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Abstract: Throughout the history of the study of Einstein manifolds, researchers have sought
relationships between the curvature and topology of such manifolds. In this paper, first, we prove
that a compact Einstein manifold (M, g) with an Einstein constant α > 0 is a homological sphere
when the minimum of its sectional curvatures > α/(n + 2); in particular, (M, g) is a spherical space
form when the minimum of its sectional curvatures > α/n. Second, we prove two propositions
(similar to the above ones) for Tachibana numbers of a compact Einstein manifold with α < 0.
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1. Introduction

The study of Einstein manifolds has a long history in Riemannian geometry. Throughout the
history of the study of Einstein manifolds, researchers have sought relationships between curvature
and topology of such manifolds. A. Besse [1] summarized the results. We present here some interesting
facts related to the classification of all compact Einstein manifolds satisfying a suitable curvature
inequality, which is one of the subjects of our research.

Recall that an n-dimensional (n ≥ 2) connected manifold M with a Riemannian metric g is
said to be an Einstein manifold with Einstein constant α if its Ricci tensor satisfies Ric = α g; moreover,
we have α = s/n for its scalar curvature s. Therefore, any Einstein manifold of dimensions two and
three is a space form (i.e., has constant sectional curvature). The study of Einstein manifolds is more
complicated in dimension four and higher (see [1] (p. 44)).

An important problem in differential geometry is to determine whether a smooth manifold admits
an Einstein metric. When α > 0, the example are symmetric spaces, which include the sphere Sn(1)
with α = n− 1 and the sectional curvature sec = 1, the product of two spheres Sn(1)× Sn(1) with
α = n− 1 and 0 ≤ sec ≤ 1, and the complex projective space CPm = S2m+1/ S1 with the Fubini–Study
metric, α = 2m + 2 and 1 ≤ sec ≤ 4 (see [2] (pp. 86, 118, 149–150)). Recall that if (M, g) is a compact
Einstein manifold with curvature bounds of the type 3n/(7n− 4) < sec ≤ 1, then (M, g) is isometric
to a spherical space form. This might be not the best estimate: for n = 4 the sharp bound is 1/4
(see [1] (p. 6)). In both these cases, the manifolds are real homology spheres (see [3] (p. XVI)). Therefore,
any such manifold has the homology groups of an n-sphere; in particular, its Betti numbers are
b1(M) = . . . = bn−1(M) = 0.
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One of the basic problems in Riemannian geometry was to classify Einstein four-manifolds with
positive or nonnegative sectional curvature in the categories of either topology, diffeomorphism,
or isometry (see, for example, [4–7]). It was conjectured that an Einstein four-manifold with α > 0 and
non-negative sectional curvature must be either S4, CP2, S2(1)× S2(1) or a quotient. For example,
if the maximum of the sectional curvatures of a compact Einstein four-manifold is bounded above by
(2/3) α, or if α = 1 and the minimum of the sectional curvatures ≥ (1/6)(2−

√
2), then the manifold

is isometric to S4, RP4 or CP2 (see [6]). Classification of four-dimensional complete Einstein manifolds
with α > 0 and pinched sectional curvature was obtained in [7].

Here, we consider this problem from another side. Given a Riemannian manifold (M, g),
the notion of symmetric curvature operator R̄, acting on the space Λ2M of 2-forms, is an important
invariant of a Riemannian metric (see [2] (p. 83); [8,9]). The Tachibana Theorem (see [10]) asserts that
a compact Einstein manifold (M, g) with R̄ > 0 is a spherical space form. Later on, it was proved that
compact manifolds with R̄ > 0 are spherical space forms (see [11]).

Denote by
◦
R the symmetric curvature operator of the second kind, acting on the space S2

0 M of traceless
symmetric two-tensors (see [1] (p. 52); [9,12]). Kashiwada (see [9]) proved that a compact Einstein

manifold with
◦
R > 0 is a spherical space form. This statement is an analogue of the theorem of

Tachibana in [10]. In contrast, if a complete Riemannian manifold (M, g) satisfies sec ≥ δ > 0, then M
is compact with diam(M, g) ≤ π/

√
δ (see [2] (p. 251)).

Remark 1 (By [2] (Theorem 10.3.7)). There are manifolds with metrics of positive or nonnegative sectional
curvature but not admitting any metric with R̄ ≥ 0 (see also [2] (p. 352)). In particular, for three-dimensional
manifolds the inequality sec > 0 is equivalent to the inequality R̄ > 0 (see [9]).

