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Abstract: We studied the local convergence of a family of sixth order Jarratt-like methods in Banach
space setting. The procedure so applied provides the radius of convergence and bounds on errors
under the conditions based on the first Fréchet-derivative only. Such estimates are not proposed in
the approaches using Taylor expansions of higher order derivatives which may be nonexistent or
costly to compute. In this sense we can extend usage of the methods considered, since the methods
can be applied to a wider class of functions. Numerical testing on examples show that the present
results can be applied to the cases where earlier results are not applicable. Finally, the convergence
domains are assessed by means of a geometrical approach; namely, the basins of attraction that allow
us to find members of family with stable convergence behavior and with unstable behavior.
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1. Introduction

We provide local criteria for finding a unique solution δ of the nonlinear equation

H(x) = 0, (1)

for Banach space valued mappings with H : D ⊆ X → Y, and H is differentiable according to
Fréchet [1,2]. Many authors have studied local and semilocal convergence criteria of iterative methods
(see, for example [3–14]).

The most well-known iterative method for approximating a solution δ of Equation (1) is Newton’s
method, which is given by

xn+1 = xn − H′(xn)
−1H(xn), for each n = 0, 1, 2, . . . , (2)

which has a quadratic order of convergence. In order to achieve higher convergence order, a number
of modified, multistep Newton’s or Newton-type iterations have been developed in the literature;
see [3,4,6,7,9–12,15–19] and references cited therein.

There is another important class of multistep methods based on Jarratt methods or Jarratt-type
methods [20–22]. Such methods have been extensively studied in the literature; see [23–28] and
references therein. In particular, Alzahrani et al. [23] have recently proposed a class of sixth order
methods for approximating solution of H(x) = 0 using a Jarratt-like composite scheme. These
methods are very attractive and their local convergence analysis is worthy of study. The authors have
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shown some important special cases of the class which are defined for each n = 0, 1, 2, . . . by

Method-I:
yn = xn − 2

3 H′(xn)−1H(xn),

zn = xn −
[(

12(H′(xn) + H′(yn))−1H′(xn)− 9I
)
(H′(xn) + H′(yn))−1H′(xn) +

5
2 I
]

H′(xn)−1H(xn),

xn+1 = zn −
[
− 2H′(xn)

−1 + 6(H′(xn) + H′(yn))−1
]

H(zn).

Method-II:



yn = xn − 2
3 H′(xn)−1H(xn),

zn = xn −
[
9(H′(xn) + H′(yn))−1H′(xn) +

3
2 H′(xn)

−1(H′(xn) + H′(yn))− 13
2 I
]

H′(xn)−1H(xn),

xn+1 = zn −
[
− 2H′(xn)

−1 + 6(H′(xn) + H′(yn))−1
]

H(zn).

Method-III:

yn = xn − 2
3 H′(xn)−1H(xn),

zn = xn − 1
4

[
3(3H′(yn)− H′(xn))−1(H′(xn) + H′(yn)) + I

]
H′(xn)−1H(xn),

xn+1 = zn −
[
− 2H′(xn)

−1 + 6(H′(xn) + H′(yn))−1
]

H(zn).

The sixth order of convergence for the methods was established in [23] by using Taylor expansions
and hypotheses requiring derivatives up to sixth order, although only the first order derivatives appear
in the methods. The hypotheses of considering higher derivatives restrict the applicability of these
methods. As a motivational example, let us consider a function Q on X = Y = R, D = [− 1

2 , 5
2 ] by

Q(x) =

{
x3 ln x2 + x5 − x4, x 6= 0,
0, x = 0.

(3)

We have that
Q′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2,

Q′′(x) = 6x ln x2 + 20x3 − 12x2 + 10x

and
Q′′′(x) = 6 ln x2 + 60x2 − 24x + 22.

Then, Q′′′ is unbounded on D. Notice also that the proofs of convergence in [23] use Taylor
expansions up to the term containing sixth Fréchet-derivative. In this study, we discuss the
local convergence of the methods defined above by employing the hypotheses only on the first
Fréchet-derivative, taking advantage of the Lipschitz continuity of the first Fréchet-derivative.
In addition, we present results in the more general setting of a Banach space.

The rest of the paper is organized as follows. In Section 2, we present the local convergences
of Method-I, II and III. Theoretical results are validated through numerical examples in Section 3.
Section 4 is devoted to checking the stability of the methods by means of using complex dynamical
tool; namely, basin of attraction. Concluding remarks are given in Section 5.
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2. Local Convergence Analysis

Here we discuss the local convergence analysis of the Method-I, Method-II and Method-III. In the
analysis we find radius of convergence, computable error bounds on the distances ‖xn − δ‖, and then
establish the uniqueness of the solution δ in a certain ball based on some Lipschitz constants.

