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Abstract: The Burgers’ equation is one of the nonlinear partial differential equations that has been
studied by many researchers, especially, in terms of the fractional derivatives. In this article, the
numerical algorithms are invented to obtain the approximate solutions of time-fractional Burgers’
equations both in one and two dimensions as well as time-fractional coupled Burgers’ equations
which their fractional derivatives are described in the Caputo sense. These proposed algorithms
are constructed by applying the finite integration method combined with the shifted Chebyshev
polynomials to deal the spatial discretizations and further using the forward difference quotient to
handle the temporal discretizations. Moreover, numerical examples demonstrate the ability of the
proposed method to produce the decent approximate solutions in terms of accuracy. The rate of
convergence and computational cost for each example are also presented.

Keywords: finite integration method; shifted Chebyshev polynomial; Caputo fractional derivative;
Burgers’ equation; coupled Burgers’ equation

1. Introduction

Fractional calculus has received much attention due to the fact that several real-world phenomena
can be demonstrated successfully by developing mathematical models using fractional calculus.
More specifically, fractional differential equations (FDEs) are the generalized form of integer order
differential equations. The applications of the FDEs have been emerging in many fields of science and
engineering such as diffusion processes [1], thermal conductivity [2], oscillating dynamical systems [3],
rheological models [4], quantum models [5], etc. However, one of the interesting issues for the FDEs
is a fractional Burgers’ equation. It appears in many areas of applied mathematics and can describe
various kinds of phenomena such as mathematical models of turbulence and shock wave traveling,
formation, and decay of nonplanar shock waves at the velocity fluctuation of sound, physical processes
of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe, and so
on, see [6–8]. In order to understand these phenomena as well as further apply them in the practical
life, it is important to find their solutions. Some powerful numerical methods had been developed
for solving the fractional Burgers’ equation, such as finite difference methods (FDM) [9], Adomian
decomposition method [10], and finite volume method [11]. Moreover, in 2015, Esen and Tasbozan [12]
gave a numerical solution of time fractional Burgers’ equation by assuming that the solution u(x, t)
can be approximated by a linear combination of products of two functions, one of which involves only
x and the other involves only t. Recently, Yokus and kaya [13] used the FDM to find the numerical
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solution for time fractional Burgers’ equation, however, their results contained less accuracy. In 2017,
Cao et al. [14] studied solution of two-dimensional time-fractional Burgers’ equation with high and
low Reynolds numbers using discontinuous Galerkin method, however, the method involves the
triangulations of the domain which usually gives difficulty in terms of devising a computational
program. There are more numerical studies on time- and/or space-fractional Burgers’ equations which
can be found in many researches.

In this article, we present the numerical technique based on the finite integration method (FIM)
for solving time-fractional Burger’ equations and time-fractional coupled Burgers’ equations. The FIM
is one of the interesting numerical methods in solving partial differential equations (PDEs). The idea
of using FIM is to transform the given PDE into an equivalent integral equation and apply numerical
integrations to solve the integral equation afterwards. It is known that the numerical integration is
very insensitive to round-off errors, while numerical differentiation is very sensitive to round-off errors.
It is because the manipulation task of numerical differentiation involves division by small step-size
but the process of numerical integration involves multiplication by small step-size.

Originally, the FIM has been firstly proposed by Wen et al. [15]. They constructed the integration
matrices based on trapezoidal rule and radial basis functions for solving one-dimensional linear
PDEs and then Li et al. [16] continued to develop it in order to overcome the two-dimensional
problems. After that, the FIM was improved using three numerical quadratures, including Simpson’s
rule, Newton-Cotes, and Lagrange interpolation, presented by Li et al. [17]. The FIM has been
successfully applied to solve various kinds of PDEs and it was verified by comparing with several
existing methods that it offers a very stable, highly accurate and efficient approach, see [18–20].
In 2018, Boonklurb et al. [21] modified the original FIM via Chebyshev polynomials for solving
linear PDEs which provided a much higher accuracy than the FDM and those traditional FIMs.
Unfortunately, the modified FIM in [21] has never been studied for the Burgers’ equations and coupled
Burgers’ equations involving fractional order derivatives with respect to time. This became the major
motivation to carry out the current work.

In this paper, we improve the modified FIM in [21] by using the shifted Chebyshev polynomials
(FIM-SCP) to devise the numerical algorithms for finding the decent approximate solutions of
time-fractional Burgers’ equations both in one- and two-dimensional domains as well as time-fractional
coupled Burgers’ equations. Their time-fractional derivative terms are described in the Caputo sense.
We note here that the FIM in [21] is applicable for solving linear differential equations. With our
improvement in this paper, we propose the numerical methods that are applicable for solving
time-fractional Burgers’ equations. It is well known that Chebyshev polynomial have the orthogonal
property which plays an important role in the theory of approximation. The roots of the Chebyshev
polynomial can be found explicitly and when the equidistant nodes are so bad, we can overcome the
problem by using the Chebyshev nodes. If we sample our function at the Chebyshev nodes, we can
have best approximation under the maximum norm, see [22] for more details. With these advantages,
our improved FIM-SCP is constructed by approximating the solutions expressed in term of the shifted
Chebyshev expansion. We use the zeros of the Chebyshev polynomial of a certain degree to interpolate
the approximate solution. With our work, we obtain the shifted Chebyshev integration matrices in one-
and two- dimensional spaces which are used to deal with the spatial discretizations. The temporal
discretizations are approximated by the forward difference quotient.

The rest of this paper is organized as follows. In Section 2, we provide the basic definitions and the
necessary notations used throughout this paper. In Section 3, the improved FIM-SCP of constructing the
shifted Chebyshev integration matrices, both for one and two dimensions are discussed. In Section 4,
we derive the numerical algorithms for solving one-dimensional time-fractional Burgers’ equations,
two-dimensional time-fractional Burgers’ equations, and time-fractional coupled Burgers’ equations.
The numerical results are presented, which are also shown to be more computationally efficient and
accurate than the other methods with CPU time(s) and rate of convergence. The conclusion and some
discussion for the future work are provided in Section 5.
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2. Preliminaries

Before embarking into the details of the FIM-SCP for solving time-fractional differential equations,
we provide in this section the basic definitions of fractional derivatives and shifted Chebyshev
polynomials. The necessary notations and some important facts used throughout this paper are
also given. More details on basic results of fractional calculus can be found in [23] and further details
of Chebyshev polynomials can be reached in [22].

Definition 1. Let p, µ, and t be real numbers such that t > 0, and

Cµ = {u(t) | u(t) = tpu1(t), where u1(t) ∈ C[0, ∞) and p > µ} .

If an integrable function u (t) ∈ Cµ, we define the Riemann–Liouville fractional integral operator of order
α ≥ 0 as

Iαu(t) =

 1
Γ(α)

∫ t
0

u(s)
(t−s)1−α ds for α > 0,

u(t) for α = 0,

where Γ(·) is the well-known Gamma function.

Definition 2. The Caputo fractional derivative Dα of u(t) ∈ Cm
−1, with u(t) ∈ Cm

µ if and only if u(m) ∈ Cµ,
is defined by

Dαu(t) = Im−αDmu(t) =

 1
Γ(m−α)

∫ t
0

u(m)(s)
(t−s)1−m+α ds for α ∈ (m− 1, m),

u(m)(t) for α = m,

where m ∈ N and t > 0.

Definition 3. The shifted Chebyshev polynomial of degree n ≥ 0 for L ∈ R+ is defined by

T∗n (x) = cos
(

n arccos
(

2x
L
− 1
))

for x ∈ [0, L]. (1)

Lemma 1. (i) For n ∈ N, the zeros of the shifted Chebyshev polynomial T∗n (x) are

xk =
L
2

[
cos

(
2k− 1

2n
π

)
+ 1
]

, k ∈ {1, 2, 3, ..., n}. (2)

(ii) For x ∈ [0, L], the single layer integrations of the shifted Chebyshev polynomial T∗n (x) are

T∗0(x) =
∫ x

0
T∗0 (ξ) dξ = x,

T∗1(x) =
∫ x

0
T∗1 (ξ) dξ =

x2

L
− x,

T∗n(x) =
∫ x

0
T∗n (ξ) dξ =

L
4

[
T∗n+1(x)

n + 1
−

T∗n−1(x)
n− 1

− 2(−1)n

n2 − 1

]
, n ∈ {2, 3, 4, ...}.

(iii) Let {xk}n
k=1 be a set of zeros of T∗n (x) defined in (2), and define the shifted Chebyshev matrix T by

T =


T∗0 (x1) T∗1 (x1) · · · T∗n−1(x1)

T∗0 (x2) T∗1 (x2) · · · T∗n−1(x2)
...

...
. . .

...
T∗0 (xn) T∗1 (xn) · · · T∗n−1(xn)

 .
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Then, it has the multiplicative inverse T−1 = 1
n diag(1, 2, 2, ..., 2)T>.

3. Improved FIM-SCP

In this section, we improve the technique of Boonklurb et al. [21] to construct the first and higher
order integration matrices in one and two dimensions. We note here that Boonklurb et al. used
Chebyshev polynomials to construct the integration matrices and obtained numerical algorithms for
solving linear differential equations, whereas in this work, we use the shifted Chebyshev polynomials to
construct first and higher order shifted Chebyshev integration matrices to obtain numerical algorithms
that are applicable to solve time-fractional Burgers’ equations on any domain [0, L] rather than [−1, 1].

