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1. Introduction

The theory of g-analysis has an important role in many areas of mathematics and physics.
Jackson [1,2] was the first that gave some application of g-calculus and introduced the g-analog
of derivative and integral operator (see also [3]). Let 7 (U) denote the class of analytic functions in
the open unit disk U := {z € C: |z| < 1}, and H[a, m] denote the subclass of functions f € H(U) of
the form

f(z)=a+anz" +apz" ..., z€0,

witha € Candm € N:={1,2,... }.
In addition, let A(m) denote the subclass of functions f € H(U) of the form

flz)=z+ Z nZk, zeU, (1)
k=m+1

withm € N, and let A := A(1).
We define the integral operator K7, ,,, : A(m) — A(m), witha > 0and n > 0, as follows:

]C(V)z,mf = f'
and .
Kanf ()= GEDE [0 10g )" sy,
0
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where all the powers are the principal ones, and log1 = 0.
If f € A(m) has the power expansion of the form in Equation (1), it can be easily verified that

Komf(z _Z+k§+1<n+k> azt, z € UL

For 0 < q < 1, the g-derivative of the operator K3, ,, is defined by

Kmf(qz) — Kiyuf (2)

(4 "—_
9Ky f (2) := 2= 1) ,z€0,
that is
[ee] (e} 4
dg |z+ Z (n+l> akzk] =1+ Z (n—i—]lc) [k,q]akzk_l, z €T, 2)
k=m+1 k=m+1 n+
where
k=1
[k, q] =1+).4, [04g=0
i=1

It is easily to verify from Equation (2) that

204KCh 1 f(2) = 2+ (n ) [k, qlaxz", z € U.
" k%—i—l ntk

For any non negative integer k, the g-number shift factorial is given by

kgl = 1, if k=0
' (L,9][2,9)3,q]...[kq], if kKEN,

while the g-generalized Pochhammer symbol for » > 0 is defined by

[7’ } _ 1/ lf k:0,
Ml = r,q]lr+1,q]...[r+k—1,q], if keN

For A > —1, we define the operator N,f‘,’,ﬁ,q : A(m) — A(m) by

Nomaf (2) x Mopia(2) = 20,K5 . (2),

where

o A+ Lgler x
Mq/\+1 —Z+k2 fq]Z,ZEU.
m+1

From the above definition, we obtain

. > (n+1\" kq]k—1,q)
Nrf\mqf =z+ Z <n+k) [)L+1 Q}kl kZ

ad Tl+1> k

=z+ az, z€ U, 3)

k§+1 )\+1 Q}k 1 <n+k
(>0, A>-1,m>0,0<g<1)

and from Equation (3) we can easily verify that

A+ 1LgINam o f (2) = A g Nais F (2) + 9720, N 0 £ (2), 2 € U
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We note that

o k! n+1\"
lim N £(z) = TMF(z) = z + E ( ) mZr, z € U. 4
q*)lf n,m,q ( ) n,m ( ) Pl (/\ 1)k71 n k k ( )

Definition 1. For f,g € H(U), we say that f is subordinate to g, written f(z) < g(z), if there exists
a Schwarz function w, which is analytic in U, with w(0) = 0 and |w(z)| < 1 for all z € U, such that
f(z) = g(w(z)), z € U. Furthermore, if the function g is univalent in U, then we have the following equivalence
(see [4,5]):

f(z) < ¢(z) & f(0) = (0) and f(U) C g(U).

Letk,h € H(U),and let ¢(r,s;z) : C> x U — C.
(i) If k satisfies the first order differential subordination

¢(k(z),2K (2);2) < h(z), ©)

then k is said to be a solution of the differential subordination in Equation (5). The function g is called a
dominant of the solutions of the differential subordination in Equation (5) if k(z) < g(z) for all the functions
k satisfying Equation (5). A dominant 4 is said to be the best dominant of Equation (5) if §(z) < q(z) for
all the dominants g.

