
mathematics

Article

Homotopy Analysis Method for a Fractional Order
Equation with Dirichlet and Non-Local
Integral Conditions

Said Mesloub * and Saleem Obaidat

Mathematics Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
saleem@ksu.edu.sa
* Correspondence: mesloub@ksu.edu.sa

Received: 1 November 2019; Accepted: 22 November 2019; Published: 2 December 2019 ����������
�������
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1. Introduction

In this paper, we use a theoretical method to prove that the non-local initial-boundary value
problem for a singular fractional order parabolic equation is well posed, and use a numerical method
to investigate approximate solutions for the given problem, namely the homotopy analysis method.
For theoretical purpose, we apply the energy inequality method based mainly on some a priori
estimates, and on the density of the range of the operator generated by the considered problem.
This method is an important component of linear and nonlinear functional analysis theory. It is one
of the crucial tools to build the existence and uniqueness of solutions for a large variety of local and
non-local initial-boundary value problems in partial differential equations. The model we study is
a one-dimensional fractional order diffusion heat equation, associated with a classical and a non-local
condition of integral type (see [1–3]). The fractional order derivative in the equation can be viewed
as the degree of memory in the diffusing substance [4]. Many results concerning the existence and
uniqueness of fractional order initial-boundary value problems have been studied by many researchers
during the last few decades. These fractional order problems arise in many scientific and engineering
areas, for example in control theory, blood flow, aerodynamics, biology, in the description of stochastic
transport, viscoelasticity, in quantum mechanics, nuclear physics, and many other physical and
biological processes, etc., see [5–15] and the references therein. For the proof of the existence and
the uniqueness of the solution of the posed problem, we use the energy inequality method based
mainly on some a priori estimates and on the density of the range of the operator generated by the
considered problem. In the literature, there are few articles using the method of energy inequalities for
the proof of existence and uniqueness of fractional initial-boundary value problems in the fractional
case (see [16–19]).
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For numerical purposes, we use the homotopy analysis method (HAM), which was firstly
introduced by Liao [20] to efficiently handle nonlinear problems. It provides the solution in the form of
a rapid convergent series, which in most cases gives a very accurate solution, after only a few iterations.
The method has been widely used by many authors to successfully solve a wide range of mathematical
problems in different disciplines. Recently, it is employed to generate reliable approximate solutions
for fractional partial differential equations. For example, it is utilized to investigate approximate
solutions of linear and nonlinear fractional diffusion wave equations in [21], for a system of nonlinear
fractional partial differential equations in [22], a time fractional wave-like equation in [23], and a
nonlinear type problems in [24]. Many authors have analytically and numerically studied many
models of time-fractional differential equations, especially for the existence and uniqueness of solutions;
see, for example, [6,19,25–30].

This article is organized as follows: In Section 2, we pose and set the problem to be solved,
and write it in its operator form. In Section 3, we give some notations, introduce the functional frame
and state some important inequalities that will be used in the sequel. In Section 4, we establish the
uniqueness of the solution and its dependence on the given data of the posed problem. Section 5 is
devoted to the solvability of the stated problem. In the last section, we use the homotopt analysis
method to solve the posed problem, and provide some examples to test the efficiency of the method.

2. Problem Setting

We consider a fractional order parabolic equation with a Caputo derivative associated
with Dirichlet and non-local conditions of integral type

Lu = g(x, t), (x, t) ∈ Q = Ω× [0, T],
l1u = u(x, 0) = ω(x), x ∈ Ω = (0, 1),∫ 1

0 xu(x, t)dx = 0, u(1, t) = 0, t ∈ (0, T),
(1)

where L = ∂α
t − 1

x
∂

∂x −
∂2

∂x2 + f and the functions f and g are in L2
ρ(Q), which is defined below.