3.1. One-Dimensional Shifted Chebyshev Integration Matrices

Let M ∈ N and L ∈ R+. Define an approximate solution u(x) of a certain PDE by the linear
combination of shifted Chebyshev polynomials (1), i.e.,

u(x) =
M−1

∑
n=0

cnT∗n (x) for x ∈ [0, L]. (3)

Let xk, k ∈ {1, 2, 3, ..., M}, be the grid points generated by the zeros of the shifted Chebyshev
polynomial T∗M(x) defined in (2). Substituting each xk into (3), then (3) can be expressed as

u(x1)

u(x2)
...

u(xM)

 =


T∗0 (x1) T∗1 (x1) · · · T∗M−1(x1)

T∗0 (x2) T∗1 (x2) · · · T∗M−1(x2)
...

...
. . .

...
T∗0 (xM) T∗1 (xM) · · · T∗M−1(xM)




c0

c1
...

cM−1

 ,

and we let it be denoted by u = Tc. The coefficients {cn}M−1
n=0 can be obtained by computing c = T−1u.

Let U(1)(xk) denote the single layer integration of u from 0 to xk. Then,

U(1)(xk) =
∫ xk

0
u(ξ) dξ =

M−1

∑
n=0

cn

∫ xk

0
T∗n (ξ) dξ =

M−1

∑
n=0

cnT∗n(xk)

for k ∈ {1, 2, 3, ..., M} or in matrix form:
U(1)(x1)

U(1)(x2)
...

U(1)(xM)

 =


T∗0(x1) T∗1(x1) · · · T∗M−1(x1)

T∗0(x2) T∗1(x2) · · · T∗M−1(x2)
...

...
. . .

...
T∗0(xM) T∗1(xM) · · · T∗M−1(xM)




c0

c1
...

cM−1

 .

We denote the above equation by U(1) = Tc = TT−1u := Au, where A = TT−1 := [aki]M×M is
called the “shifted Chebyshev integration matrix” for the improved FIM-SCP in one dimension. Next,
let us consider the double layer integration of u from 0 to xk that denoted by U(2)(xk). We have

U(2)(xk) =
∫ xk

0

∫ ξ2

0
u(ξ1) dξ1dξ2 =

M

∑
i=1

aki

∫ xi

0
u(ξ1) dξ1 =

M

∑
i=1

M

∑
j=1

akiaiju(xj)

for k ∈ {1, 2, 3, ..., M}, it can be written in matrix form as U(2) = A2u. The mth layer integration of u
from 0 to xk, denoted by U(m)(xk), can be obtained in the similar manner, that is,

U(m)(xk) =
∫ xk

0
· · ·

∫ ξ2

0
u(ξ1) dξ1 · · · dξm =

M

∑
im=1
· · ·

M

∑
j=1

akim · · · ai1 ju(xj)
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for k ∈ {1, 2, 3, ..., M}, or written in the matrix form as U(m) = Amu.

3.2. Two-Dimensional Shifted Chebyshev Integration Matrices

Let M, N ∈ N and L1, L2 ∈ R+. Divide the domain [0, L1]× [0, L2] into a mesh with M nodes by N
nodes along the horizontal and the vertical directions, respectively. Let xk, where k ∈ {1, 2, 3, ..., M}, be
the grid points generated by the shifted Chebyshev nodes of T∗M(x) and let ys, where s ∈ {1, 2, 3, ..., N},
be the grid points generated by the shifted Chebyshev nodes of T∗N(y). Thus, there are M× N grid
points in total. For computation, we index the numbering of grid points along the x-direction by the
global numbering system (Figure 1a) and along y-direction by the local numbering system (Figure 1b).

Let U(1)
x and U(1)

y be the single layer integrations with respect to the variables x and y, respectively.

For each fixed y, we have U(1)
x (xk, y) in the global numbering system as

U(1)
x (xk, y) =

∫ xk

0
u(ξ, y) dξ =

M

∑
i=1

akiu(xi, y). (4)

For k ∈ {1, 2, 3, ..., M}, (4) can be expressed as U(1)
x (·, y) = AMu(·, y), where AM = TT−1 is the

M×M matrix. Thus, for each y ∈ {y1, y2, y3, ..., yN},
U(1)

x (·, y1)

U(1)
x (·, y2)

...

U(1)
x (·, yN)

 =


AM 0 · · · 0

0 AM
. . .

...
...

. . . . . . 0
0 · · · 0 AM


︸ ︷︷ ︸

N blocks


u(·, y1)

u(·, y2)
...

u(·, yN)

 ,

we shall denote it by U(1)
x = Axu, where Ax = IN ⊗AM is the shifted Chebyshev integration matrix

with respect to x-axis and ⊗ is the Kronecker product defined in [24]. Similarly, for each fixed x,
U(1)

y (x, ys) can be expressed in the local numbering system as

U(1)
y (x, ys) =

∫ ys

0
u(x, η) dη =

N

∑
j=1

asju(x, yj). (5)

For s ∈ {1, 2, 3, ..., N}, (5) can be written as U(1)
y (x, ·) = ANu(x, ·), where AN = TT−1 is the

N × N matrix. Therefore, for each x ∈ {x1, x2, x3, ..., xM},
U(1)

y (x1, ·)
U(1)

y (x2, ·)
...

U(1)
y (xM, ·)

 =


AN 0 · · · 0

0 AN
. . .

...
...

. . . . . . 0
0 · · · 0 AN


︸ ︷︷ ︸

M blocks


u(x1, ·)
u(x2, ·)

...
u(xM, ·)

 .

We shall denote the above matrix equation by Ũ(1)
y = Ãyũ, where Ãy = IM ⊗AN . We notice that

the elements of u and ũ are the same but different positions in the numbering system. Thus, we can
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transform Ũ(1)
y and ũ in the local numbering system to the global numbering system by using the

permutation matrix P = [pij]MN×MN , where each pij is defined by

pij =


1 ;

{
i = (s− 1)M + k,

j = (k− 1)N + s,

0 ; otherwise,

(6)

for all k ∈ {1, 2, 3, ..., M} and s ∈ {1, 2, 3, ..., N}. We obtain that U(1)
y = PŨ(1)

y and u = Pũ.

Therefore, we have U(1)
y = Ayu, where Ay = PÃyP−1 = P(IM ⊗ AN)P> is the shifted Chebyshev

integration matrix with respect to y-axis in the global numbering system.

Remark 1 ([21]). Let m, n ∈ N, the multi-layer integrations in the global numbering system can be represented
in the matrix forms as follows,

• the mth layer integration with respect to x is U(m)
x = Am

x u,

• the nth layer integration with respect to y is U(n)
y = An

y u,

• the multi-layer integration with respect to both x and y is U(m,n)
xy = Am

x An
y u.

1 2 3 . . . M

M+1 M+2 M+3 . . . 2M

2M+1 2M+2 2M+3 . . . 3M

...
...

(N-1)M+1 (N-1)M+2 (N-1)M+3 . . . MN

(a) Global numbering system

1 N+1 2N+1 . . . (M-1)N+1

2 N+2 2N+2 . . . (M-1)N+2

3 N+3 2N+3 . . . (M-1)N+3

...
...

N 2N 3N . . . MN

(b) Local numbering system

Figure 1. Global and local grid points.

4. The Numerical Algorithms for Time-Fractional Burgers’ Equations

In this section, we derive the numerical algorithms based on our improved FIM-SCP for solving
time-fractional Burgers’ equations both in one and two dimensions. The numerical algorithm for
solving time-fractional coupled Burgers’ equations is also proposed. To demonstrate the effectiveness
and the efficiency of our algorithms, some numerical examples are given. Moreover, we find the time
convergence rates and CPU times(s) of each example in order to demonstrate the computational cost.
We note here that we implemented our numerical algorithms in MatLab R2016a. The experimental
computer system is configured as: Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz. Finally, the graphically
numerical solutions of each example are also depicted.

4.1. Algorithm for One-Dimensional Time-Fractional Burgers’ Equation

Let L and T be positive real numbers and α ∈ (0, 1]. Consider the time-fractional Burgers’ equation
with a viscosity parameter ν > 0 as follows.

