23] and references therein.

4. Conclusions

Our main purpose in this paper is to establish new generalizations of Mizoguchi-Takahashi’s
fixed point theorem for essential distances and e0-metrics satisfying the following new conditions:

• min{Dκ(Tu, Tv), κ(u, Tu)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u 6= v (see Theorem 7
for details),

• min{Dκ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u 6= v (see Theorem 8
for details).

We give new examples to illustrate our results. As applications, some new fixed point theorems
for essential distances and e0-metrics are also established by applying these new generalized
Mizoguchi-Takahashi’s fixed point theorems. Our new results generalize and improve some of known
results on the topic in the literature.
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