2.1. Convergence for Method-I

Let ξ0 : [0,+∞) → [0,+∞) be an increasing and continuous function with ξ0(0) = 0. Assume
that equation

ξ0(s) = 1, (4)

has at least one positive solution. Denote by ρ0, the smallest such solution.
Let ξ : [0, ρ0)→ [0,+∞) and ξ1 : [0, ρ0)→ [0,+∞) also be increasing and continuous functions

with ξ(0) = 0. Moreover, define scalar functions on the interval [0, ρ0) by

g1
1(s) =

1
1− ξ0(s)

( ∫ 1

0
ξ((1− θ)s)dθ +

1
3

∫ 1

0
ξ1(θs)dθ

)
,

and
h1

1(s) = g1
1(s)− 1.

Suppose that
ξ1(0) < 3. (5)

We have by (5), h1
1(0) < 0 and h1

1(s) → +∞ as s → ρ−0 . It follows by the intermediate value
theorem that equation h1

1(s) = 0 has at least one solution in the interval (0, ρ0). Denote by r1, the
smallest such solution.

Suppose that equation
p(s) = 1, (6)

has at least one positive solution, where p(s) = 1
2
(
ξ0(s) + ξ0(g1

1(s)s)
)
. Denote by ρ1, the smallest

such solution.
Set: ρ = min{ρ0, ρ1}. Define functions g1

2, h1
2, g1

3, h1
3 on the interval [0, ρ) by

g1
2(s) =

∫ 1
0 ξ((1− θ)s)dθ

1− ξ0(s)
+

3(ξ0(s) + ξ0(g1
1(s)s))

2
∫ 1

0 ξ1(θt)dθ

8(1− p(s))2(1− ξ0(s))
+

3(ξ0(s) + ξ0(g1
1(s)s))

∫ 1
0 ξ1(θs)dθ

4(1− p(s))2 ,

h1
2(s) = g1

2(s)− 1,

g1
3(s) =

(
1 +

(ξ0(s) + ξ0(g1
1(s)s) + ξ1(s))

∫ 1
0 ξ1(θg1

2(s)s)dθ

(1− ξ0(s))(1− p(s))

)
g1

2(s)

and
h1

3(s) = g1
3(s)− 1.

We get that h1
2(0) = h1

3(0) = −1, h1
2(s)→ +∞ as s→ ρ−, and h1

3(s)→ +∞ as s→ ρ−. Denote by
r2 and r3, the smallest solutions of equations h1

2(s) = 0 and h1
3(s) = 0 in (0, ρ−), respectively.

Define a radius of convergence r by

r = min{ri}, i = 1, 2, 3. (7)

Then, we have that for each s ∈ [0, r),

0 ≤ g1
i (s) < 1. (8)
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In order to study Method-I, we need to rewrite it in a more convenient form.

Lemma 1. Suppose that iterates {xn}, {yn} and {zn} are well defined for each n = 0, 1, 2, . . .. Then, Method-I
can be rewritten as

yn = xn −
2
3

H′(xn)
−1H(xn),

zn = xn − H′(xn)
−1H(xn)−

3
2

A−1
n (H′(xn)− H′(yn))A−1

n (H′(xn)− H′(yn))H′(xn)
−1H(xn)

− 3A−1
n (H′(xn)− H′(yn))A−1

n H(xn),

xn+1 = zn + 2H′(xn)
−1((H′(yn)− H′(xn))− 2H′(xn)

)
A−1

n H(zn),

where An = H′(xn) + H′(yn).

Proof. By the second sub-step of Method-I, we have in turn that

zn = xn − H′(xn)
−1H(xn)−

(
(12A−1

n H′(xn)− 9I)A−1
n H′(xn) +

3
2

I
)

H′(xn)
−1H(xn)

= xn − H′(xn)
−1H(xn)− 3

(
(4A−1

n H′(xn)− 3I)A−1
n H′(xn) +

1
2

I
)

H′(xn)
−1H(xn)

= xn − H′(xn)
−1H(xn)− 3

(
4(A−1

n H′(xn)−
1
2

I)
(

A−1
n H′(xn)−

1
4

I
))

H′(xn)
−1H(xn).

But by using the estimates

A−1
n H′(xn)−

1
4

I =
1
4

A−1
n

(
4H′(xn)− H′(xn)− H′(yn)

)
=

1
4

A−1
n

(
(H′(xn)− H′(yn)) + 2H′(xn)

)
and

A−1
n H′(xn)−

1
2

I = A−1
n
(

H′(xn)−
1
2

An
)

=
1
2

A−1
n (H′(xn)− H′(yn)),

in the preceding estimates, we show the equivalent second sub-step of Method-I.
To show the equivalent third sub-step of Method-I notice that

H′(xn)− 3(H′(xn) + H′(yn))
−1 = H′(xn)

−1(H′(xn) + H′(yn)− 3H′(xn)
)

A−1
n .