∂αu
∂tα

+ u
∂u
∂x
− ν

∂2u
∂x2 = f (x, t), x ∈ (0, L), t ∈ (0, T], (7)
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subject to the initial condition
u(x, 0) = φ(x), x ∈ [0, L], (8)

and the boundary conditions

u(0, t) = ψ1(t) and u(L, t) = ψ2(t), t ∈ (0, T], (9)

where f (x, t), φ(x), ψ1(t), and ψ2(t) are given functions. Let us first linearize (7) by determining the
iteration at time tm = m(∆t), where ∆t is the time step and m ∈ N. Then, we have

∂αu
∂tα

∣∣∣
t=tm

+ um−1 ∂um

∂x
− ν

∂2um

∂x2 = f (x, tm), (10)

where um = u(x, tm) is the numerical solution at the mth iteration. For the Caputo time-fractional
derivative term defined in Definition 2, we have

∂αu
∂tα

∣∣∣
t=tm

=
1

Γ(1− α)

∫ tm

0

us(x, s)
(tm − s)α

ds =
1

Γ(1− α)

m−1

∑
i=0

∫ ti+1

ti

us(x, s)
(tm − s)α

ds. (11)

Using the first-order forward difference quotient to approximate the derivative term in (11),
we get

∂αu
∂tα

∣∣∣
t=tm
≈ 1

Γ(1− α)

m−1

∑
i=0

∫ ti+1

ti

(tm − s)−α

(
ui+1 − ui

∆t

)
ds

=
1

Γ(1− α)

m−1

∑
i=0

(
ui+1 − ui

∆t

) [
(tm − ti)

1−α − (tm − ti+1)
1−α

1− α

]

=
1

Γ(2− α)

m−1

∑
i=0

(
ui+1 − ui

∆t

) [
(m− i)1−α − (m− i− 1)1−α

]
(∆t)1−α

=
(∆t)−α

Γ(2− α)

m−1

∑
j=0

(um−j − um−j−1)
[
(j + 1)1−α − j1−α

]
=

m−1

∑
j=0

wj(um−j − um−j−1), (12)

where wj =
(∆t)−α

Γ(2−α)

[
(j + 1)1−α − j1−α

]
. Thus, (10) becomes

w0(um − um−1) +
m−1

∑
j=1

wj(um−j − um−j−1) + um−1 ∂um

∂x
− ν

∂2um

∂x2 = f (x, tm). (13)

In order to eliminate the derivative terms in (13), we apply the modified FIM by taking the double
layer integration. Then, for each shifted Chebyshev node xk, k ∈ {1, 2, 3, ..., M}, we obtain

w0

∫ xk

0

∫ η

0
(um − um−1)dξdη +

m−1

∑
j=1

wj

∫ xk

0

∫ η

0
(um−j − um−j−1)dξdη

+
∫ xk

0

∫ η

0

(
um−1 ∂um

∂ξ

)
dξdη − νum + d1xk + d2 =

∫ xk

0

∫ η

0
f (ξ, tm)dξdη, (14)
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where d1 and d2 are the arbitrary constants of integration. Next, we consider the nonlinear term in (14).
By using the technique of integration by parts, we have

q(xk) :=
∫ xk

0

∫ η

0

(
um−1 ∂um

∂ξ

)
dξdη

=
∫ xk

0
um−1(η)um(η) dη −

∫ xk

0

∫ η

0

∂um−1(ξ)

dξ
um(ξ) dξdη

=
∫ xk

0
um−1(η)um(η) dη −

∫ xk

0

∫ η

0

M−1

∑
n=0

cm−1
n

dT∗n (ξ)
dξ

um(ξ) dξdη

=
∫ xk

0
um−1(η)um(η) dη −

∫ xk

0

∫ η

0
T′(ξ)T−1um−1um(ξ) dξdη, (15)

where T′(ξ) =
[

dT∗0 (ξ)
dξ , dT∗1 (ξ)

dξ , dT∗2 (ξ)
dξ , ...,

dT∗M−1(ξ)
dξ

]
. Thus, for k ∈ {1, 2, 3, ..., M}, (15) can be expressed

in matrix form as
q(x1)

q(x2)
...

q(xM)

 = A


um−1(x1)um(x1)

um−1(x2)um(x2)
...

um−1(xM)um(xM)

−A2


T′(x1)T−1um−1um(x1)

T′(x2)T−1um−1um(x2)
...

T′(xM)T−1um−1um(xM)

 .

For computational convenience, we reduce the above equation into the matrix form:

q = Adiag
(

um−1
)

um −A2diag
(

T′T−1um−1
)

um := Qum, (16)

where q = [q(x1), q(x2), q(x3)..., q(xM)], Q = Adiag(um−1)−A2diag(T′T−1um−1), and

T′ =


T′(x1)

T′(x2)
...

T′(xM)

 =



dT∗0 (ξ)
dξ

∣∣
x1

dT∗1 (ξ)
dξ

∣∣
x1
· · · dT∗M−1(ξ)

dξ

∣∣
x1

dT∗0 (ξ)
dξ

∣∣
x2

dT∗1 (ξ)
dξ

∣∣
x2
· · · dT∗M−1(ξ)

dξ

∣∣
x2

...
...

. . .
...

dT∗0 (ξ)
dξ

∣∣
xM

dT∗1 (ξ)
dξ

∣∣
xM

· · · dT∗M−1(ξ)
dξ

∣∣
xM

 . (17)

Consequently, for k ∈ {1, 2, 3, ..., M} by hiring (16) and the idea of Boonklurb et al. [21], we can
convert (14) into the matrix form as

w0A2(um − um−1) +
m−1

∑
j=1

wjA2(um−j − um−j−1) + Qum − νum + d1x + d2i = A2fm

[
w0A2 + Q− νI

]
um + d1x + d2i = A2fm + w0A2um−1 −

m−1

∑
j=1

wjA2(um−j − um−j−1), (18)

where I is the M × M identity matrix, i = [1, 1, 1, ..., 1]>, um = [u(x1, tm), u(x2, tm), ..., u(xM, tm)]>,
x = [x1, x2, x3, ..., xM]>, fm = [ f (x1, tm), f (x2, tm), ..., f (xM, tm)]> and A = TT−1. For the boundary
conditions (9), we can change them into the vector forms by using the linear combination of the shifted
Chebyshev polynomial at the mth iteration as follows.

u(0, tm) =
M−1

∑
n=0

cm
n T∗n (0) =

M−1

∑
n=0

cm
n (−1)n := tlc

m = tlT
−1um = ψ1(tm), (19)

u(L, tm) =
M−1

∑
n=0

cm
n T∗n (L) =

M−1

∑
n=0

cm
n (1)

n := trcm = trT−1um = ψ2(tm), (20)
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where tl = [1,−1, 1, ..., (−1)M−1] and tr = [1, 1, 1, ..., 1].
From (18)–(20), we can construct the following system of iterative linear equations that contains

M + 2 unknowns w0A2 + Q− νI x i
tlT−1 0 0
trT−1 0 0


 um

d1

d2

 =

 A2fm + w0A2um−1 − s
ψ1(tm)

ψ2(tm)

 , (21)

where s = ∑m−1
j=1 wjA2(um−j − um−j−1) for m > 1, and s = 0 if m = 1. Thus, starting from the

initial condition u0 = [φ(x1), φ(x2), φ(x3), ..., φ(xM)]>, the approximate solution um can be obtained
by solving the system (21). We note here that, for any fixed t ∈ (0, T], the approximate solution u(x, t)
for each arbitrary x ∈ [0, L] can be computed from

u(x, t) =
M−1

∑
n=0

cnT∗n (x) = txcm = txT−1um,

where tx = [T∗0 (x), T∗1 (x), T∗2 (x), ..., T∗M−1(x)] and um is the final iterative solution of (21).

Example 1. Consider the time-fractional Burgers’ Equation (7) for x ∈ (0, 1) and t ∈ (0, 1] with

f (x, t) =
2t2−αex

Γ(3− α)
+ t4e2x − νt2ex,

subject to the initial condition
u(x, 0) = 0, x ∈ [0, 1]

and the boundary conditions
u(0, t) = t2, u(1, t) = et2, t ∈ (0, 1].

The exact solution given by Esen and Tasbozan [12] is u∗(x, t) = t2ex. In the numerical test, we choose
the kinematic viscosity ν = 1, α = 0.5 and ∆t = 0.00025. Table 1 presents the exact solution u∗(x, 1),
the numerical solution u(x, 1) by using our FIM-SCP in Algorithm 1, and the solution obtained by the quadratic
B-spline finite element Galerkin method (QBS-FEM) proposed by Esen and Tasbozan [12]. The comparison
between the absolute errors Ea (as the difference in absolute value between the approximate solution and the
exact solution) of the two methods shows that our FIM-SCP is more accurate than QBS-FEM for M = 10
and similar accuracy for other M. Algorithm 1 acquires the significant improvement in accuracy with less
computational nodal points M and regardless the time steps ∆t and the fractional order derivatives α. With the
selection of α = 0.5 and M = 40, Table 2 shows the comparison between the exact solution u∗(x, 1) and the
numerical solution u(x, 1) using Algorithm 1 for various values of ∆t ∈ {0.05, 0.01, 0.005, 0.001}. Table 3
illustrates the comparison between the exact solution u∗(x, 1) and the numerical solution u(x, 1) by our method
for ∆t = 0.001, M = 40, and α ∈ {0.1, 0.25, 0.75, 0.9}. Moreover, the convergence rates are estimated by
using our FIM-SCP with the discretization points M = 20 and step sizes ∆t = 2−k for k ∈ {4, 5, 6, 7, 8}.
In Table 4, we observe that these time convergence rates for the `∞ norm indeed are almost O(∆t) for the different
α ∈ (0, 1). Then, we also find the computational cost in term of CPU time(s) in Table 4. Finally, the graph of our
approximate solutions, u(x, t), for different times, t, and the surface plot of the solution under the parameters
ν = 1, M = 40, and ∆t = 0.001, are provided in Figure 2.
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Algorithm 1 The numerical algorithm for solving one-dimensional time-fractional Burgers’ equation

Input: α, ν, x, L, T, M, ∆t, φ(x), ψ1(t), ψ2(t), and f (x, t).
Output: An approximate solution u(x, T).