(ii) If k satisfies the first order differential superordination

h(z) < (k(z),2k'(2); 2), (6)

then k is called to be a solution of the differential superordination in Equation (6). The function g is called
a subordinant of the solutions of the differential superordination in Equation (6) if q(z) < k(z) for all the
functions k satisfying Equation (6). A subordinant g is said to be the best subordinant of Equation (6) if
q(z) < q(z) for all the subordinants 4.
Miller and Mocanu [6] obtained conditions on the functions k, g and ¢ for which the following
implication holds:
h(z) < @(k(z),2zK (z);z) = q(z) < k(z).

Applying these methods, in [7,8], the author studied general classes of first order differential
superordinations and superordination-preserving integral operators. Using the results of Bulboacd [4]
(see also [9,10]), the authors of [11] obtained sufficient conditions for functions f € A to satisfy the
double subordination

zf'(2)

71(z) < ) < q2(2),

where g1 and g are univalent functions in U, normalized with g1 (0) = g2(0) = 1.
Sakaguchi [12] introduced a class S} of functions starlike with respect to symmetric points, which
consists of functions f € A satisfying the inequality

2f'(2)
Rt - f(—2)

that represents a subclass of close-to-convex functions, and hence univalent in U. Moreover, this class
includes the class of convex functions and odd starlike functions with respect to the origin (see [12,13]).

In addition, Aouf et al. [14] introduced and studied the class S;,, T(1,1) of functions n-starlike with
respect to symmetric points, which consists of functions f € A, with 4, < 0 for k > 2, and satisfying the
inequality

>0,z€e0,

D”“f(z)

Re D f(z) — D f(—2)

>0,z€0,
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where D" is the Siligean operator [15].
The classes defined in [12,13] could be generalized by introducing the next class of functions,
defined with the aid of the J\/’,{‘n”iq operator defined as follows:

Definition 2. A function f € A(m) with
Nomaf (2) =N af(—2) #0, z e U=U\ {0}, )

is said to be in the class M;,\,"ﬁl v, 1, A, B) if it satisfies the subordination condition
g\t 1

H
1 2z
( * 7) (N'%r%ﬂf(z)_Nr{‘r%qf(—Z)>

. (z(Mﬁ;ﬁ,qﬂa)’—z(w,;ﬁ,m—z))’) ( 2 >P‘ L1 ®

Nomaf @) =N af(—2) Nomaf @) =N f(—2) 14+Bz’
(vyeC,0<u<1l -1<B<A<1l,meN a>0n>0,0<g<1 A>-1).

By specializing the parameters a, A and g, we obtain the following subclasses:
(i) For ¢ — 1~, we define the class W,Q\ m (77, 1, A, B) as follows:

"
A . . 2z
Wi B {f s (Imm Iﬁ,’%f(@)
N (L?,’,%’if(z))/ —z (Iﬁ,’ﬁqf(—Z))/ 2z ! PRERIE
"N s - T (-2 Tinfz)-Tiaf(—z)) 1+Bz

where the operator Ifz‘,’fl is defined by Equation (4);
(ii) Forg — 17, « = 0 and A = 1, we define the class N7 (m, A, B) that corrects the class defined
by Muhammad and Marwan [16] as follows:

N7V (m, A,B) := {f € A(m) : (1+17) <f(z)_22f(_z))y

(f () f(-2)) < 22 )u RS
_/)/ .
f(z) = f(=2) f(z) = f(=2) 1+ Bz
In this paper, we obtain some sharp differential subordination and superordination results for
the functions belonging to the class Mﬁﬁrq (7,1, A, B) to try to make a connection between a special

subclass of analytic functions whose coefficients are given by the g-analog of integral operator and the
differential subordination theory.

2. Preliminaries

To prove our results, we need the following definition and lemmas.

Definition 3 ([5]). (Definition 2.2b., p. 21) Let Q be the set of all functions f that are analytic and injective on
U\ E(f), where E(f) := {é € dU: lin}f(z) = oo} and are such that f'() # 0 for { € oU \ E(f).
Z—

Lemma 1 ([5]). (Theorem 3.1b., p. 71) Let the function H be convex in U, with H(0) = a, and { # 0 with

Rel > 0. If ® € H[a, m] and

z®'(z)
4

D(z) + < H(z), 9)
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then

®(z) < ¥(z) := §£ /t%lH(t)dt < H(z),
mzin g

and the function ¥ is convex, ¥ € H[a, m|, and is the best dominant of Equation (9).