The time fractional Caputo derivative of order 0 < α < 1 for a differential function is defined by

∂α
tH(x, t) =

1
Γ(1− α)

∫ t

0
(t− τ)−α ∂

∂τ
H(x, τ)dτ, t > 0, (2)

where Γ(1− α) denotes the Gamma function.
For more details about the Caputo fractional derivative, we refer the reader to the references [5,31].
In order to establish the existence and uniqueness of the solution of problem (1), we write it in

an equivalent operator form.
The solution of problem (1) can be regarded as the solution of the operator equation Ku =

(Lu, `1u) = F , where K is an unbounded operator which acts fromS to H, with the domain of
definition being the set of functions u ∈ L2

ρ(Q) : ux, uxx, ∂α
t u ∈ L2

ρ(Q) satisfying the boundary
conditions, where S is a Banach space of functions u associated with the finite norm

‖u‖2
S = ‖u‖2

L2(0;T,Hα,t
ρ (0,1)) =

∫ T

0

(
‖u‖2

L2
ρ(0,1) + ‖∂

α
t u‖2

L2
ρ(0,1)

)
dt, (3)

and H is the weighted Hilbert space L2
ρ(Q)× H1

ρ(0, 1) consisting of vector valued functions F = (g, ω)

for which the norm
‖F‖2

H = ‖ω‖2
H1

ρ(0,1) + ‖g‖
2
L2

ρ(Q) . (4)

is finite.
We will not outline here the basic ideas of the homotopy analysis method, but rather we refer the

reader to [32].
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3. Preliminaries

In this section we recall some function spaces and some basic tools.
We denote by L2

ρ(0, 1) the Hilbert space of weighted square integrable functions with inner

product (U, V)ρ =
∫ 1

0 xUVdx, and by H1
ρ(0, 1) the weighted Sobolev space with the norm ‖u‖2

H1
ρ(0,1) =

‖u‖2
L2

ρ(0,1) + ‖ux‖2
L2

ρ(0,1) . We also introduce the Hilbert space L2
(

0, T ; Hα,t
ρ (0, 1)

)
consisting of all

abstract strongly measurable functions u on [0, T ] into Hα,t
ρ (0, 1) such that

‖u‖2
L2(0,T ;Hα,t

ρ (0,1)) =
∫ T

0
‖u(., t)‖2

Hα,t
ρ (0,1) dt =

∫ T

0

(
‖u‖2

L2
ρ(0,1) + ‖∂

α
t u‖2

L2
ρ(0,1)

)
dt < ∞. (5)

Hα,t
ρ (0, 1) denotes the weighted Sobolev space whose norm is defined by

‖u‖Hα,t
ρ (0,1) = ‖u‖

2
L2

ρ(0,1) + ‖∂
α
t u‖2

L2
ρ(0,1) . (6)

Lemma 1 ([18]). For any absolutely continuous function Z(t) on the interval [0, T], the following
inequality holds

Z(t) ∂α
t Z(t) ≥ 1

2
∂α

t Z2(t), 0 < α < 1. (7)

Lemma 2 ([18]). Let a nonnegative absolutely continuous function J (s) satisfy the inequality

∂α
t J (t) ≤ r1J (t) + r2(t), 0 < α < 1, (8)

for almost all t ∈ [0, T], where r1 is a positive constant and r2(t) is an integrable nonnegative function on
[0, T]. Then

J (t) ≤ J (0)Eα(r1tα) + Γ(α)Eα,α(r1tα)D−α
t r2(t), (9)

where

Eα(x) =
∞

∑
n=0

xn

Γ(αn + 1)
and Eα,µ(x) =

∞

∑
n=0

xn

Γ(αn + µ)
, (10)

are Mittag–Leffler functions.

Young’s inequality with ε: For any ε > 0 , we have the inequality

aW ≤ 1
p
|εa|p + p− 1

p

∣∣∣∣Wε
∣∣∣∣

p
p−1

, a, W ∈ R, p > 1, (11)

which is the generalization of the Cauchy inequality with ε:

aW ≤ ε

2
a2 +

1
2ε

W2, ε > 0, (12)

where a and W are nonnegative numbers.
A Poincaré type inequality [33]

‖Px (ξU)‖2
L2

ρ(0,l) ≤
l3

2
‖U‖2

L2
ρ(0,l) , (13)

where
Px (V) =

∫ x

0
V(ξ, t)dξ. (14)
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We also need the Riemann–Liouville integral of order 0 < α < 1, which is defined by

D−α
t H(t) =

1
Γ(α)

∫ t

0

H(τ)

(t− τ)1−α
dτ. (15)

4. Uniqueness of Solution

In this section, on the basis of an a priori estimate, we establish a uniqueness result for the solution
of the given problem and its dependence on the given data of the posed problem.