1: Set xk =
L
2
[

cos
( 2k−1

2M π
)
+ 1
]

for k ∈ {1, 2, 3, ..., M}.
2: Compute x, i, A, tl , tr, tx, I, T, T, T−1 and u0.

3: Set t0 = 0 and m = 0.

4: while tm ≤ T do
5: Set m = m + 1.

6: Set tm = m∆t.
7: Set s = 0.

8: for j = 1 to m− 1 do
9: Compute wj =

(∆t)−α

Γ(2−α)

[
(j + 1)1−α − j1−α

]
.

10: Compute s = s + wjA2(um−j − um−j−1).

11: end for
12: Compute fm = [ f (x1, tm), f (x2, tm), f (x3, tm), ..., f (xM, tm)]>.

13: Find um by solving the iterative linear system (21).

14: end while
15: return u(x, T) = txT−1um.

Table 1. Comparison of absolute errors Ea between QBS-FEM and FIM-SCP for Example 1.

M x u∗(x, 1) QBS-FEM [12] FIM-SCP Algorithm 1

u(x, 1) Ea u(x, 1) Ea

10

0.2 1.221403 1.222203 8.00× 10−4 1.221462 5.9578× 10−5

0.4 1.491825 1.493437 1.61× 10−3 1.491934 1.0910× 10−4

0.6 1.822119 1.824294 2.18× 10−3 1.822258 1.3933× 10−4

0.8 2.225541 2.227650 2.11× 10−3 2.225666 1.2511× 10−4

20

0.2 1.221403 1.221644 2.41× 10−4 1.221462 5.9578× 10−5

0.4 1.491825 1.492287 4.62× 10−4 1.491934 1.0910× 10−4

0.6 1.822119 1.822727 6.08× 10−4 1.822258 1.3933× 10−4

0.8 2.225541 2.226118 5.77× 10−4 2.225666 1.2511× 10−4

40

0.2 1.221403 1.221493 9.00× 10−5 1.221462 5.9578× 10−5

0.4 1.491825 1.491996 1.71× 10−4 1.491934 1.0910× 10−4

0.6 1.822119 1.822342 2.03× 10−4 1.822258 1.3933× 10−4

0.8 2.225541 2.225747 2.06× 10−4 2.225666 1.2511× 10−4

Table 2. Absolute errors Ea at different ∆t for Example 1 by FIM-SCP with α = 0.5 and M = 40.

x u∗(x, 1) ∆t = 0.05 ∆t = 0.01 ∆t = 0.005 ∆t = 0.001

u(x, 1) Ea u(x, 1) Ea u(x, 1) Ea u(x, 1) Ea

0.1 1.1051 1.1116 6.44× 10−3 1.1064 1.25× 10−3 1.1057 6.22× 10−4 1.1052 1.23× 10−4

0.3 1.3498 1.3677 1.78× 10−2 1.3533 3.48× 10−3 1.3515 1.73× 10−3 1.3502 3.44× 10−4

0.5 1.6487 1.6750 2.63× 10−2 1.6538 5.17× 10−3 1.6512 2.57× 10−3 1.6492 5.11× 10−4

0.7 2.0137 2.0423 2.86× 10−2 2.0194 5.67× 10−3 2.0165 2.82× 10−3 2.0143 5.63× 10−4

0.9 2.4596 2.4763 1.67× 10−2 2.4629 3.36× 10−3 2.4612 1.68× 10−3 2.4599 3.35× 10−4
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Table 3. Absolute errors Ea at different α for Example 1 by FIM-SCP with ∆t = 0.001 and M = 40.

x u∗(x, 1) α = 0.1 α = 0.25 α = 0.75 α = 0.9

u(x, 1) Ea u(x, 1) Ea u(x, 1) Ea u(x, 1) Ea

0.1 1.1051 1.1053 1.28× 10−4 1.1052 1.26× 10−4 1.1052 1.24× 10−4 1.1053 1.37× 10−4

0.3 1.3498 1.3502 3.60× 10−4 1.3502 3.54× 10−4 1.3502 3.45× 10−4 1.3502 3.77× 10−4

0.5 1.6487 1.6492 5.34× 10−4 1.6492 5.26× 10−4 1.6492 5.11× 10−4 1.6492 5.54× 10−4

0.7 2.0137 2.0143 5.86× 10−4 2.0143 5.77× 10−4 2.0143 5.62× 10−4 2.0143 6.05× 10−4

0.9 2.4596 2.4599 3.46× 10−4 2.4599 3.42× 10−4 2.4599 3.35× 10−4 2.4599 3.58× 10−4

Table 4. Time convergence rates and CPU time(s) for Example 1 by FIM-SCP with M = 20.

∆t α = 0.1 α = 0.5 α = 0.9

‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s)

2−4 3.65× 10−2 1.1926 0.2502 3.60× 10−2 1.1912 0.2879 4.04× 10−2 1.1607 0.2651
2−5 1.83× 10−2 1.0890 0.2195 1.79× 10−2 1.0902 0.2014 2.00× 10−2 1.0770 0.1979
2−6 9.18× 10−3 1.0438 0.4783 8.92× 10−3 1.0448 0.5042 9.88× 10−3 1.0379 0.4535
2−7 4.59× 10−3 1.0217 1.3092 4.44× 10−3 1.0221 1.4068 4.88× 10−3 1.0189 1.3392
2−8 2.30× 10−3 1.0108 4.3165 2.21× 10−3 1.0110 4.5113 2.42× 10−3 1.0097 4.6495

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 2. The graphical results of Example 1 for ν = 1, M = 40, and ∆t = 0.001.

Example 2. Consider the time-fractional Burgers’ Equation (7) over (0, 1)× (0, 1] with f (x, t) = 0, subject to
the initial condition

u(x, 0) =
[
−1 + 5 cosh

( x
2

)
− 5 sinh

( x
2

)]−1
, x ∈ [0, 1],

and the boundary conditions

u(0, t) =
[
5e−

tα
4Γ(1+α) − 1

]−1
and u(1, t) =

[
5e−

(
1
2+

tα
4Γ(1+α)

)
− 1
]−1

, t ∈ (0, 1].

The exact solution given by Yokus and Kaya [13] is u∗(x, t) =
[
5e−
(

x
2 +

tα
4Γ(1+α)

)
− 1
]−1. In our numerical

test, we choose the kinematic viscosity ν = 1, α = 0.8, M = 50 and ∆t = 0.001. Table 5 presents the exact
solution u∗(x, 0.02), the numerical solution u(x, 0.02) by using our FIM-SCP in Algorithm 1, and the solution
obtained by using the expansion method and the Cole–Hopf transformation (EPM-CHT) proposed by Yokus and
Kaya in [13]. The error norms L2 and L∞ of this problem between our FIM-SCP and EPM-CHT with α = 0.8
for the various values of nodal grid points M ∈ {5, 10, 20, 25, 50} and step size ∆t = 1/M are illustrated in
Table 6. We see that our Algorithm 1 achieves improved accuracy with less computational cost. Furthermore,
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we estimate the convergence rates of time for this problem by using our FIM-SCP with the discretization nodes
M = 20 and step sizes ∆t = 2−k for k ∈ {4, 5, 6, 7, 8} which are tabulated in Table 7. We observe that these rates
of convergence for the `∞ norm indeed are almost linear convergence O(∆t) for the different values α ∈ (0, 1).
Then, we also calculate the computational cost in term of CPU time(s) as shown in Table 7. Figure 3a,b depict
the numerical solutions u(x, t) at different times t and the surface plot of u(x, t), respectively.

Table 5. Comparison of the exact and numerical solutions for Example 2 for α = 0.8 and M = 50.

x u∗(x, 0.02) EPM-CHT [13] FIM-SCP Algorithm 1
u(x, 0.02) Ea u(x, 0.02) Ea

0.02 0.256906 0.256321 5.84566× 10−4 0.256913 6.7146× 10−6

0.04 0.260159 0.259566 5.93809× 10−4 0.260173 1.3390× 10−5

0.06 0.263463 0.262860 6.03243× 10−4 0.263483 2.0005× 10−5

0.08 0.266817 0.266204 6.12874× 10−4 0.266844 2.6539× 10−5

0.10 0.270223 0.269601 6.22707× 10−4 0.270256 3.2970× 10−5

Table 6. Comparison of the error norms L2 and L∞ for Example 2 with α = 0.8 and ∆t = 1/M.

M EPM-CHT [13] FIM-SCP Algorithm 1

L2 L∞ L1 L2 L∞

5 4.2568× 10−2 7.0345× 10−2 3.6257× 10−4 1.8745× 10−4 1.1494× 10−5

10 4.2708× 10−3 6.3200× 10−3 1.4701× 10−4 5.1150× 10−5 2.1754× 10−5

20 1.1366× 10−3 1.9300× 10−3 2.9688× 10−4 7.2352× 10−5 2.1754× 10−5

25 7.8890× 10−4 1.4410× 10−4 3.7153× 10−4 8.0893× 10−5 2.1754× 10−5

50 2.7690× 10−4 6.6400× 10−4 7.4421× 10−4 1.1440× 10−5 2.1755× 10−5

Table 7. Time convergence rates and CPU time(s) for Example 2 by FIM-SCP with M = 20.