Lemma 2 ([17]). (Lemma 2.2., p. 3) Let q be univalent in U, with q(0) = 1. Let {,¢ € C with ¢ # 0,

and assume that "
Re (1+ Zq/ (Z)> > max{O;ReC}, z e U.
q(z) ¢

If k is analytic in U and
Sk(z) + @2k (z) < 8q(2) + 92q'(2), (10)

then k(z) < q(z), and q is the best dominant of Equation (10).
From [6] (Theorem 6, p. 820), we could easily obtain the following lemma:

Lemma 3. Let q be convex in U, and k # 0 with Rek > 0. If g € H[q(0),1] N Q, such that g(z) + kzg'(z) is
univalent in U, then

9(2) +kzq'(z) < 8(2) + kzg'(2), (11)
implies that q(z) < g(z), and q is the best subordinant of Equation (11).
Lemma 4 ([18]). Let F be analytic and convex in U, and 0 < A < 1. If f, ¢ € A, such that f(z) < F(z) and

g(z) < F(z), then
Af(z) + (1 —A)g(z) < F(z).

3. Main Results

Unless otherwise mentioned, we assume in the remainder of this paper thaty € C,0 < pu <1,
-1<B<A<1lmeNa>0,n>0,0<g<1,A> -1, and all the powers are understood as
principle values.

Theorem 1. If f € Mﬁj%,q('y, #,A,B)and v € C* := C\ {0} withRey > 0, then

u 1
; 2z . < ¥(2) ::L 1+Azuuv}7171du<1+Az,
Niaf @) = Nifaf (=2) m ) T+ Bau 1+ Bz
and ¥ is convex, ¥ € H[1,m], and is the best dominant.
Proof. If we define the function & by
M
2
h(z) ;—( - SR ) ,z€U, (12)
Nn,'m,qf(z) - Nn,’m,qf(_z)

from Equation (7), it follows that / is an analytic function in U, with #(0) = 1. Differentiating
Equation (12) with respect to z, we obtain that
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H
1 2z
( +/'V) (Nésﬁ/qf(Z)N»ﬁsﬁ/qf(ZJ
[ 2(Wihar@) (Vi) < 22 )” (13)
T TN N () N F )N F(—2)

= h(z) + %zh’(z) < ez

Since

N,ﬁ',;‘;,qf(z):z+ Z ockzk, and N,ﬁ;f,‘,qf(—z):—z+ Z ock(—l)kzk,

k=m+1 k=m+1
h

o Ky = [k.q] <n+1)aa k>m+1

T gl \n+k) M '
we have

U(z) == 2z _ 2z B 1
T A, A, - %) - [ ’
Nijmaf(2) = Numaf(=2) 224 v o 14—k 2 14 % pezs
k=m+1 s=m
with
sy [1+ (=1)°]
Bs = > ,82>m
Moreover,
1

(e}
:1+2'y]-z],z€U,

U(z) = ——
1+ ¥ Bz =1
s=m

with unknowns Y j > 1, wehave

1= (1—|—,8mzm+ﬁm+1zm+1 —|—> <1—i—'ylz—l—’yzzz—l—---+’ymzm+'ym+1zm+l +...),
and equating the corresponding coefficients it follows that
m=m2=""="m1=0, Ym=—Bn, Ymr1 = —Pmsi,---,
hence

U(z) =1+ i 'y]-zj € H[1,m].

j=m
According to Equation (12), we have
h=U", with U e H[1,m],
and using the binomial power expansion formula, we get
h=U" € H[1,m].
K

Now, from the subordination in Equation (13), using Lemma 1 for { = ;, we obtain our result. [

Taking g — 17 in Theorem 1, we obtain the following corollary:
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Corollary 1. If f € Wit (v, 1, A, B) and v € C* := C \ {0} with Rey > 0, then