Theorem 1. Suppose that the function f satisfies

i) f (x, t) ≥ A0, ii) fx(x, t) ≥ A1, f (x, t) ≤ A2, ∀(x, t) ∈ Q (16)

where A0, A1 and A2 are positive constants and g ∈ L2
ρ(Q). Then we have the a priori estimate

‖u‖2
S = ‖u‖2

L2(0,T;Hα,t
ρ (0,1)) ≤ C∗∗

(
‖ω‖2

H1
ρ(0,1) + ‖g‖

2
L2

ρ(Q)

)
, (17)

for all u ∈ D(K), where C∗ and C∗∗ are positive constants given by

C∗∗ = max
{

C∗,
T1−α

(1− α)Γ(1− α)

}
, C∗ =

1
2A1

+ 4

min (A0, 1/4)
. (18)

Proof. Consider the inner product in L2(0, 1) of the integro-differential operator Mu = xu−
xPx (ξu) + x∂α

t u and Lu

(Lu, Mu)L2(0,1)

=

(
∂α

t u− 1
x

∂

∂x

(
x

∂u
∂x

)
+ f (x, t)u, xu− xPx (ξu) + x∂α

t u
)

L2(0,1)

= (g, xu− xPx (ξu) + x∂α
t u)L2(0,1) . (19)

where
Px (ξu) =

∫ x

0
ξu(ξ, t)dξ.

Boundary and initial conditions in Equation (1), give

− (∂α
t u, xPx (ξu))L2(0,1) = −

∫ 1

0
x ∂α

t uPx (ξu) dx, (20)

(
∂

∂x

(
x

∂u
∂x

)
,Px (ξu)

)
L2(0,1)

= ‖u‖2
L2

ρ(0,1) , (21)

− ( f u, xPx (ξu))L2(0,1) =
1
2

∥∥∥√ fxPx (ξu)
∥∥∥2

L2(0,1)
, (22)

(∂α
t u, xu)L2(0,1) =

∫ 1

0
xu∂α

t udx, (23)

−
(

∂

∂x

(
x

∂u
∂x

)
, u
)

L2(0,1)
= ‖ux‖2

L2
ρ(0,1) , (24)

( f u, xu)L2(0,1) =
∥∥∥√ f u

∥∥∥2

L2
ρ(0,1)

, (25)
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(∂α
t u, x∂α

t u)L2(0,1) = ‖∂
α
t u‖2

L2
ρ(0,1) , (26)

−
(

∂α
t u,

∂

∂x

(
x

∂u
∂x

))
L2(0,1)

= (∂α
t ux, ux)Lρ(0,1) , (27)

(x∂α
t u, f u)L2(0,1) =

∫ 1

0
x f u∂α

t udx. (28)

Substitution of Equalities (20)–(28) into (19),gives

‖ux‖2
L2

ρ(0,1) +
∥∥∥√ f u

∥∥∥2

L2
ρ(0,1)

+ (∂α
t u, u)Lρ(0,1) + (∂α

t ux, ux)Lρ(0,1) + ‖∂
α
t u‖2

Lρ(0,1)

+ (∂α
t u, f u)Lρ(0,1) + ‖u‖

2
Lρ(0,1) +

1
2

∥∥∥√ fxPx (ξu)
∥∥∥2

L2(0,1)

= (Px (ξu) , xg)L2(0,1) + (xu, g)L2(0,1) + (x∂α
t u, g)L2(0,1)

+ (∂α
t u, xPx (ξu))L2(0,1) . (29)

By using Cauchy inequality, Inequality (12), Conditions (16) and Lemma 1, we infer from
Equation (29) that

‖ux‖2
L2

ρ(0,1) + (1 + A0) ‖u‖2
L2

ρ(0,1) + (A0 +
1
2
) ∂α

t ‖u‖
2
L2

ρ(0,1) +
1
2

∂α
t ‖ux‖2

L2
ρ(0,1)

+
A1

2
‖Px (ξu)‖2

L2(0,1) + ‖∂
α
t u‖2

L2
ρ(0,1)

≤ ε1

2
‖Px (ξu)‖2

L2(0,1) +
1

2ε1
‖g‖2

L2
ρ(0,1) +

ε2

2
‖∂α

t u‖2
L2

ρ(0,1)

+
1

2ε2
‖Px (ξu)‖2

L2(0,1) + ε3 ‖u‖2
L2

ρ(0,1) +
1
ε3
‖g‖2

L2
ρ(0,1)

+ ε4 ‖∂α
t u‖2

L2
ρ(0,1) +

1
ε4
‖g‖2

L2
ρ(0,1) (30)