∆t α = 0.1 α = 0.5 α = 0.9

‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s)

2−4 3.25× 10−3 1.0396 0.2123 1.22× 10−2 0.9895 0.2128 1.88× 10−2 1.0299 0.2052
2−5 3.39× 10−3 1.0106 0.3159 6.05× 10−3 0.9951 0.3192 9.44× 10−3 1.0150 0.2836
2−6 4.25× 10−3 1.0037 0.4858 3.01× 10−3 0.9976 0.4624 4.74× 10−3 1.0075 0.4753
2−7 4.41× 10−3 1.0015 1.4507 2.91× 10−3 1.0089 1.4495 2.37× 10−3 1.0037 1.4213
2−8 4.50× 10−3 1.0007 4.7479 3.35× 10−3 1.0037 4.3760 1.18× 10−3 1.0019 4.5449

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 3. The graphical solutions of Example 2 for ν = 1, M = 40, and ∆t = 0.001.
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4.2. Algorithm for Two-Dimensional Time-Fractional Burgers’ Equation

Let L1 and L2 be positive real numbers, Ω = (0, L1) × (0, L2), and α ∈ (0, 1]. Consider the
two-dimensional time-fractional Burgers’ equation with a viscosity ν > 0,

∂αu
∂tα

+ u
(

∂u
∂x

+
∂u
∂y

)
− ν

(
∂2u
∂x2 +

∂2u
∂y2

)
= f (x, y, t), (x, y) ∈ Ω, t ∈ (0, T], (22)

subject to the initial condition
u(x, y, 0) = φ(x, y), (x, y) ∈ Ω, (23)

and the boundary conditions

u(0, y, t) = ψ1(y, t), u(L1, y, t) = ψ2(y, t), y ∈ [0, L2], t ∈ (0, T],

u(x, 0, t) = ψ3(x, t), u(x, L2, t) = ψ4(x, t), x ∈ [0, L1], t ∈ (0, T],
(24)

where f , φ, ψ1, ψ2, ψ3, and ψ4 are given functions. As ∂
∂x (

u2

2 ) = u ∂u
∂x and ∂

∂y (
u2

2 ) = u ∂u
∂y , we can

transform (22) to

∂αu
∂tα

+
∂

∂x

(
u2

2

)
+

∂

∂y

(
u2

2

)
− ν

(
∂2u
∂x2 +

∂2u
∂y2

)
= f (x, y, t). (25)

Let us linearize (25) by imposing the iteration at time tm = m(∆t) for m ∈ N and ∆t is an arbitrary
time step. Thus, we have

∂αu
∂tα

∣∣∣
t=tm

+
∂

∂x

(
um−1

2
um
)
+

∂

∂y

(
um−1

2
um
)
− ν

(
∂2um

∂x2 +
∂2um

∂y2

)
= f m, (26)

where f m = f (x, y, tm) and um = u(x, y, tm) is the numerical solution at the mth iteration. Next,
consider the fractional order derivative in the Caputo sense as defined in Definition 2, by using (12),
then (26) becomes

m−1

∑
j=0

wj(um−j − um−j−1) +
∂

∂x

(
um−1

2
um
)
+

∂

∂y

(
um−1

2
um
)
− ν

(
∂2um

∂x2 +
∂2um

∂y2

)
= f m,

where wj =
(∆t)−α

Γ(2−α)

[
(j + 1)1−α − j1−α

]
. The above equation can be transformed to the integral equation

by taking twice integrations over both x and y, we have

m−1

∑
j=0

wj

∫ y

0

∫ η2

0

∫ x

0

∫ ξ2

0
(um−j − um−j−1)dξ1dξ2dη1dη2 +

1
2

∫ y

0

∫ η2

0

∫ x

0
(um−1um)dξ2dη1dη2

+
1
2

∫ y

0

∫ x

0

∫ ξ2

0
(um−1um)dξ1dξ2dη2 − ν

∫ y

0

∫ η2

0
umdη1dη2 − ν

∫ x

0

∫ ξ2

0
umdξ1dξ2

+ xg1(y) + g2(y) + yh1(x) + h2(x) =
∫ y

0

∫ η2

0

∫ x

0

∫ ξ2

0
f (ξ1, η1, tm)dξ1dξ2dη1dη2, (27)

where g1(y), g2(y), h1(x), and h2(x) are the arbitrary functions emerged in the process of integration
which can be approximated by the shifted Chebyshev polynomial interpolation. For r ∈ {1, 2}, define

hr(x) =
M−1

∑
i=0

h(i)r T∗i (x) and gr(y) =
N−1

∑
j=0

g(j)
r T∗j (y), (28)

where h(i)r and g(j)
r , for i ∈ {0, 1, 2, ..., M− 1} and j ∈ {0, 1, 2, ..., N − 1}, are the unknown values of

these interpolated points. Next, we divide the domain Ω into a mesh with M nodes by N nodes along x-
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and y-directions, respectively. We denote the nodes along the x-direction by x = {x1, x2, x3, ..., xM} and
the nodes along the y-direction by y = {y1, y2, y3, ..., yN}. These nodes along the x- and y-directions
are the zeros of shifted Chebyshev polynomials T∗M(x) and T∗N(y), respectively. Thus, the total number
of grid points in the system is P = M× N, where each point is an entry in the set of Cartesian product
x× y ordering as global type system, i.e., (xi, yi) ∈ x× y for i ∈ {1, 2, 3, ..., P}. By substituting each
node in (27) and hiring Ax and Ay in Section 3.2, we can change (27) to the matrix form as

m−1

∑
j=0

wjA2
xA2

y(u
m−j − um−j−1) +

1
2

AxA2
ydiag(um−1)um +

1
2

A2
xAydiag(um−1)um

−νA2
yum − νA2

xum + XΦyg1 + Φyg2 + YΦxh1 + Φyh2 = A2
xA2

yfm.

Simplifying the above equation yields

Kum + XΦyg1 + Φyg2 + YΦxh1 + Φyh2 = A2
xA2

yfm + w0A2
xA2

yum−1 − s, (29)

where each parameter contained in (29) can be defined as follows.

K = w0A2
xA2

y +
1
2 AxA2

ydiag(um−1) + 1
2 A2

xAydiag(um−1)− νA2
y − νA2

x,

s = ∑m−1
j=1 wjA2

xA2
y(um−j − um−j−1),

X = diag(x1, x2, x3, ..., xP),

Y = diag(y1, y2, y3, ..., yP),

hr = [h(0)r , h(1)r , h(2)r , ..., h(M−1)
r ]> for r ∈ {1, 2},

gr = [g(0)r , g(1)r , g(2)r , ..., g(N−1)
r ]> for r ∈ {1, 2},

fm = [ f (x1, y1, tm), f (x2, y2, tm), f (x3, y3, tm), ..., f (xP, yP, tm)]>,

um = [u(x1, y1, tm), u(x2, y2, tm), u(x3, y3, tm), ..., u(xP, yP, tm)]>.

From (28), we obtain Φx and Φy, where

Φx =


T∗0 (x1) T∗1 (x1) · · · T∗M−1(x1)

T∗0 (x2) T∗1 (x2) · · · T∗M−1(x2)
...

...
. . .

...
T∗0 (xP) T∗1 (xP) · · · T∗M−1(xP)

 and Φy =


T∗0 (y1) T∗1 (y1) · · · T∗N−1(y1)

T∗0 (y2) T∗1 (y2) · · · T∗N−1(y2)
...

...
. . .

...
T∗0 (yP) T∗1 (yP) · · · T∗N−1(yP)

 .

For the boundary conditions (24), we can transform them into the matrix form, similar the idea
in [21], by employing the linear combination of the shifted Chebyshev polynomials as follows,

• Left & Right boundary conditions: For each fixed y ∈ {y1, y2, y3, ..., yN}, then

u(0, y, tm) =
M−1

∑
n=0

cm
n T∗n (0) := tlT

−1
M um(·, y) = ψ1(y, tm) ⇒ (IN ⊗ tlT

−1
M )um = Ψ1 (30)

u(L1, y, tm) =
M−1

∑
n=0

cm
n T∗n (L1) := trT−1

M um(·, y) = ψ2(y, tm) ⇒ (IN ⊗ trT−1
M )um = Ψ2 (31)

• Bottom & Top boundary conditions: For each fixed x ∈ {x1, x2, x3, ..., xM}, then

u(x, 0, tm) =
N−1

∑
n=0

cm
n T∗n (0) := tbT−1

N um(x, ·) = ψ3(x, tm) ⇒ (IM ⊗ tbT−1
N )P−1um = Ψ3 (32)

u(x, L2, tm) =
N−1

∑
n=0

cm
n T∗n (L2) := ttT−1

N um(x, ·) = ψ4(x, tm) ⇒ (IM ⊗ ttT−1
N )P−1um = Ψ4 (33)
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where IM and IN are, respectively, the M × M and N × N identity matrices, T−1
M and T−1

N are,
respectively, the M×M and N × N matrices defined in Lemma 1, P is defined in (6), and the other
parameters are

tr = [1, 1, 1, ..., 1M−1],

tt = [1, 1, 1, ..., 1N−1],

tl = [1,−1, 1, ..., (−1)M−1],

tb = [1,−1, 1, ..., (−1)N−1],

Ψi = [ψi(y1, tm), ψi(y2, tm), ψi(y3, tm), ..., ψi(yN , tm)]> for i ∈ {1, 2},

Ψj = [ψj(x1, tm), ψj(x2, tm), ψj(x3, tm), ..., ψj(xM, tm)]> for j ∈ {3, 4}.