I 1
( _ 22)\“ ) < ¥(2) ::L 1—|—Azu & 1, 1+AZ,
Tomf(z) = Limf(—2) ym ) 1+ Bzu " 1+ Bz

and ¥ is convex, ¥ € H[1,m], and is the best dominant.
Remark 1. The above theorem shows that
M1, A, B) C Moy (0,1, A, B),
forall v € CwithRey > 0.
Moreover, the next inclusion result for the classes Mﬁjﬁw (7,1, A, B) holds:
Theorem 2. If y1, 72 € Rsuchthat 0 < 1 < yp,and —1 < By < By < Ap < Ay <1, then
M (Y2, 1, Az, Ba) € Mok (11,4, A1, Br). (14)

Proof. If f € Mnmq(’)/z, 1, Az, By), since —1 < By < By < Ay < A; <1, itis easy to check that

Pl
(1+172) ( 2
nmq )/_ nmq
— ( nmqf(Z) ﬂif 27 )}4 (15)
? nmqf(z) nmq nmq nmqf( z)

1+A22 1+A]Z
l+BzZ 1+Blz 4

thatis f € ./\/12 mq (71, 1, A1, Br), hence the assertion in Equation (14) holds for v, = 72.
If 0 < 71 < 72, from Remark 1 and Equation (15), it follows f € Mn m,q(0, 1, A1, By), that is

< 2z ) o1t Az 6)
Niiwaf (2) = Niaf(—2) ) 1+ Bz
A simple computation shows that
2z i
1 : :
+m) (Nﬁ,;z,quz)—w,;z,qf(—z))
(= (Nahaf D -Namaf (-2) ( 2 )P‘
T TN O N ) ) \ N f @ N f(2)
(1) (o ) ' (17)
Nnrﬁqf(Z) Nnmqf( z)

H

m 2z
T [(1 T2) (N%f(z)Nm,qf(z)
2 (N af(2)-Nitigf(-2)) ) !
- - v ,zeU.
72( Numaf ()= Niingf (=2) <N;f\,}ﬁ,qf(z)/\ﬁf\,’,ﬁ,qf(z)> z

Moreover,
71

T2

0< <1,
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and the function I+ A4z

, with —1 < By < A; < 1, is analytic and convex in U. According to

1
Equation (17), using the subordinations in Equations (15) and (16), from Lemma 4, we deduce that

(1+%)< o 2 o) )H

Niaf @) — N af (~2)

2 (N af (2) — Nisaf (=2)) 2 y 14 Az
(-2)

-n o o o o 4
Niimaf(z) = Namaf (=2) (N,?,;n,q f(z) = Nom o f (2 1+ Bz

that lsf (S Mé:ﬁ(n,q(’)/l/,u/ Al/Bl)' O

Taking g — 17 in Theorem 2, we obtain the following corollary:
Corollary 2. If v1,7v2 € Rsuchthat 0 < 1 < yp,and —1 < By < By < Ap < Ay <1, then
WT/I\,,;; (’)/2/ ", AZ/ BZ) - W’r)l\,"riél (711 125 Al/ Bl)

Example 1. For the special case Ay = 1 and By = —1, Theorem 2 and Corollary 2 reduce to the next
examples, respectively:

Suppose that y1, v € Rsuchthat 0 < 1 < yp,and =1 < By < Ay <1
1Iffe M%j%,q(’)’b i, Ay, By), then

2z !
Re 1
{(+M<M%JMM%M(@>

2 (Mihaf (2) = N f (=2)) 2 d
A0 A0 A0 A0 > 0’ z€ U;
Nnmqf(z) - Nn,’m,qf(_z) Nn,?n,qf(z) - Nn,sﬂ,qf(_z)

-nN

2.Iff e W:i‘,’%(’)’zl 1, Ay, By), then

2z :

!
2 (Thaf () — Tiaf (—2)) 2 "
A0 A0 A0 A0 > 0’ z€e U;
Lomaf (z) — Liimqf(—2) Timaf (2) — Liimqf(—2)

-1

Theorem 3. Suppose that q is univalent in U, with q(0) = 1, and let oy € C* such that

Re <1+zq/”(z)> > max {0;—Rey}, z e U. (18)
q7(z) v

If f € A(m) such that Equation (7) holds, and satisfies the subordination

1
(1+7) (/\/qu @ /\/qu >
2 (N f(2) Nm Af(-2)) ) a (19)
-Nz\,;ﬁ,qf(z 11 n qf ) Nf;\rﬁ qf Nf;\rﬁ qf( z)

Z
P‘
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then

2z ;4{ (z)
NI Fz) - N () 1

and q is the best dominant of Equation (19).