Using Kashiwada’s theorem from [9] we can prove the following.

Theorem 1. Let (M, g) be a compact Einstein manifold with Einstein constant α > 0, and let δ be the minimum
of its positive sectional curvature. If δ > α/n, then (M, g) is a spherical space form.

We can present a generalization of above result in the following form.

Theorem 2. Let (M, g) be a compact Einstein manifold with Einstein constant α > 0 and let δ be the minimum
of its positive sectional curvature. If δ > α/(n + 2), then (M, g) is a homological sphere.

Obviously, Sn(1)× Sn(1) is not an example for Theorem 1 because the minimum of its sectional
curvature is zero and α = n− 1. On the other hand, the complex projective space CPm is an Einstein
manifold with α = 2m + 2 and sectional curvature bounded below by δ = 1. Then the inequality
α < (n + 2) δ can be rewritten in the form δ > 1 because n = 2m. Therefore, CPm is not an example for
Theorem 1. Moreover, all even dimensional Riemannian manifolds with positive sectional curvature
have vanishing odd-dimensional homology groups. Thus, Theorem 1 complements this statement
(see [2] (p. 328)).

Let (M, g) be an n-dimensional compact connected Riemannian manifold. Denote by ∆(p) the
Hodge Laplacian acting on differential p-forms on M for p = 1, . . . , n− 1. The spectrum of ∆(p) consists
of an unbounded sequence of nonnegative eigenvalues which starts from zero if and only if the p-th
Betti number bp(M) of (M, g) does not vanish (see [13]). The sequence of positive eigenvalues of ∆(p)

is denoted by
0 < λ

(p)
1 < . . . < λ

(p)
m < . . .→ ∞.

In addition, if Fp(ω) ≥ σ > 0 (see Equation (4) of Fp) at every point of M, then λ
(p)
1 ≥ σ (see [13]

(p. 342)). Using this and Theorem 1, we get the following.
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Corollary 1. Let (M, g) be a compact Einstein manifold with positive Einstein constant α and sectional
curvature bounded below by a constant δ > 0 such that δ > α/(n + 2). Then the first eigenvalue λ

(p)
1 of the

Hodge Laplacian ∆(p) satisfies the inequality λ
(p)
1 ≥ (1/3) ((n + 2) δ− α) (n− p).

Remark 2. In particular, if (M, g) is a Riemannian manifold with curvature operator of the second kind bounded
below by a positive constant ρ > 0, then using the main theorem from [14], we conclude that λ

(p)
1 ≥ ρ (n− p).

Conformal Killing p-forms (p = 1, . . . , n− 1) were defined on Riemannian manifolds more than
fifty years ago by S. Tachibana and T. Kashiwada (see [15,16]) as a natural generalization of conformal
Killing vector fields.

The vector space of conformal Killing p-forms on a compact Riemannian manifold (M, g)
has finite dimension tp(M) named the Tachibana number (see e.g., [17–19]). Tachibana numbers
t1(M), . . . , tn−1(M) are conformal scalar invariants of (M, g) satisfying the duality condition tp(M) =

tn−p(M). The condition is an analog of the Poincaré duality for Betti numbers. Moreover, Tachibana
numbers t1(M), . . . , tn−1(M) are equal to zero on a compact Riemannian manifold with negative
curvature operator or negative curvature operator of the second kind (see [18,19]).

We obtain the following theorem, which is an analog of Theorem 1.

Theorem 3. Let (M, g) be an Einstein manifold with sectional curvature bounded above by a negative constant
−δ such that δ > −α/(n + 2) for the Einstein constant α. Then Tachibana numbers t1(M), . . . , tn−1(M)

are zero.