Finally, we can construct the system of iterative linear equations from Equations (29)–(33) for a
total of P + 2(M + N) unknowns, including um, g1, g2, h1 and h2, as follows,

K XΦy Φy YΦx Φx

IN ⊗ tlT
−1
M 0 0 · · · 0

IN ⊗ trT−1
M 0 0 · · · 0

(IM ⊗ tbT−1
N )P−1 ...

...
. . .

...
(IM ⊗ ttT−1

N )P−1 0 0 · · · 0




um

g1

g2

h1

h2

 =


A2

xA2
y(fm + w0um−1)− s

Ψ1

Ψ2

Ψ3

Ψ4

 . (34)

Thus, the approximate solutions um can be reached by solving (34) in conjunction with the
initial condition (23), that is, u0 = [φ(x1, y1), φ(x2, y2), ..., φ(xP, yP)]

>, where for all (xi, yi) ∈ x× y.
Therefore, an arbitrary solution u(x, y, t) at any fixed time t can be estimated from

u(x, y, t) = tyT−1
N (IN ⊗ txT−1

M )um,

where tx = [T∗0 (x), T∗1 (x), T∗2 (x), ..., T∗M−1(x)] and ty = [T∗0 (y), T∗1 (y), T∗2 (y), ..., T∗N−1(y)].

Example 3. Consider the 2D time-fractional Burgers’ Equation (22) for (x, y) ∈ Ω = (0, 1)× (0, 1) and
t ∈ (0, 1] with the forcing term

f (x, y, t) = (x2 − x)(y2 − y)
[

2t1−α

Γ(2− α)
+ t2(x + y− 1)(2xy− x− y)

]
− 2νt(x2 + y2 − x− y),

subject to the both homogeneous of initial and boundary conditions. The analytical solution of this problem is
u∗(x, y, t) = t(x2− x)(y2− y). For the numerical test, we pick ν = 100, α = 0.5, ∆t = 0.01, and M = N = 10.
In Table 8, the solutions approximated by our FIM-SCP Algorithm 2 are presented in the space domain Ω for
various times t. We test the accuracy of our method by measuring it with the absolute error Ea. In addition,
we seek the rates of convergence via `∞ norm of our Algorithm 2 with the nodal points M = N = 10 and
different step sizes ∆t = 2−k for k ∈ {4, 5, 6, 7, 8}, we found that these convergence rates approach to the
linear convergence O(∆t) as shown in Table 9 together with the CPU times(s). Also, the graphically numerical
solutions are provided in Figure 4.

Table 8. Exact and numerical solutions of Example 3 for α = 0.5, M = N = 10 and ∆t = 0.01.

(x, y) t = 0.25 t = 0.50 t = 0.75 t = 1.00

u(x, y, t) Ea u(x, y, t) Ea u(x, y, t) Ea u(x, y, t) Ea

(0.2,0.2) 0.00641 6.73× 10−6 0.0128 9.52× 10−6 0.0192 1.17× 10−5 0.0256 1.35× 10−5

(0.4,0.4) 0.01442 1.70× 10−5 0.0288 2.41× 10−5 0.0432 2.95× 10−5 0.0576 3.41× 10−5

(0.7,0.7) 0.01104 1.25× 10−5 0.0221 1.77× 10−5 0.0331 2.16× 10−5 0.0441 2.50× 10−5

(0.9,0.9) 0.00203 1.90× 10−6 0.0041 2.68× 10−6 0.0061 3.28× 10−6 0.0081 3.79× 10−6
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Algorithm 2 The numerical algorithm for solving two-dimensional time-fractional Burgers’ equation

Input: α, ν, x, y, T, M, L1, L2, ∆t, φ(x, y), ψ1(y, t), ψ2(y, t), ψ3(x, t), ψ4(x, t) and f (x, y, t).
Output: An approximate solution u(x, y, T).

1: Set xk =
L1
2
[

cos
( 2k−1

2M π
)
+ 1
]

for k ∈ {1, 2, 3, ..., M}.
2: Set ys =

L2
2
[

cos
( 2k−1

2N π
)
+ 1
]

for s ∈ {1, 2, 3, ..., N}.
3: Compute X, Y, P, tx, ty, tl , tr, tb, tt, IM, IN , TM, TN , T−1

M , T−1
N , Ax, Ay and u0.

4: Calculate the total number of grid points P = M× N.

5: Construct xi and yi in the global numbering system for i ∈ {1, 2, 3, ..., P}.
6: Set t0 = 0 and m = 0.

7: while tm ≤ T do
8: Set m = m + 1.

9: Set tm = m∆t.
10: Set s = 0.

11: for j = 1 to m− 1 do
12: Compute wj =

(∆t)−α

Γ(2−α)
[(j + 1)1−α − j1−α].

13: Compute s = s + wjA2
xA2

y(um−j − um−j−1).

14: end for
15: Compute K, Ψ1, Ψ2, Ψ3, Ψ4 and fm.

16: Find um by solving the iterative linear system (34).

17: end while
18: return u(x, y, T) = tyT−1

N (IN ⊗ txT−1
M )um.

Table 9. Time convergence rates and CPU time(s) for Example 3 by FIM-SCP with M = N = 10.

∆t α = 0.1 α = 0.5 α = 0.9

‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s)

2−4 3.69× 10−3 0.99950 0.9472 3.68× 10−3 0.99969 0.9694 3.68× 10−3 0.99994 0.9947
2−5 1.83× 10−3 0.99950 1.3985 1.82× 10−3 0.99969 1.5196 1.83× 10−3 0.99994 1.6522
2−6 8.97× 10−4 0.99949 3.7041 8.94× 10−4 0.99969 4.0292 8.96× 10−4 0.99994 4.4597
2−7 4.32× 10−4 0.99947 13.718 4.29× 10−4 0.99968 12.710 4.32× 10−4 0.99994 12.606
2−8 2.00× 10−4 0.99943 39.703 1.97× 10−4 0.99965 43.573 1.99× 10−4 0.99994 40.684

(a) u(x, y, t) at different times t (b) Surface plot of u(x, y, 1)

Figure 4. The graphical solutions of Example 3 for ν = 100, M = N = 15, and ∆t = 0.01..
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Example 4. Consider the 2D Burgers’ Equation (22) for x ∈ Ω = (0, 1)× (0, 1) and t ∈ (0, 1] with the
homogeneous initial condition and the forcing term

f (x, y, t) =
6t3−α(1− x2)2(1− y2)2

Γ(4− α)
+ 4t6(1− x2)3(1− y2)3(x2y + xy2 − x− y)

−0.4t3
[
(y2 − 1)2(3x2 − 1) + (x2 − 1)2(3y2 − 1)

]
,

subject to the boundary conditions corresponding to the analytical solution given by Cao et al. [14] is u∗(x, y, t) =
t3(1− x2)2(1− y2)2. By picking the parameters ν = 0.1, α = 0.5, and M = N = 10, the comparison of error
norm L2 between our FIM-SCP via Algorithm 2 and the discontinuous Galerkin method combined with finite
different scheme (DGM-FDS) presented by Cao et al. [14] are displayed in Table 10 at time t = 0.1. We can see
that our method gives a higher accuracy than the DGM-FDS at the same step size ∆t. Next, we provide the CPU
times(s) and time convergence rates based on `∞ norm of our algorithm for this problem in Table 11. Then, we
see that they converge to the linear rate O(∆t). Finally, the graphical solutions of this Example 4 are provided in
Figure 5.

Table 10. Error norms L2 between DGM-FDS and FIM-SCP of Example 4 for M = N = 10.

∆t α = 0.7 α = 0.8 α = 0.9

DGM-FDS [14] Algorithm 2 DGM-FDS [14] Algorithm 2 DGM-FDS [14] Algorithm 2

0.0001 1.46× 10−4 3.0477× 10−7 1.46× 10−4 7.2386× 10−7 1.48× 10−4 1.6700× 10−6

0.00005 7.83× 10−5 1.2387× 10−7 7.76× 10−5 3.1525× 10−7 7.79× 10−5 7.7930× 10−7

0.000025 4.28× 10−5 5.0314× 10−8 4.23× 10−5 1.3726× 10−7 3.97× 10−5 3.6361× 10−7

Table 11. Time convergence rates and CPU time(s) for Example 4 by FIM-SCP with M = N = 10.

∆t α = 0.1 α = 0.5 α = 0.9

‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s)

2−4 1.76× 10−4 1.1426 0.9535 1.76× 10−4 1.1426 1.0627 1.75× 10−4 1.1428 1.0036
2−5 9.08× 10−5 1.0666 2.0538 9.08× 10−5 1.0666 1.7050 9.06× 10−5 1.0667 1.6107
2−6 4.61× 10−5 1.0323 4.3500 4.61× 10−5 1.0323 4.5234 4.60× 10−5 1.0323 3.9589
2−7 2.33× 10−5 1.0159 12.655 2.32× 10−5 1.0159 12.406 2.32× 10−5 1.0159 11.924
2−8 1.67× 10−5 1.0079 42.025 1.17× 10−5 1.0079 39.778 1.16× 10−5 1.0079 41.899

(a) u(x, y, t) at different times t (b) Surface plot of u(x, y, 1)

Figure 5. The graphical solutions of Example 4 for ν = 0.1, M = N = 15, and ∆t = 0.01.