Proof. Since f € A(m) such that Equation (7) holds, it follows that the function / defined by
Equation (12) is analytic in U, and /(0) = 1. As in the proof of Theorem 1, differentiating Equation (12)
with respect to z, we obtain that Equation (19) is equivalent to

h(z) + %zh'(z) <q(z)+ %zq’(z).

Using Lemma 2 for { := 1 and ¢ := %, we get that the above subordination implies 1(z) < q(z),
and g is the best dominant of Equation (19). O

1+ Az

—, with -1 < B < A < 1, Theorem 3 reduces to the
1+ Bz

For the special case g(z) =

following corollary:

Corollary 3. Let y € C*and —1 < B < A <1, such that

1+Rek 1+Rek
max{ —1;,———F 3 <B<0, or 0<B<min{1l,———F+. (20)
1—Re§ 1—Re%

If f € A(m) such that Equation (7) holds, and satisfies the subordination

1+

) ( 2z >}4
quﬂg)—quﬂ—z)
_, (W -Aiga ) ( 2 >” (21)
Nomaf @ =N af(—2) Novmaf @) =N f(—2)

1+Az 7 (A-B)z
< ToE: T # (14Bz)2’

then

( 2z >V y 1+ Az
N of (2) = N o f (—2) 1+ Bz’

andl Az

e is the best dominant of Equation (21).

1+ Az

Proof. For q(Z) = m

, the condition in Equation (18) reduces to
1—-Bz

Re 2%
e1—i—Bz

>max{0;—Re(P;},z€U (22)

Since 11 B
SO _1<B<0,

inf{RelBZ:zeU}: 1-B
1+ Bz 1-B

1+ B’
we easily check that Equation (22) holds if and only if the assumption in Equation (20) is satisfied,
whenever —1 < B < 1. O

if 0<B<1,

Taking g — 17 in Theorem 3, we obtain the following corollary:
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Corollary 4. Suppose that q is univalent in U, with q(0) = 1, and let v € C* such that

"
Re <1+Zq, (Z)> >max{0;—Rey}, z € U.
q(z) 0

If f € A(m) such that Equation (7) holds, and satisfies the subordination

2z :
e (I BEEzn <z>)
2 (Thnf(2) - Tif(—2)) ( 2
i f(z) — Tymf(—2) Timf(2) = Tumf

M
— (Z)> <4()+ 20 (2),

then
2z

H
(Iﬁ:zﬂz) - Iﬁ;ﬁf(—z)) A

and q is the best dominant of Equation (19).

Theorem 4. Let q be convex in U, with q(0) = 1, and v € C*, with Rey > 0. In addition, let f € A(m)
such that
2z

(N‘rﬁ%,qf (z) - N‘iit'iﬁ,qf

and assume that the function

K
) € H[q(0),1]N Q, (23)
(—2)

H
1 2z
() (N%;%,qu)—w'n%,qf(—z))
—y (Z(N’%f (&) Nik/(-2)) ( 2 )“ (24)
)

Nimaf (@) —Namaf(=2) Nitmaf @) =Nivmof (—2
is univalent in U.

If

!
Vot ~ (1 ’ 2z : )
q(z) + 52q'(z) < (1+ “Y), (N,éaﬁ,qf(Z) T f(—2)
(N f - Aar (-2) ( 2 )”
Y L L. (—z) !

(25)

T T
Nomaf @) =N f

then

M
q(z) < ( = )
Nomaf (2) = Nufnaf (=2)
and q is the best subordinant of Equation (25).

Proof. Letting the function  be defined by Equation (12), then i € #[g(0), m], and from Equation (23)
we have that 1 € H[g(0),1] N Q. As in the proof of Theorem 1, differentiating Equation (12) with
respect to z, we obtain that

q(z) + %zq’(z) < h(z) + %zh’(z).