Then, from the third sub-step of Method-I and the preceding estimate, we obtain in turn, that

xn+1 = zn + 2(H′(xn)
−1 − 3A−1

n )H(zn),

leading to the equivalent third sub-step of Method-I. 2

Let U(v, ρ) and Ū(v, ρ) denote the open and closed balls in X respectively, with the center v ∈ X
and of radius ρ > 0. Next, we study the local convergence of Method-I.

Theorem 1. Let H : D ⊆ X → Y be a continuously Fréchet-differentiable operator. Suppose that there exists,
δ ∈ D and functions ξ0, ξ, and ξ1 as defined previously, such that for each x ∈ D

H(δ) = 0, H(δ)−1 ∈ L(Y, X), (9)

‖H′(δ)−1(H′(x)− H′(δ)
)
‖ ≤ ξ0(‖x− δ‖). (10)
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Set: D0 = D ∩U(δ, ρ0).

‖H′(δ)−1(H′(x)− H′(y)
)
‖ ≤ ξ(‖x− y‖), f or each x, y ∈ D0, (11)

‖H′(δ)−1H′(x)‖ ≤ ξ1(‖x− δ‖), f or each x, y ∈ D0, (12)

Ū(δ, r) ⊂ D (13)

and (4)–(6) hold, where ρ0 and r are defined previously. Then, the sequence {xn} generated by Method-I for
x0 ∈ U(δ, r)− {δ} is well defined, remains in U(δ, r) for each n = 0, 1, . . ., and converges to δ. Moreover, the
following estimates hold.

‖yn − δ‖ ≤ g1
1(‖xn − δ‖)‖xn − δ‖ < ‖xn − δ‖ < r, (14)

‖zn − δ‖ ≤ g1
2(‖xn − δ‖)‖xn − δ‖ < ‖xn − δ‖ (15)

and
‖xn+1 − δ‖ ≤ g1

3(‖xn − δ‖)‖xn − δ‖, (16)

where the “g” functions were defined previously. Furthermore, if there exists r∗ ≥ r such that
∫ 1

0 ξ0(θr∗)dθ

< 1, then the limit point δ is the only solution of equation H(x) = 0 in D1 = D ∩ Ū(δ, r∗).

Proof. We shall show the estimates (14)–(16) using mathematical induction. By hypothesis x0 ∈
U(δ, r)− {δ}, (4), (9), and (10), we get that

‖H′(δ)−1(H(x0)− H(δ)
)
‖ ≤ ξ0(‖x0 − δ‖) < 1. (17)

It follows from (17) and the Banach Lemma on invertible operators [3,16] that H′(x0)
−1 ∈ L(Y, X)

and
‖H′(x0)

−1H′(δ)‖ ≤ 1
1− ξ0(‖x0 − δ‖) (18)

and y0 is well defined by the first step of Method-I for n = 0. In view of (7) and (12), we get that

H(x0) = H(x0)− H(δ) =
∫ 1

0
H′(δ + θ(x0 − δ))(x0 − δ)dθ,

so,

‖H′(δ)−1H(x0)‖ =
∥∥∥ ∫ 1

0
H′(δ)−1H′(δ + θ(x0 − δ))(x0 − δ)dθ

∥∥∥
≤
∫ 1

0
ξ1(θ‖x0 − δ‖)dθ‖x0 − δ‖. (19)

Notice that ‖δ+ θ(x0− δ)− δ‖ = θ‖x0− δ‖ < r for each θ ∈ [0, 1]. That is, δ+ θ(x0− δ) ∈ U(δ, r).
Using the first sub-step of Method-I for n = 0 and (7), we can write

y0 − δ = x0 − δ− H′(x0)
−1H(x0) +

1
3

H′(x0)
−1H(x0). (20)
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Then, we have by Equations (7), (9), (11), (18), (19), and (20) that

‖y0 − δ‖ ≤‖x0 − δ− H′(x0)
−1H(x0) +

1
3

H′(x0)
−1H(x0)‖

≤‖H′(x0)
−1H′(δ)‖

∥∥∥ ∫ 1

0
H′(δ)−1[H′(δ + θ(x0 − δ))− H′(x0)](x0 − δ)]

∥∥∥dθ

+
1
3
‖H′(x0)

−1H′(δ)‖‖H′(δ)−1H(x0)‖

≤ 1
1− ξ0(‖x− δ‖)