By dropping the first term on the left-hand side of Equation (30), taking ε1 = A1, ε2 = 1/2,
ε3 = 1/2 and ε4 = 1/2, and applying the Poincaré inequality for the fourth term on the right-hand
side of Equation (30), we obtain

‖u‖2
Hα,t

ρ (0,1) + ∂α
t ‖u‖

2
H1

ρ(0,1) ≤ C∗ ‖g‖2
L2

ρ(0,1) , (31)

where

C∗ =
1

2A1
+ 4

min (A0, 1/4)
. (32)

Integrating both sides of Equation (31) over (0, t) gives

∫ t

0
‖u(x, ν‖2

Hα,t
ρ (0,1) dν + Dα−1 ‖u‖2

H1
ρ(0,1)

≤ C∗
∫ t

0
‖g(x, ν)‖2

L2
ρ(0,1) dν +

T1−α

(1− α)Γ(1− α)
‖ω‖2

H1
ρ(0,1

≤ C∗∗
(∫ t

0
‖g(x, ν)‖2

L2
ρ(0,1) dν + ‖ω‖2

H1
ρ(0,1

)
, (33)

where

C∗∗ = max
{

C∗,
T1−α

(1− α)Γ(1− α)

}
. (34)



Mathematics 2019, 7, 1167 6 of 18

If we discard the second term on the left hand side of Equation (33) and replace t by T, we obtain
the desired inequality:

‖u‖2
L2(0,T;Hα,t

ρ (0,1)) ≤ C∗∗
(
‖ω‖2

H1
ρ(0,1) + ‖g‖

2
L2

ρ(Q)

)
. (35)

5. Solvability of the Posed Problem

In this section, we prove a result concerning the existence of the solution of the given problem.
It follows from Inequality (17) that the operator K admits an inverse K−1 : Im(K)→ S . Since Im(K)
⊂ H, we then can construct its closure K such that Inequality (17) holds for K and Im(K) = H.

Corollary 1. The operator K : S →H has a closure.

A priori bound Inequality (17) can be then extended to

‖u‖2
S ≤ µ

(
‖ω‖2

H1
ρ(0,1) + ‖g‖

2
L2

ρ(Q)

)
, (36)

for all u ∈ D(K).
It follows from Equation (36) that Ku = H and Im(K) = H is a closed subset in H and

Im(K) =Im(K) and K−1
= K−1. Hence the solvability result.

Theorem 2. Assume that conditions of Theorem 4.1 hold. Then for all F = (g, ω) ∈ H, there exists a unique
strong solution u = K−1F = K−1F of Problem (1).

Proof. Corollary 5.2 asserts that in order to show that Problem (1) has a strong solution for any
F = (g, ω) ∈ H, it is sufficient to show that Im(K) = H for every u ∈ S .

Proposition 1. (Special case of density). Assume that the conditions of Theorem 4.1 hold. If for all u ∈ D(K)
such that `1u = 0, and for some function Φ ∈ L2(Q), we have

∫ T

0
(Lu, Φ)L2

ρ(0,1) dt = 0, (37)

then Φ is zero a.e in Q.

Proof. Identity (37) can be expressed as

∫ T

0

(
∂α

t u− 1
x

∂

∂x

(
x

∂u
∂x

)
+ f (x, t)u, Φ

)
L2

ρ(0,1)
dt = 0. (38)

Suppose that a function Γ(x, t) satisfies boundary and initial conditions in Equation (1) and such
that Γ, Γx, ∂

∂x (xIt(Γ(x, s)) , and ∂α
t It(Γ(x, s)) ∈ L2(Qt); we then let

u(x, t) = It(Γ(x, s)) =
∫ t

0
Γ(x, s)ds. (39)
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Equation (38) then takes the form

∫ T

0

{
∂α

t It(Γ(x, s))− 1
x

∂

∂x
(xIt(Γx(x, s)))

+ f (x, t) (It(Γ(x, s))) , Φ)L2
ρ(0,1)

}
dt

= 0. (40)

We now consider the function

Φ(x, t) = It(Γ(x, s)) + Px (ξIt(Γ(x, s))) + ∂α
t It(Γ(x, s)) (41)