Now, according to Lemma 3 for k := % we obtain the desired result. [

Taking q(z) = 14 Az

11 B2 with —1 < B < A <1, in Theorem 4, we obtain the following corollary:
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Corollary 5. Let v € C*, withRey > 0,and —1 < B < A < 1. If f € A(m) such that the assumptions in

Equations (23) and (24) hold, and satisfies the subordination

1+ Bz u(1+Bz)?

2 (Nihaf (2) = Niisaf(2)) ( 2 )V o
- w X Q o« 4
N af(2) = Nt o f (=) N of (2) = N o f (—2)

1+ Az v (A—B)z < 2z >”
< (1+7) z 7
Nvivaf(2) = Nitmaf (=2)

then "
L+Az ( 2z )
1+ Bz N,f\,f;qf(z) - Nr%'r%,qf(_z) '

L+ Az is the best subordinant of Equation (26).

d-—_2=
1Bz
Taking g — 17 in Theorem 4, we obtain the following corollary:

Corollary 6. Let g be convex in U, with q(0) = 1, and v € C*, with Rey > 0. In addition, let f € A(m)

such that

2z # 01N o
(Iﬁ,’% (z) — I f( Z)> € H[q(0),1]NQ,

and assume that the function

2z !
S (Iﬁ,asﬁf(z) — I%f(—z))

2z .
) is univalent in U.
(—z)

/
2 (Tamf(2) —Timf(—2))
- Tom

-
Tumf(z) — Timf (—2) <IAm (z)

If
4(z) + L2/ (z) < (1+7)< T 2ZM )V
1z Timf(z) = Timf(—2)
2 (Tf(2) - TiAf(—2)) 2 '
T T Zar) —Thf(—2) (I% (z) — Tnm (—z)) ’

then
(z) - 2z !
7 TAfG) —Taf(—2))

and q is the best subordinant of Equation (25).

Combining Theorems 3 and 4, we obtain the following sandwich-type theorem:
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Theorem 5. Let g1 and qp be two convex functions in U, with g1(0) = q2(0) = 1, and let v € C*,
withRey > 0. If f € A(m) such that the assumptions in Equations (23) and (24) hold, then

H
e /
1(2) + 320 (2) < 0(z) := (147 (N,ﬁ,;zmz N z))
(Né\ﬁ qf(z n i qf( z) > ¥ (27)
- A A A
Nnmqf(z> Nnmqf Nnmqf(z) Nnmqf( z)
< lp %

implies that

2z !
Tile) < Blz) = (N,?,;’éqf() N%,ﬁ(Z)) <0202

and q1 and g, are, respectively, the best subordinant and the best dominant of Equation (27).
Combining Corollaries 4 and 6, we obtain the following sandwich-type theorem:

Corollary 7. Let q1 and qp be two convex functions in U, with g1(0) = q2(0) = 1, and let v € C*,
withRey > 0. If f € A(m) such that the assumptions in Equations (23) and (24) hold for the operator J\/}f‘ g
replaced by Ly, q, then

H
2z
= (1+7) <I£:fnf<z>z,?;::,f<z> )

q1(z) + Jzq1(2) < < 6(z)
2(Timf @) =T f(—2) " o
_7< Timf @) ~Tamf (—= ) Tomf () Z,?f.ﬁf(>> = 02(2) iy z),

(28)

implies that

I
71(z) < D(z) := ( vt 2z vt > < q2(z),
Timf(z) — Timf (—2)

and q1 and g, are, respectively, the best subordinant and the best dominant of Equation (27).

Example 2. Tuking q; = 1+ rjz, with 0 < ry <y, j =1,2in Theorem 5 and Corollary 7, we obtain the next
examples, respectively:

Let v € C*, with Rey > 0.

1. If f € A(m) such that the assumptions in Equations (23) and (24) hold, then

<10(z)—1| <1y

Il 1+Z‘ ,z€U=r <|®(z)—1]<r,zelU, 0<r <rn)

1+7
T

where © and ® are given in Theorem 5, and the obtained bounds r1 and ry are the best possible.
2.If f € A(m) such that the assumptions in Equations (23) and (24) hold for the operator NnA,ﬁq replaced
by Ty, q then

zeU=r <|®(z)-1]<rn,zelU, 0<r<n)

1+y‘<®( )—=1| <

1+,
"

where © and ® are given in Corollary 7, and the obtained bounds ry and ry are the best possible.