( ∫ 1

0
ξ((1− θ)‖x0 − δ‖)dθ +

1
3

∫ 1

0
ξ1(θ‖x0 − δ‖)dθ

)
× ‖x0 − δ‖

=g1
1(‖x0 − δ‖)‖x0 − δ‖ < ‖x0 − δ‖ < r, (21)

which shows (14) for n = 0 and y0 ∈ U(δ, r).
Next, we shall show that A0 = H′(x0) + H′(y0) 6= 0 is invertible. Using the Equations (10)

and (21), we obtain that

‖(2H′(δ))−1(A0 − 2H′(δ))‖ ≤1
2
‖H′(δ)−1(H′(x0)− H′(δ)) + H′(δ)−1(H′(y0)− H′(δ))

)
‖

≤1
2
(
ξ0(‖x0 − δ‖) + ξ0(‖y0 − δ‖)

)
≤1

2
(
ξ0(‖x0 − δ‖) + ξ0(g1(‖x0 − δ‖)‖x0 − δ‖)

)
=p(‖x0 − δ‖) ≤ p(r) < 1. (22)

Hence, we get that

‖A−1
0 H′(δ)‖ ≤ 1

2(1− p(‖x0 − δ‖)) . (23)

So, z0 is well defined and by the second sub-step of Method-I in Lemma 1

‖z0 − δ‖ ≤ ‖x0 − δ− H′(x0)
−1H(x0)‖+

3
2
‖A−1

0 H′(δ)‖
(
‖H′(δ)−1(H′(x0)− H′(δ))‖

+ ‖H′(δ)−1(H′(y0)− H′(δ))‖
)2‖H′(x0)

−1H′(δ)‖‖H′(δ)−1H(x0)‖
+ 3‖A−1

0 H′(δ)‖2(‖H′(δ)−1(H′(x0)− H′(δ))‖+ ‖H′(δ)−1(H′(y0)− H′(δ))‖
)

× ‖H′(δ)−1H(x0)‖

≤
(∫ 1

0 ξ((1− θ)‖x0 − δ‖)dθ

1− ξ0(‖x− δ‖)

+
3(ξ0(‖x0 − δ‖) + ξ0(g1

1(‖x0 − δ‖)‖x0 − δ‖))2
∫ 1

0 ξ1(θ‖x0 − δ‖)dθ

8(1− p(‖x0 − δ‖))2(1− ξ0(‖x0 − δ‖))

+
3(ξ0(‖x0 − δ‖) + ξ0(g1

1(‖x0 − δ‖)‖x0 − δ‖))
∫ 1

0 ξ1(θ‖x0 − δ‖)dθ

4(1− p(‖x0 − δ‖))2

)
‖x0 − δ‖

=g1
2(‖x0 − δ‖)‖x0 − δ‖ ≤ ‖x0 − δ‖ < r, (24)

which proves (15) for n = 0 and z0 ∈ U(δ, r).
Hence, x1 is well defined by last sub-step of Method-I for n = 0. Then, by using the third sub-step

of Method-I in Lemma 1, we get that
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‖x1 − δ‖ ≤‖z0 − δ‖+ 2‖H′(x0)
−1H′(δ)‖

(
‖H′(δ)−1(H′(y0)− H′(δ))‖

+ ‖H′(δ)−1(H′(x0)− H′(δ))‖+ ‖H′(δ)−1H′(x0)‖
)
‖A−1

0 H′(δ)‖‖H′(δ)−1H(z0)‖‖

≤
(

1 +
(ξ0(‖x0 − δ‖) + ξ0(g1

1(‖x0 − δ‖)‖x0 − δ‖) + ξ1(‖x0 − δ‖))
(1− ξ0(‖x0 − δ‖))(1− p(‖x0 − δ‖))

×
∫ 1

0
ξ1(θg1

2(‖x0 − δ‖)‖x0 − δ‖)dθ
)

g1
2(‖x0 − δ‖)‖x0 − δ‖

=g1
3(‖x0 − δ‖)‖x0 − δ‖ ≤ ‖x0 − δ‖ < r, (25)

which proves (16) for n = 0 and x1 ∈ U(δ, r). By simply replacing x0, y0, z0, x1 by xn, yn, zn, xn+1 in
the preceding estimates, we arrive at (14)–(16). Then, from the estimates ‖xn+1 − δ‖ < c‖xn − δ‖ < r,
where c = g1

3(‖x0 − δ‖) ∈ [0, 1) we deduce that limn→∞ xn = δ and xn+1 ∈ U(δ, r).
Finally, we show the unique part: let P =

∫ 1
0 H′(δ∗ + t(δ − δ∗))dt for some δ∗ ∈ D1 with

H(δ∗) = 0. Using (8), we get that

‖H′(δ)−1(P− H′(δ)‖ ≤
∫ 1

0
ξ0(θ‖δ− δ∗‖)dθ

≤
∫ 1

0
ξ0(θr∗)dθ < 1. (26)