2. Proof of Results

Let (M, g) be an n-dimensional (n ≥ 2) Riemannian manifold and let Rijkl and Rij be, respectively,
the components of the Riemannian curvature tensor and the Ricci tensor in orthonormal basis
{e1, . . . , en} of Tx M at any point x ∈ M. We consider an arbitrary symmetric two-tensor ϕ on (M, g).
At any point x ∈ M, we can diagonalize ϕ with respect to g, using orthonormal basis {e1, . . . , en}
of Tx M. In this case, the components of ϕ have the form ϕij = λi δij. Let sec (ei, ej) be the sectional
curvature of the plane of Tx M generated by ei and ej. We can express sec (ei, ej) in the following form
(see [1] (p. 436); [20]):

1
2 ∑ i 6=j sec (ei, ej) (λi − λj)

2 = Rijlk ϕik ϕjl + Rij ϕ
ik ϕ

j
k (1)

If (M, g) is an Einstein manifold and its sectional curvature satisfies the inequality sec ≥ δ for
a positive constant δ, then from Equation (1) we obtain the inequality

Rijlk ϕik ϕjl +
s
n

ϕik ϕik ≥ (δ/2)∑ i 6=j (λi − λj)
2. (2)

If traceg ϕ = ∑i λi = 0, then the identity holds ∑i(λi)
2 = −2 ∑i<j λi λj . In this case, the following

identities are true:

1
2 ∑

i 6=j
(λi − λj)

2 = (n− 1)∑
i
(λi)

2 − 2 ∑
i<j

λi λj = n ∑
i
(λi )

2 = n‖ ϕ ‖2.

Then the inequality in Equation (2) can be rewritten in the form

Rijlk ϕik ϕjl +
s
n

ϕik ϕik ≥ n δ‖ϕ‖2. (3)

From Equation (3) we obtain the inequality

Rijlk ϕik ϕjl ≥ (n δ− α)‖ϕ ‖2.
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Then
◦
R > 0 for the case when α < n δ, where α = s/n is the Einstein constant of (M, g). If (M, g)

is compact then it is a spherical space form (see [9]). Theorem 1 is proven.
Define the quadratic form

Fp(ω) = Rij ωi i2 ... ip ω
j
i2 ... ip

− p− 1
2

Rijkl ωij i3 ... ip ωkl
i2 ... ip

(4)

for the components ωi1 ...ip = ω(ei1 , . . . , eip) of an arbitrary differential p-form ω. If the quadratic form
Fp(ω) is positive definite on a compact Riemannian manifold (M, g), then the p-th Betti number of the
manifold vanishes (see [21] (p. 61); [3] (p. 88)). At the same time, in [22] the following inequality

Fp(ω) ≥ p (n− p) ε ‖ω‖2 > 0

was proved for any nonzero p-form ω on a Riemannian manifold with R̄ ≥ ε > 0. On the other hand,
in [14] the inequality

Fp(ω) ≥ p(n− p) δ‖ω‖2 > 0

was proved for any nonzero p-form ω on a Riemannian manifold with
◦
R ≥ δ > 0. In these cases,

b1(M), . . . , bn−1(M) are zero (see [21]). We can improve these results for the case of Einstein manifolds.
First, we will prove the following.

Lemma 1. Let (M, g) be an Einstein manifold with Einstein constant α and sectional curvature bounded below
by a constant δ > 0. If α < (n + 2)δ then

Fp(ω) ≥ (1/3)((n + 2) δ− α)(n− p) ‖ω‖2 > 0

for any nonzero p-form ω and an arbitrary 1 ≤ p ≤ n− 1.

Proof. Let p ≤ [n/2], then we can define the symmetric traceless two-tensor ϕ(i1i2 ...ip) with
components (see [14])

ϕ
(i1i2 ...ip)
jk =

p

∑
a=1

(
ωi1 ...ia−1 jia+1 ...ip gkia + ωi1 ...ia−1kia+1 ...ip gjia

)
− 2p

n
gjk ωi1 ...ip

for each set of values of indices
(
i1 i2 . . . ip

)
such that 1 ≤ i1 < i2 < . . . < ip ≤ n. After long but simple

calculations we obtain the identities (see also [14]),

Rijkl ϕil (i1 ...ip)ϕ
jk
(i1 ...ip)

= p
(2(n + 4p)

n
Rij ωi i2 ...ip ω

j
i2 ...ip

−3 (p− 1) Rijkl ωij i3 ...ip ωkl
i3 ...ip
− 4p

n2 s ‖ω‖2
)

; (5)

‖ ϕ̄ ‖2 =
2p(n + 2)(n− p)

n
‖ω‖2, (6)

where

‖ ϕ̄ ‖2 = gikgjl gi1 j1 . . . gip jp ϕ
(i1...ip)

ij ϕ
(j1 ...jp)
kl ,

‖ω‖2 = ωi1i2 ...ip ω i1i2 ...ip
= gi1 j1 . . . gip jp ω i1 ...ip

ω j1 ...jp

for gij = (g−1)ij. If (M, g) is an Einstein manifold, then Equations (4) and (5) can be rewritten in the
form