Mathematics 2019, 7, 1201 18 of 24

4.3. Algorithm for Time-Fractional Coupled Burgers’ Equation

Consider the following coupled Burgers’ equation with fractional time derivative for α ∈ (0, 1]

∂αu
∂tα

=
∂2u
∂x2 + 2u

∂u
∂x
− ∂(uv)

∂x
+ f (x, t), x ∈ (0, L), t ∈ (0, T]

∂βv
∂tβ

=
∂2v
∂x2 + 2v

∂v
∂x
− ∂(uv)

∂x
+ g(x, t), x ∈ (0, L), t ∈ (0, T]

(35)

subject to the initial conditions
u(x, 0) = φ1(x), x ∈ [0, L],

v(x, 0) = φ2(x), x ∈ [0, L],
(36)

and the boundary conditions

u(0, t) = ψ1(t), u(L, t) = ψ2(t), t ∈ (0, T],

v(0, t) = ψ3(t), v(L, t) = ψ4(t), t ∈ (0, T],
(37)

where f (x, t), g(x, t), φ1 (x) , φ2 (x), ϕ1 (t), ϕ2 (t) , ϕ3 (t) , and ϕ4 (t) are the given functions.
The procedure of using our FIM for solving u and v are similar, we only discuss here the details
in finding the approximate solution u.

We begin with linearizing the system (35) by taking the an iteration of time tm = m(∆t) for m ∈ N,
where ∆t is a time step. We obtain

∂αu
∂tα

∣∣∣
t=tm

=
∂2um

∂x2 + 2um−1 ∂um

∂x
− ∂(vm−1um)

∂x
+ f (x, tm),

∂βv
∂tβ

∣∣∣
t=tm

=
∂2vm

∂x2 + 2vm−1 ∂vm

∂x
− ∂(um−1vm)

∂x
+ g(x, tm),

where um = u(x, tm) and vm = v(x, tm) are numerical solutions of u and v in the mth iteration,
respectively. Next, let us consider the fractional time derivative for α ∈ (0, 1] in the Caputo sense by
using the same procedure as in (12), by taking the double layer integration on both sides, we obtain

m−1

∑
j=0

wα
j

∫ xk

0

∫ η

0
(um−j − um−j−1)dξdη = um(xk) + 2

∫ xk

0

∫ η

0

(
um−1 ∂um

∂ξ

)
dξdη

−
∫ xk

0
(vm−1um)dη +

∫ xk

0

∫ η

0
f (ξ, tm)dξdη + d1xk + d2, (38)

m−1

∑
j=0

wβ
j

∫ xk

0

∫ η

0
(vm−j − vm−j−1)dξdη = vm(xk) + 2

∫ xk

0

∫ η

0

(
vm−1 ∂vm

∂ξ

)
dξdη

−
∫ xk

0
(um−1vm)dη +

∫ xk

0

∫ η

0
g(ξ, tm)dξdη + d3xk + d4, (39)

where wγ
j = (∆t)−γ

Γ(2−γ)

[
(j + 1)1−γ − j1−γ

]
for γ ∈ {α, β}, and d1, d2, d3, and d4 are arbitrary constants of

integration. For the nonlinear terms in (38) and (39), by using the same process as in (15), we let

q1(xk) :=
∫ xk

0

∫ η

0

(
um−1 ∂um

∂ξ

)
dξdη =

∫ xk

0
um−1umdη −

∫ xk

0

∫ η

0
T′(ξ)T−1um−1umdξdη,

q2(xk) :=
∫ xk

0

∫ η

0

(
vm−1 ∂vm

∂ξ

)
dξdη =

∫ xk

0
vm−1vmdη −

∫ xk

0

∫ η

0
T′(ξ)T−1vm−1vmdξdη.
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For computational convenience, we express q1(xk) and q2(xk) into matrix forms as

q1 = Adiag(um−1)um −A2diag(T′T−1um−1)um := Q1um, (40)

q2 = Adiag(vm−1)vm −A2diag(T′T−1vm−1)vm := Q2vm, (41)

where T′ is defined in (17) and other parameters obtained on (40) and (41) are

Q1 = Adiag(um−1)−A2diag(T′T−1um−1),

Q2 = Adiag(vm−1)−A2diag(T′T−1vm−1),

um = [u(x1, tm), u(x2, tm), u(x3, tm), ..., u(xM, tm)]>,

vm = [v(x1, tm), v(x2, tm), v(x3, tm), ..., v(xM, tm)]>,

qi = [qi(x1), qi(x2), qi(x3), ..., qi(xM)]> for i ∈ {1, 2}.

Consequently, using (40), (41), and the procedure in Section 3.1, we can convert both (38) and (39)
into the matrix forms as

m−1

∑
j=0

wα
j A2(um−j − um−j−1) = um + 2Q1um −Adiag(vm−1)um + A2fm + d1x + d2i,

m−1

∑
j=0

wβ
j A2(vm−j − vm−j−1) = vm + 2Q2vm −Adiag(um−1)vm + A2gm + d3x + d4i.

Rearranging the above system yields[
I + 2Q1 −Adiag(vm−1)− wα

0A2
]
um + d1x + d2i = s1 − wα

0A2um−1 −A2fm, (42)[
I + 2Q2 −Adiag(um−1)− wβ

0 A2
]
vm + d3x + d4i = s2 − wβ

0 A2vm−1 −A2gm, (43)

where I is the M×M identity matrix and other parameters are defined by

s1 = ∑m−1
j=1 wα

j A2(um−j − um−j−1),

s2 = ∑m−1
j=1 wβ

j A2(vm−j − vm−j−1),

fm = [ f (x1, tm), f (x2, tm), f (x3, tm), ..., f (xM, tm)]>,

gm = [g(x1, tm), g(x2, tm), g(x3, tm), ..., g(xM, tm)]>.

The boundary conditions (37) are transformed into the vector forms by using the same process as
in (19) and (20), that is,

tlT
−1um = ψ1(tm) and trT−1um = ψ2(tm), (44)

tlT
−1vm = ψ3(tm) and trT−1vm = ψ4(tm), (45)

where tl = [1,−1, 1, ..., (−1)M−1] and tr = [1, 1, 1, ..., 1]. Finally, starting from the initial guesses

u0 = [φ1(x1), φ1(x2), φ1(x3), ..., φ1(xM)]> and v0 = [φ2(x1), φ2(x2), φ2(x3), ..., φ2(xM)]>,

we can construct the system of the mth iterative linear equations for finding numerical solutions.
The approximate solutions of u can be obtained from (42) and (44) while the approximate solutions of
v can be reached by using (43) and (45): I + 2Q1 −Adiag(vm−1)− wα

0A2 x i
tlT−1 0 0
trT−1 0 0


 um

d1

d2

 =

 s1 − wα
0A2um−1 −A2fm

ψ1(tm)

ψ2(tm)

 , (46)
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and  I + 2Q2 −Adiag(um−1)− wβ
0 A2 x i

tlT−1 0 0
trT−1 0 0


 vm

d3

d4

 =

 s2 − wβ
0 A2vm−1 −A2gm

ψ3(tm)

ψ4(tm)

 . (47)

For any fixed t, the approximate solutions of u(x, t) and v(x, t) on the space domain
can be obtained by computing u(x, t) = txT−1um and v(x, t) = txT−1vm, where tx =

[T∗0 (x), T∗1 (x), T∗2 (x), ..., T∗M−1(x)].

Example 5. Consider the time-fractional coupled Burgers’ Equation (35) for x ∈ (0, 1) and t ∈ (0, 1] with the
forcing terms

f (x, t) =
6xt3−α

Γ(4− α)
and g(x, t) =

6xt3−β

Γ(4− β)

subject to the homogeneous initial conditions and the boundary conditions corresponding to the analytical
solution given by Albuohimad and Adibi [25] is u∗(x, t) = v∗(x, t) = xt3. For the numerical test, we choose
the kinematic viscosity ν = 1, α = β = 0.5 and M = 40. Table 12 presents the exact solution u∗(x, 1) and the
numerical solutions u(x, 1) together with v(x, 1) by using our FIM-SCP through Algorithm 3. The accuracy is
measured by the absolute error Ea. Table 13 displays the comparison of the error norms L∞ of our approximate
solutions and the approximate solutions obtained by using the collocation method with FDM (CM-FDM)
introduced by Albuohimad and Adibi in [25]. As can be seen from Table 13, our FIM-SCP Algorithm 3 is
more accurate. Next, the time convergence rates based on `∞ and CPU times(s) of this problem that solved by
Algorithm 3 are demonstrated in Table 14. Since the approximate solutions u and v are the same, we only present
the graphical solution of u in Figure 6.

Algorithm 3 The numerical algorithm for solving 1D time-fractional coupled Burgers’ equation

Input: α, β, x, L, T, M, ∆t, φ1(x), φ2(x), ψ1(t), ψ2(t), ψ3(t), ψ4(t), f (x, t) and g(x, t).
Output: The approximate solutions u(x, T) and v(x, T).