It follows from (26) that P is invertible. Then, from the identity 0 = H(δ)− H(δ∗) = P(δ− δ∗),
we conclude that δ = δ∗. 2

2.2. Convergence of Method-II

Set g2
1(s) = g1

1(s) and h2
1(s) = h1

1(s). Define functions g2
2, h2

2, g2
3, and h2

3 on [0, ρ) by

g2
2(s) =

∫ 1
0 ξ((1− θ)s)dθ

1− ξ0(s)
+

3(ξ0(s) + ξ0(g2
1(s)s)

∫ 1
0 ξ1(θs)dθ

4(1− p(s))(1− ξ0(s))2 ,

h2
2(s) = g2

2(s)− 1,

g2
3(s) =

(
1 +

(ξ0(s) + ξ0(g2
1(s)s) + 2ξ1(s))

∫ 1
0 ξ1(θg2

2(s)s)dθ

(1− ξ0(s))(1− p(s))

)
g2

2(s),

and
h2

3(s) = g2
3(s)− 1.

We also get that h2
2(0) = h2

3(0) = −1, h2
2(s)→ +∞ as s→ +∞, and h2

3(s)→ +∞ as s→ +∞.
Denote by r2 and r3, the smallest such solutions of Equations h2

2(s) = 0 and h2
3(s) = 0, respectively.

Set:
r = min{ri}, i = 1, 2, 3. (27)

Then, we have that for each s ∈ [0, r), 0 ≤ g2
i (s) < 1.



Mathematics 2019, 7, 1203 8 of 16

Lemma 2. Suppose that iterates {xn}, {yn}, and {zn} are well defined for each n = 0, 1, 2, . . .. Then,
Method-II can be rewritten as

yn = xn −
2
3

H′(xn)
−1H(xn),

zn = xn − H′(xn)
−1H(xn)−

3
2
(

A−1
n (H′(xn)− H′(yn))

2(H′(xn)
−1)2H(xn)

+ A−1
n (H′(xn)− H′(yn))H′(xn)

−1H(xn)
)
,

xn+1 = zn + 2H′(xn)
−1((H′(yn)− H′(xn))− 2H′(xn)

)
A−1

n H(zn),

where An = H′(xn) + H′(yn).

Proof. By Lemma 1, we only need to show the second sub-step of Method-II. We can write

zn = xn − H′(xn)
−1H(xn)−

3
2

En H′(xn)
−1H(xn),

where

En = 6A−1
n H′(xn) + H′(xn)

−1 An − 5I

= 6A−1
n H′(xn)− 6I + H′(xn)

−1 An + I

= 6A−1
n (H′(xn)− An) + H′(xn)

−1 An + I

= − 6A−1
n H′(yn) + 2I + H′(xn)

−1H′(yn)

= A−1
n (−6H′(yn) + 2An + An H′(xn)

−1H′(yn))

= A−1
n (−3H′(yn) + 2H′(xn) + H′(yn)H′(xn)

−1H′(yn))

= A−1
n (2(H′(xn)− H′(yn))− H′(yn) + H′(yn)H′(xn)

−1H′(yn))

= A−1
n (2(H′(xn)− H′(yn)) + H′(yn)(H′(xn)

−1H′(yn)− I))

= A−1
n (2(H′(xn)− H′(yn)) + H′(yn)H′(xn)

−1(H′(yn)− H′(xn))

= A−1
n (H′(xn)− H′(yn))(2− H′(yn)H′(xn)

−1)

= A−1
n (H′(xn)− H′(yn))(2H′(xn)− H′(yn))H′(xn)

−1

= A−1
n (H′(xn)− H′(yn))

2H′(xn)
−1 + A−1

n (H′(xn)− H′(yn)).

By replacing En in the estimate above it, we conclude the proof. 2

Next, we present the local convergence analysis of Method-II in an analogous way to Method-I
using the preceding notations.

Theorem 2. Suppose that the hypotheses of Theorem 1 are satisfied but r is defined by (27). Then, the conclusions
of Theorem 1 hold with Method-II replacing Method-I and the “g2” function replacing the “g1” function.

2.3. Convergence for Method-III

Set g3
1(s) = g1

1(s) and h3
1(s) = h1

1(s). Suppose that equation

q(s) :=
1
2
(3ξ0(g1

1(s)s) + ξ0(s)) = 1,

has at least one positive solution. Denote by ρ2, the smallest such solution.
Set: ρ = min{ρ0, ρ2}. We define functions g3

2, h3
2, g3

3, and h3
3 on [0, ρ) by

g3
2(s) =

∫ 1
0 ξ((1− θ)s)dθ

1− ξ0(s)
+

3(ξ0(s) + ξ0(g3
1(s)s))

∫ 1
0 ξ1(θs)dθ

4(1− q(s))(1− ξ0(s))
,



Mathematics 2019, 7, 1203 9 of 16

h3
2(s) = g3

2(s)− 1,

g3
3(s) =

(
1 +

(ξ0(s) + ξ0(g3
1(s)s) + 2ξ1(s))

∫ 1
0 ξ1(θg3

2(s)s)dθ

(1− ξ0(s))(1− p(s))

)
g3

2(s),

and
h3

3(s) = g3
3(s)− 1.