Fp(ω) =
s
n
‖ω‖2 − p− 1

2
Rijkl ωij i3 ...ip ωkl

i3 ...ip
,
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Rijkl ϕil(i1 ...ip)ϕ
jk
(i1 ...ip)

= p
(2n + 4p

n2 s ‖ω‖2 − 3(p− 1)Rijkl ωij i3 ...ip ωkl
i3 ...ip

)
. (7)

On the other hand, for a fixed set of values of indices (i1, i2, . . . , ip) such that 1 ≤ i1 < i2 < . . . < ip ≤ n,
the equality in Equation (3) can be rewritten in the form

Rijkl ϕil (i1 ...ip)ϕjk(i1 ...ip) +
s
n

ϕik (i1 ...ip)ϕ
(i1 ...ip)
ik ≥ n δ ϕ kl (i1 ...ip) ϕ

(i1 ...ip)
kl . (8)

Then from Equation (8) we obtain the inequality

Rijkl ϕil (i1 ...ip)ϕ
jk
(i1 ...ip)

≥
(

nδ− s
n

)
‖ ϕ̄ ‖2 . (9)

Using Equation (9) we deduce from Equation (7) the following inequality:

6p Fp(ω) ≥
(

n δ− s
n + 2

)
‖ ϕ̄ ‖2 . (10)

Thus, using Equation (6) we can rewrite Equation (10) in the following form:

Fp(ω) ≥ (1/3)((n + 2) δ− α) (n− p)‖ω‖2. (11)

It is obvious that if the sectional curvature of an Einstein manifold (M, g) satisfies the inequality
sec ≥ δ for a positive constant δ, then the scalar curvature of (M, g) satisfies the inequality s ≥
n(n− 1) δ > 0. In this case, if (n− 1) δ ≤ α < (n + 2) δ, then from Equation (11) we deduce that the
quadratic form Fp(ω) is positive definite for any p ≤ [n/2]. It is known [23] that Fp(ω) = Fn−p(∗ω)

and ‖ω‖2 = ‖ ∗ ω‖2 for any p-form ω with 1 ≤ p ≤ n− 1 and the Hodge star operator ∗ : Λp M →
Λn−p M acting on the space of p-forms Λp M. Therefore, the inequality in Equation (11) holds for any
p = 1, . . . , n− 1.

Recall that if on an n-dimensional compact Riemannian manifold (M, g) the quadratic form
Fp(ω) is positive definite for any smooth p-form ω with p = 1, . . . , n − 1, then the Betti numbers
b1(M), . . . , bn−1(M) vanish (see [3] (p. 88); [13] (pp. 336–337)). In this case, Theorem 2 directly follows
from Lemma 1.

If the curvature of an Einstein manifold (M, g) satisfies sec ≤ −δ < 0 for a positive constant δ,
then the Einstein constant of (M, g) satisfies the the obvious inequality α ≤ −(n− 1) δ < 0. On the
other hand, from Equation (1) we deduce the inequality Rijlk ϕik ϕjl ≤ − (n δ + α) ‖ϕ ‖2. Therefore,

if δ > −α/n, then
◦
R < 0. In this case, the Tachibana numbers t1(M), . . . , tn−1(M) are equal to zero

(see [19]). We proved the following.

Proposition 1. Let (Mn, g) be an Einstein manifold with sectional curvature bounded above by a negative
constant−δ such that δ > −α/n for the Einstein constant α. Then the Tachibana numbers t1(M), . . . , tn−1(M)

are zero.

We can complete this result. If an Einstein manifold (Mn, g) satisfies the curvature inequality
sec ≤ −δ < 0 for a positive constant δ, then from Equations (3) and (7) we deduce the inequality
Fp(ω) ≤ − 1

3 ((n + 2) δ + α)(n− p)‖ω‖2 for any p = 1, . . . , n− 1. Therefore, the Tachibana numbers
t1(M), . . . , tn−1(M) of a compact Einstein manifold with sectional curvature bounded above by
a negative constant −δ such that δ ≥ −α/(n + 2) are zero.
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