Example 3. Putting q; = €'/, with 0 < r; < ry < 1,j = 1,2 in Theorem 5 and Corollary 7, we obtain the
next examples, respectively:
Let v € C*, with Rey > 0.
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1. If f € A(m) such that the assumptions in Equations (23) and (24) hold, then
(1 + Zz) €' < 0(z) < (1 + Zz) e = 1P < P(z) <, (0<r<rp<l)

where © and ® are given in Theorem 5, and "% and e'?* are, respectively, the best subordinant and the
best dominant.

2.If f € A(m) such that the assumptions in Equations (23) and (24) hold for the operator N,Q\,ﬁq replaced
by Ty, q then

<1 + Zz) e"? < O(z) < <1 + Zz) e = 7 < P(z) <€, (0<r<r<1)

where © and ® are given in Corollary 7, and e and e'2* are, respectively, the best subordinant and the
best dominant.

Theorem 6. If f € My 2(0,1,1—2p,—1), with 0 < p < 1, then f € My o(7v, 1,1~ 2p,—1) for

|z| < R, where
1
2 2 m
R:( 7P m H_Ivlm) | 9

p? p

Proof. For f € M%q(o, 1,1—2p,—1), with 0 < p < 1, let the function / be defined by

H
2z
x x = (1—-p)h(z) +p, z€ U (30)
(N%,qf (z) — Nitnaf (z)) ’ g

Hence, the function & is analytic in U, with h(0) = 1, and since f € Mﬁjﬁl/q(o, u,1—2p,—1)is
equivalent to,

( 2z >y_<1+(1—2p)z
Nr;\n%qf(z) - Né\nviqf(_z) -z '
it follows that Reh(z) > 0,z € U.
As in the proof of Theorem 1, since f € Mﬁ;,ﬁ,q(o, u,1—2p,—1),with 0 < p < 1, we deduce that

H
A = A < H[l’m]’
Nn,m,q (z) - Nn,m,qf(_z)

and from the relation in Equation (30), we get i € H[1, m]. Therefore, the following estimate holds

2mr™ Reh(z)

21 (z)| < 2Rk

,zl=r<1,

that represents the result of Shah [19] (the inequality (6), p. 240, for « = 0), which generalize Lemma 2
of [20].
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A simple computation shows that
I
1 2z
Lo |
! —P{ Ninaf () = Nujngf (=)
/
z ( A'a,qf(z) _ A'a,qf(_z)) ( 2y )P‘
nmqf() nmqf( ) nmqf() nmqf( )

=h(z) + %zh’(z), z€el,

hence, we obtain

H
Re 1+ 2z )
{ [( ”) (Mﬁ;n,qﬂz)m,qf(z)

B z(Nf?,%ﬁ,qf(Z)*Né\,%ﬁ,qf(*Z)) ( 2 )” _ @31)
Y Nyf\/;ﬁ/qf(z)f_/\/yf\/;ﬁ/qf(fz) Nﬁ\'y,c;,qf(z)*f\/’ﬂ\ﬁ,qf(*z) P
> Reh(z) {1%} lz| =r<1,

and the right-hand side of Equation (31) is positive provided that r < R, where R is given by
Equation (29). O

Theorem 7. Let f € /\/lnmq('y,y,A,B), let v € C* withRey > 0,and -1 < B < A<1.