We also get that h3
2(0) = h3

3(0) = −1, h3
2(s) → +∞ as s → +∞, and h3

3(s) → +∞ as s → +∞.
Denote by r2 and r3, the smallest such solutions of equations h3

2(s) = 0 and h3
3(s) = 0, respectively.

Set:
r = min{ri}, i = 1, 2, 3. (28)

Then, we have that for each s ∈ [0, r), 0 ≤ g3
i (s) < 1.

As in the previous two methods we need the auxiliary result.

Lemma 3. Suppose that iterates {xn}, {yn}, and {zn} are well defined for each n = 0, 1, 2, . . .. Then,
Method-III can be rewritten as

yn = xn −
2
3

H′(xn)
−1H(xn)

zn = xn − H′(xn)
−1H(xn)−

3
2

B−1
n (H′(xn)− H′(yn))H′(xn)

−1H(xn)

xn+1 =zn + 2H′(xn)
−1((H′(yn)− H′(xn))− 2H′(xn)

)
A−1

n H(zn),

where Bn = 3H′(yn)− H′(xn).

Proof. We have that

zn = xn − H′(xn)
−1H(xn)−

3
4
(B−1

n An − I)H′(xn)
−1H(xn).

But

B−1
n An − I = B−1

n (An − Bn)

= 2B−1
n (H′(xn)− H′(yn)),

so by replacing this estimate in the preceding one, we complete the proof. 2

Next, we present the local convergence analysis of Method-III in an analogous way to Method-I
using the preceding notations.

Theorem 3. Suppose that the hypotheses of Theorem 1 are satisfied but r is defined by (28) and the “g3” function
replaces the “g1” function. Then, the conclusions of Theorem 1 hold with Method-III replacing Method-I.

Proof. We have

‖(2H′(δ))−1(B0 − 3H′(δ) + H′(δ))‖

≤ 1
2

(
3‖H′(δ)−1(H′(y0)− H′(δ)‖+ ‖H′(δ)−1(H′(x0)− H′(δ)‖

)
≤ 1

2

(
3ξ0(g3

1(‖x0 − δ‖)‖x0 − δ‖+ ξ0(‖x0 − δ‖)‖
)

= q(‖x0 − δ‖) < 1, (29)
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so
‖B−1

0 H′(δ)‖ ≤ 1
2(1− q(‖x0 − δ‖)) .

The rest of the proof follows as the proof of Theorem 2. 2

Remark 1.

(a) In view of (10) and the estimate

‖H′(δ)−1H′(x)‖ = ‖H′(δ)−1(H′(x)− H′(δ)) + I‖
≤ 1 + ‖H′(δ)−1(H′(x)− H′(δ))‖
≤ 1 + ξ0(‖x− δ‖),

condition (12) can be dropped and be replaced by

M(s) = 1 + ξ0(s).

(b) The result obtained here can be used for operator H satisfying autonomous differential equation [2] of
the form

H′(x) = T(H(x)),

where T is a known continuous operator. Since H′(δ) = T(H(δ)) = T(0), we can apply the results
without actually knowing the solution δ. Let, as an example H(x) = ex − 1. Then, we can choose:
T(x) = x + 1.

(c) It is worth noticing that methods I, II, and III do not change when we use the conditions of Theorems 1,
2, and 3 instead of stronger conditions used in [23]. Moreover, we can compute the theoretical order of
convergence by computational order of convergence (COC) [29]

COC = ln
(‖xn+1 − δ‖
‖xn − δ‖

)/
ln
( ‖xn − δ‖
‖xn−1 − δ‖

)
, for each n = 1, 2, . . . (30)

or the approximate computational order of convergence (ACOC) [2], given by

ACOC = ln
(‖xn+1 − xn‖
‖xn − xn−1‖

)/
ln
( ‖xn − xn−1‖
‖xn−1 − xn−2‖

)
for each n = 1, 2, . . . . (31)

3. Numerical Examples

To validate the results of convergence theorems, we present few numerical examples as follows:

Example 1. Suppose that X = Y = C[0, 1], where C[0, 1] stands for the space of continuous functions defined
on [0, 1]. We shall use the maximum norm. Let D = Ū(0, 1). Define operator H on D by

H(µ)(x) = µ(x)− 5
∫ 1

0
xτµ(τ)3dτ. (32)

From above equation, we have that

H′(µ(λ))(x) = λ(x)− 15
∫ 1

0
xτµ(τ)2λ(τ)dτ, for each λ ∈ D.