1: Set xk =
L
2
[

cos
( 2k−1

2M π
)
+ 1
]

for k ∈ {1, 2, 3, ..., M}.
2: Compute x, i, tl , tr, tx, A, I, T, T′, T, T−1, u0 and v0.

3: Set t0 = 0 and m = 0.

4: while tm ≤ T do
5: Set m = m + 1.

6: Set tm = m∆t.
7: Set s1 = 0 and s2 = 0.

8: for j = 1 to m− 1 do
9: Compute wα

j = (∆t)−α

Γ(2−α)
[(j + 1)1−α − j1−α].

10: Compute wβ
j = (∆t)−β

Γ(2−β)
[(j + 1)1−β − j1−β].

11: Compute s1 = s1 + wα
j A2(um−j − um−j−1).

12: Compute s2 = s2 + wβ
j A2(vm−j − vm−j−1).

13: end for
14: Calculate Q1, Q2, fm and gm.

15: Find um by solving the iterative linear system (46).

16: Find vm by solving the iterative linear system (47).

17: end while
18: return u(x, T) = tx(T∗)−1um and v(x, T) = tx(T∗)−1vm.
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Table 12. Comparison of exact and numerical solutions of Example 5 for α = β = 0.5, M = 40.

∆t x u∗(x, 1) u(x, 1) Ea(u) v(x, 1) Ea(v)

0.005 0.2 0.2 0.200014 1.3637× 10−5 0.200014 1.3637× 10−5

0.4 0.4 0.400024 2.4030× 10−5 0.400024 2.4030× 10−5

0.6 0.6 0.600028 2.7782× 10−5 0.600028 2.7782× 10−5

0.001 0.2 0.2 0.200001 1.2398× 10−6 0.200001 1.2398× 10−6

0.4 0.4 0.400002 2.1845× 10−6 0.400002 2.1845× 10−6

0.6 0.6 0.600003 2.5250× 10−6 0.600003 2.5250× 10−6

0.0005 0.2 0.2 0.200000 4.4002× 10−7 0.200000 4.4002× 10−7

0.4 0.4 0.400001 7.7529× 10−7 0.400001 7.7529× 10−7

0.6 0.6 0.600001 8.9611× 10−7 0.600001 8.9611× 10−7

Table 13. Comparison of error norms L∞ of Example 5 for α = β = 0.5, M = 5 and t = 1.

∆t CM-FDM [25] FIM-SCP Algorithm 3

L∞(u) L∞(v) L∞(u) L∞(v)

0.03125 3.96243489× 10−4 3.96243489× 10−4 2.0275× 10−4 2.0275× 10−4

0.015625 1.46199451× 10−4 1.46199451× 10−4 7.3260× 10−5 7.3260× 10−5

0.0078125 5.30198057× 10−5 5.30198057× 10−5 2.6297× 10−5 2.6297× 10−5

0.00390625 1.90424033× 10−5 1.90424033× 10−5 9.3967× 10−6 9.3967× 10−6

0.001953125 6.80038150× 10−6 6.80038150× 10−6 3.3472× 10−6 3.3472× 10−6

Table 14. Time convergence rates and CPU time(s) for Example 5 by FIM-SCP with M = 20.

∆t α = β = 0.1 α = β = 0.5 α = β = 0.9

‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s)
2−4 1.41× 10−3 1.1426 0.3901 1.41× 10−3 1.1426 0.4008 1.40× 10−3 1.1427 0.4801
2−5 7.26× 10−4 1.0666 0.4064 7.26× 10−4 1.0666 0.4292 7.25× 10−4 1.0667 0.4895
2−6 3.69× 10−4 1.0323 0.8505 3.69× 10−4 1.0323 0.9028 3.68× 10−4 1.0323 0.8715
2−7 1.86× 10−4 1.0159 2.5623 1.86× 10−4 1.0159 2.4748 1.86× 10−4 1.0159 2.7062
2−8 9.32× 10−5 1.0079 8.8157 9.32× 10−5 1.0079 8.2575 9.32× 10−5 1.0079 8.4962

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 6. The graphical solutions of Example 5 for α = β = 0.5, M = 40, and ∆t = 0.001.

Example 6. Consider the time-fractional coupled Burgers’ Equation (35) for x ∈ (0, 1) and t ∈ (0, 1] with the
forcing terms

f (x, t) =
[

Γ(4)t−α

Γ(4− α)
+ 1
]

t3sin(x) and g(x, t) =
[

Γ(4)t−β

Γ(4− β)
+ 1
]

t3sin(x)
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subject to the homogeneous initial conditions and the boundary conditions corresponding to the analytical
solution given by Albuohimad and Adibi [25] is u∗(x, t) = v∗(x, t) = t3sin(x). For the numerical test, we
choose the viscosity ν = 1, α = β = 0.5 and M = 5. Table 15 provides the comparison of error norms L∞

between our FIM-SCP and the CM-FDM in [25] for various values of ∆t and M, it show that our method is
more accurate. Moreover, Table 16 illustrates the rates of convergence and CPU times(s) for M = 20. Figure 7a,b
show the numerical solutions u(x, t) at different times t and the surface plot of u(x, t), respectively. Note that
we only show the graphical solution of u(x, t) since the approximate solutions u(x, t) and v(x, t) are the same.

Table 15. Comparison of error norms L∞ between CM-FDM and FIM-SCP for Example 6.

M ∆t
CM-FDM [25] FIM-SCP Algorithm 3

L∞(u) L∞(v) L∞(u) L∞(v)

5 1/4 2.38860019× 10−3 2.38860019× 10−3 1.3600× 10−3 1.3600× 10−3

5 1/16 3.68124891× 10−4 3.68124891× 10−4 1.5995× 10−4 1.5995× 10−4

5 1/32 1.33717524× 10−4 1.33717524× 10−4 5.3813× 10−5 5.3813× 10−5

3 1/128 2.16075055× 10−3 2.16075055× 10−3 2.7726× 10−3 2.7726× 10−3

4 1/128 1.41457658× 10−4 1.41457658× 10−4 1.6397× 10−4 1.6397× 10−4

5 1/128 4.69272546× 10−5 4.69272546× 10−5 1.7565× 10−5 1.7565× 10−5

Table 16. Time convergence rates and CPU time(s) for Example 6 by FIM-SCP with M = 20.

∆t
α = β = 0.1 α = β = 0.5 α = β = 0.9

‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s) ‖u∗− u‖∞ Rate Time(s)

2−4 1.18× 10−3 1.1427 0.4041 1.18× 10−3 1.1427 0.3873 1.18× 10−3 1.1427 0.3982

2−5 6.11× 10−4 1.0667 0.4902 6.11× 10−4 1.0667 0.4468 6.11× 10−4 1.0667 0.4245

2−6 3.11× 10−4 1.0323 0.8941 3.11× 10−4 1.0323 0.8829 3.11× 10−4 1.0323 0.8873

2−7 1.57× 10−4 1.0159 2.5981 1.57× 10−4 1.0159 2.6828 1.57× 10−4 1.0159 2.4627

2−8 7.91× 10−5 1.0079 7.9922 7.91× 10−5 1.0079 8.3994 7.90× 10−5 1.0079 8.2681

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 7. The graphical results of Example 6 for α = β = 0.5, M = 40 and ∆t = 0.001.

5. Conclusions and Discussion

In this paper, we applied our improved FIM-SCP to develop the decent and accurate
numerical algorithms for finding the approximate solutions of time-fractional Burgers’ equations
both in one- and two-dimensional spatial domains and time-fractional coupled Burgers’ equations.
Their fractional-order derivatives with respect to time were described in the Caputo sense and
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estimated by forward difference quotient. According to Example 1, even though, we obtain similar
accuracy, however, it can be seen that our method does not require the solution to be separable among
the spatial and temporal variables. For Example 2, the results confirm that even with nonlinear FDEs,
the FIM-SCP provides better accuracy than FDM. For two dimensions, Example 4 shows that even
with the small kinematic viscosity ν, our method can deal with a shock wave solution, which is not
globally continuously differentiable as that of the classical Burgers’ equation under the same effect of
small kinematic viscosity ν. We can also see from Examples 5 and 6 that our proposed method can be
extended to solve the time-fractional Burgers’ equation and we expect that it will also credibly work
with other system of time-fractional nonlinear equation. We notice that our method provides better
accuracy even when we use a small number of nodal points. Evidently, when we decrease the time
step, it furnishes more accurate results. Also, we illustrated the time convergence rate of our method
based on `∞ norm, we observe that it approaches to the linear convergence O(∆t). Finally, we show the
computational cost in terms of CPU time(s) for each example. An interesting direction for our future
work is to extend our technique to solve space-fractional Burgers’ equations and other nonlinear FDEs.
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Abbreviations

The following abbreviations are used in this manuscript.

CM-FDM collocation method with finite difference method
DGM-FDS discontinuous Galerkin method with finite different scheme
EPM-CHT expansion method with Cole–Hopf transformation
FDE fractional differential equation
FDM finite difference method
FIM finite integration method
FIM-SCP finite integration method with shifted Chebyshev polynomial
PDE partial differential equation
QBS-FEM quadratic B-spline finite element Galerkin method
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