1. Then,
1 27 "
" 1—Au
=) =8 mm Yau < Re( >
o ! Nrﬁ%,qf(z) - ./\/}f‘,’,fi,qf(—z) (32)
1 i
< %n of %igguwfldu, zeU.
2. For |z| =r < 1, we have
1
u
A,
2r (7;;1 ﬁ‘gffru”’“ du) < ’Nn,nﬂi,qf(z) n mqf( )
0 (33)
1 b T
< 2r Wlm %:‘g;‘:mm du .
0
All these inequalities are the best possible.
Proof. From the assumptions, using Theorem 1, we obtain that
2 : F14A
"o
< TR ) <¥(e) = L [ (34)
Nn,’m,qf(z) _ Nn,’m,qf(*z) 'ym 1+ Bzu

and the convex function ¥ € H[1, m] is the best dominant. Therefore,

u 1
2 1+ A o
maf(z) = Numaf (—2) zeU ym ) 1+ Bzu

1 1
1+ A o 1+Au »_
- sup Re <—|—zu> u”rI:” 1du:L/ + uu"ﬁ" 1du,z€1U,
quo el 1+ Bzu q/mo 1+ Bu
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and

i 1
2 1-A o
Re( o : e ) > inf Re | £ 2wy
Nimgf(2) — Nujmqf(—2) u

1
—A o 1—Au » _
/mfRe( Zu)m]‘m 1du:L/ uw}m 1du, z e U.
'ym zelU Bzu 'ymo 1— Bu

In addition, since

‘Ll
2z

| M 1+Azu g
Nomaf(2) = Nomaf(=2)

<s ———um du
Zeg ’ym 14 Bzu

1
1+ A o "1+ A B
/ Az wim dy = L/ + T Ydu, lz| =r <1,
fym ZGU 1+ Bzu ym J 1+ Bur
we get
1
"
14+ Aur L,
A& A&
‘Nn,m,qf( ) Nn m,qf( (')’m / 1+ BMT’ du) ’
while
H
' 2z N 1—Azu +» “14,
nmqf( ) nmqf( ) z€U (ym 1= Bzu
1-A . —Aur o _
/ inf 2 gy = / W, |z =1 < 1,
'ym 2V |1 — Bzu ym J 1— Bur
implies
_1
4
A, A, U 1 — Aur o
[Niiaf () = Niaf (—2)| <2r | o [ 3= pumdu
0

The inequalities of Equations (32) and (33) are the best possible because the subordination in
Equation (34) is sharp. O

Taking g — 17 in Theorem 7, we obtain the following corollary:

Corollary 8. Let f € Wﬁ\ﬁ,('y, #,A,B) lety e C*withRey > 0,and -1 <B< A<1.
1. Then,

1 5 u
L/ uw 1¢Jlu<Re< oW ZM )
" 0 i f(z) — Iymf(—2)
1
N 1+ Au

£

urt du, z € U.
m.J 1+ Bu !

v 0
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2. For |z| = r < 1, we have

==

Tomf(2) — Tymf(—2)

14 Aur » _
L/ + ur o1,
ym 1+Bu

All these inequalities are the best possible.
Taking g — 17, « = 0 and A = 1 in Theorem 7, we obtain the following corollary:

Corollary 9. Let f € NV (m, A,B), let v € C* withRey > 0,and -1 < B < A< 1.
1. Then,

1 1
i T s () <[

2. For |z| = r < 1, we have

1
1 T
3 1+ Aur 29 e
2r (’Ymo 1—|—Burl“ du) <|f(z) = f(—2)]

. _
< 2r Lz Aur 7]"" du
ym , 1-— Bur

All these inequalities are the best possible.

o
u’r”’ 1du, z e U.

==

Example 4. Puttinguy =y=m=1,A=1-26(0 < B <1),and B= —1in Corollary 9, we get the next
special case.

Iffe NV (1,1 28, 1) with 0 < B < 1, then:

1. The next inequality holds:

Re——FF+>26—-1+2(1-B)In2, z € U.
f@) —f(a) " PTHAP
2. For |z| = r := 0.9, we have
1.8 1.8

1731168557628 f@) - fl=2)l <3 — 0.57365803078

Remark 2. Part (ii) of Corollary 9 corrects the Corollary (3.10) studied by Muhammad and Marwan [16].

Concluding, all the above results give us information about subordination and superordination
properties, inclusion results, radius problem, and sharp estimations for the classes Mﬁl‘,’f‘n,q (v,u, A, B),
together general sharp subordination and superordination for the operator Nn m,q- For special choices
of the parameters y e C,0 < p <1, -1<B<A<1meNa>0n>0,0<g<l,and A > -1,
we may obtain several simple applications connected with the above-mentioned classes and operator.
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