Then, for δ = 0, µ(x) = 0 and λ(x) = 1, we have ξ0(s) = 7.5s, ξ(s) = 15s, and ξ1(s) = 2. Using
the definitions of parameters r1, r2, and r3, their computed values are given in Table 1.
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Table 1. Numerical results for example 1.

Method-I Method-II Method-III

r1 = 0.022222 r1 = 0.022222 r1 = 0.022222
r2 = 0.021452 r2 = 0.021108 r2 = 0.021427

r3 = 0.00602156 r3 = 0.00601723 r3 = 0.00597996
r = 0.00602156 r = 0.00601723 r = 0.00597996

Thus, the convergence of the considered methods to δ = 0 is guaranteed, provided that x0 ∈
U(δ, r).

Example 2. We consider the law of population growth. Let N(t), λ, and ν be the population at time t, a constant
birth rate of the population, and the immigration rate, respectively. Then, the equation governing population
growth is given as (see [30])

dN(t)
dt

= λN(t) + ν.

The solution of this differential equation is given by

N(t) = N0eλt +
ν

λ
(eλt − 1),

where N0 is initial population.
For a particular case study, the problem is given as: Suppose that a certain population initially contains

1,000,000 individuals, that 435,000 individuals immigrate to the community in the first year, and that 1,564,000
individuals are present in the end of one year. The problem is to find birth rate (λ) of this population.

To determine the birth rate (λ), we solve the equation

H(x) = 1564− 1000ex − 435
x

(ex − 1) = 0,

wherein x = λ. The solution (δ) of this equation is 0.1009979296 . . .. Then, we have that ξ0(s) = L0s,
ξ(s) = Ls, and ξ1(s) = M, where

L = L0 = L1 = |H′(δ)−1| max
0.1≤x≤0.2

| f ′′(x)| = 1.038089,

and
M = |H′(δ)−1| max

0.1≤x≤0.2
|H′(x)| = 1.097991.

Then, for the above set of values the parameters are given in Table 2.

Table 2. Numerical results for example 2.

Method-I Method-II Method-III

r1 = 0.40716 r1 = 0.40716 r1 = 0.40716
r2 = 0.25898 r2 = 0.25380 r2 = 0.24430
r3 = 0.140344 r3 = 0.139924 r3 = 0.135881
r = 0.140344 r = 0.139924 r = 0.135881

Thus, the results of theorems ensure convergence of the methods I, II, and III to the solution
δ = 0.1009979296 . . ..

Example 3. Let us consider the function H := ( f1, f2, f3) : D → R3 defined by

H(x) =
(
10 x1 + sin(x1 + x2)− 1, 8 x2 − cos2(x3 − x2)− 1, 12 x3 + sin(x3)− 1

)T , (33)
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where x = (x1, x2, x3)
T .

The Fréchet-derivative is given by

H′(x) =

10 + cos(x1 + x2) cos(x1 + x2) 0
0 8 + sin 2(x2 − x3) −2 sin(x2 − x3)

0 0 12 + cos(x3)

 .

Using the initial approximation x0 = {0, 0.5, 0.1}T , we obtain the root δ of the Function (33) as

δ = {0.068978349172666557..., 0.24644241860918295..., 0.076928911987536964...}T .

Then, we get that ξ0(s) = ξ(s) = 0.269812s and ξ1(s) = 2. The values of parameters r1, r2, and r3

we calculated are displayed in Table 3.

Table 3. Numerical results for example 3.

Method-I Method-II Method-III

r1 = 0.823619 r1 = 0.823619 r1 = 0.823619
r2 = 0.656626 r2 = 0.644632 r2 = 0.651275
r3 = 0.189075 r3 = 0.188885 r3 = 0.187318
r = 0.189075 r = 0.188885 r = 0.187318

Example 4. Consider the motivational example given at the introduction. We have that δ = 0. It follows that
ξ0(s) = L0s, ξ(s) = Ls, and ξ1(s) = 2, where L0 = L = 146.66290. The parameters are given in Table 4.

Table 4. Numerical results for example 4.

Method-I Method-II Method-III

r1 = 0.00151519 r1 = 0.00151519 r1 = 0.00151519
r2 = 0.00120798 r2 = 0.00118591 r2 = 0.00119813

r3 = 0.000347836 r3 = 0.000347487 r3 = 0.000344604
r = 0.000347836 r = 0.000347487 r = 0.000344604

Thus, the convergence of the methods to δ = 0 is guaranteed, provided that x0 ∈ U(δ, r).

4. Basins of Attraction

In this section, we present complex geometries of Method-I, II, and III based on the basins of
attraction when the methods are applied to the complex polynomial P(z). The basin of attraction is an
useful geometrical tool for comparing convergence domains of the iterative methods [3].

Let R : C→ C be a rational map on the Riemann sphere. The orbit of a point z0 ∈ C is defined
as the set {z0, R(z0), R2(z0), . . . , Rn(z0), . . .}. A point z0 ∈ C is a fixed point of the rational function R
if it satisfies R(z0) = z0. A periodic point z0 of period m > 1 is a point such that Rm(z0) = z0, where
m is the smallest such integer. A point z0 is called attracting if |R′(z0)| < 1, repelling if |R′(z0)| > 1,
and neutral if |R′(z0)| = 1. Moreover, if |R′(z0)| = 0, the fixed point is super attracting. Let z∗f be an
attracting fixed point of the rational function R. The basin of attraction of the fixed point z∗f is defined

A(z∗f ) = {z0 ∈ Ĉ : Rn(z0)→ z∗f , n→ ∞}. (34)

The set of points whose orbit approaches to an attracting fixed point z∗f is called the Fatou set.
The complementary set, called the Julia set, is the closure of the set consisting of repelling fixed points,
which sets up the boundary between the basins of attraction.
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In our experiments, we took a square region D = [−3, 3]× [−3, 3] of the complex plane, with
400× 400 points, and applied the iterative methods starting with z0 in the square. The numerical
methods starting at point z0 in a square can converge to the zero of the polynomial P(z) or eventually
diverge. The stopping criterion for convergence up to a maximum of 25 iterations was considered to be
10−3. If the desired tolerance was not achieved in 25 iterations, we did not continue and declared that
the iteration from z0 did not converge to any root. The strategy taken into account was this: a color was
assigned to each starting point z0 in the basin of a zero. Then, we distinguished the attraction basins
by their colors. If the iterative function starting from the initial point z0 converged, then it represented
the basins of attraction with the particular assigned color, and if it diverged in 25 iterations, then it
enters into the region of black color.

Test problem 1. Let P1(z) = z2 − 1 having the zeros {−1, 1}. The basins of attractors generated
by the methods for this polynomial are shown in Figure 1. From this figure, it can be observed that
Method-III has more stable behavior than Methods I and II. In addition, Method-III exhibits very little
chaotic behavior on the boundary points compared to other methods.

Test problem 2. Consider the polynomial P2(z) = z3 − 1 having the zeros {− 1
2 −

√
3

2 i,− 1
2 +√

3
2 i, 1}. The basins assessed by the methods are shown in Figure 2. In this case also, the Method-III

has the largest basins of attraction compared to Methods I and II. On the other hand, the fractal picture
of the Method-II has a large number of diverging points shown by black zones.

Test problem 3. Consider biquadratic polynomial P3(z) = z4 − 10z2 + 9 having simple zeros
{−3,−1, 1, 3}. The basins for this polynomial are exhibited in Figure 3. We observed that Method-III
showed good convergence with wider basins of attraction of the zeros in comparison to other methods.
We also noticed that Method-II had bad stability properties.

Test problem 4. Let P4(z) = z5 − z having simple zeros {−1, 1, 0,−i, i}. Like previous problems,
in this problem also, Method-III had a good convergence property for the solutions in comparison to
other methods (see Figure 4). Moreover, this was the best method in terms of the least chaotic behavior
on the boundary points. On the contrary, Method-II had the highest number of divergent points, and
was followed by Method-I.
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Figure 1. Basins of attraction for test problem 1.
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Figure 2. Basins of attraction for test problem 2.
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Figure 3. Basins of attraction for test problem 3.
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Figure 4. Basins of attraction for test problem 4.

5. Conclusions

In the present study, we discussed the convergence of existing Jarratt-like methods of sixth order.
In the earlier study of convergence, the conditions used were based on Taylor’s expansions requiring up
to the sixth or higher-order derivatives of function, although the iterative procedures used first-order
derivatives only. It is quite well understood that these hypotheses restrict the applications of the
scheme. However, the present study extended the suitability of methods by using assumptions on
the first-order derivative only. Moreover, this approach provides the radius of convergence, bounds
on error, and estimates on the uniqueness of the solution of equations. These important elements of
convergence are not established by the approaches such as Taylor series expansions with higher order
derivatives which may not exist, may be costly, or may be difficult to calculate. So, we do not have any
idea how close the initial guess was to the solution of convergence for the method. That is to say the
initial guess is a shot in the dark by the approaches of applying Taylor series expansions. Theoretical
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results of convergence so obtained are verified by numerical testing. Finally, the convergence regions
of the methods were also assessed by a graphical drawing tool; namely, basin of attraction.
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