Consequently, Equation (40) becomes

∫ T

0
(∂α

t It(Γ(x, s)), xIt(Γ(x, s)) + xPx (ξIt(Γ(x, s))) + x∂α
t It(Γ(x, s)))L2(0,1) dt

+
∫ T

0

(
∂

∂x
(xIt(Γx(x, s))) ,−It(Γ(x, s))−Px (ξIt(Γ(x, s)))− ∂α

t It(Γ(x, s))
)

L2(0,1)
dt

+
∫ T

0
( f (x, t) (It(Γ(x, s))) , xIt(Γ(x, s)) + xPx (ξIt(Γ(x, s)) + x∂α

t It(Γ(x, s))))L2(0,1) dt

= 0. (42)

Since Γ satisfies boundary conditions in Equation (1), then we have

(∂α
t It(Γ(x, s)), xIt(Γ(x, s)))L2(0,1) ≥ ∂α

t ‖It(Γ(x, s))‖2
L2

ρ(0,1) , (43)

(∂α
t It(Γ(x, s)), x∂α

t It(Γ(x, s)))L2(0,1) = ‖∂
α
t It(Γ(x, s))‖2

L2
ρ(0,1) , (44)(

∂

∂x
(xIt(Γx(x, s))) ,−It(Γ(x, s))

)
L2(0,1)

= ‖It(Γx(x, s))‖2
L2

ρ(0,1) , (45)

−
(

∂

∂x
(xIt(Γx(x, s))) ,Px (ξIt(Γ(x, s)))

)
L2(0,1)

=
1
2
(It(Γ(1, s)))2 − 1

2
‖It(Γ(x, s))‖2

L2
ρ(0,1) , (46)

−
(

∂

∂x
(xIt(Γx(x, s))) , ∂α

t It(Γ(x, s))
)

L2(0,1)
= (xIt(Γx(x, s)), ∂α

t It(Γ(x, s)))L2(0,1)

≥ 1
2

∂α
t ‖It(Γ(x, s))‖2

L2
ρ(0,1) , (47)

( f (x, t) (It(Γ(x, s))) , xIt(Γ(x, s)))L2(0,1) =
∥∥∥√ fIt(Γ(x, s))

∥∥∥2

L2
ρ(0,1)

≥ A0 ‖It(Γ(x, s))‖2
L2

ρ(0,1) , (48)

( f (x, t) (It(Γ(x, s))) , x∂α
t It(Γ(x, s)))L2(0,1) ≥ A0∂α

t ‖It(Γ(x, s))‖2
L2

ρ(0,1) , (49)
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A combination of Equations (42)–(49) gives the inequality

(It(Γ(1, s)))2 + ∂α
t ‖It(Γx(x, s))‖2

L2
ρ(0,1) + 2 ‖It(Γx(x, s))‖2

L2
ρ(0,1)

+2 ‖∂α
t It(Γ(x, s))‖2

L2
ρ(0,1) (2 + 2A0)∂

α
t ‖It(Γ(x, s))‖2

L2
ρ(0,1) + 2A0 ‖It(Γ(x, s))‖2

L2
ρ(0,1)

≤ ‖It(Γ(x, s))‖2
L2

ρ(0,1) − 2 ( f (x, t) (It(Γ(x, s))) , xPxξIt(Γ(x, s)))L2(0,1)

−2 (∂α
t It(Γ(x, s)), xPx (ξIt(Γ(x, s))))L2(0,1) . (50)

Poincaré type Inequality (11), the Cauchy-inequality and Condition (16) reduce Equation (50) to

(It(Γ(1, s)))2 + ∂α
t ‖It(Γx(x, s))‖2

L2
ρ(0,1) + 2 ‖It(Γx(x, s))‖2

L2
ρ(0,1)

+2 ‖∂α
t It(Γ(x, s))‖2

L2
ρ(0,1) + (2 + 2A0)∂

α
t ‖It(Γ(x, s))‖2

L2
ρ(0,1)

+2A0 ‖It(Γ(x, s))‖2
L2

ρ(0,1)

≤ ‖It(Γ(x, s))‖2
L2

ρ(0,1) + ε1 A2 ‖It(Γ(x, s))‖2
L2

ρ(0,1)

+
1

4ε1
‖It(Γ(x, s))‖2

L2
ρ(0,1) + ε2 ‖∂α

t It(Γ(x, s))‖2
L2

ρ(0,1)

+
1
ε2
‖It(Γ(x, s))‖2

L2
ρ(0,1) . (51)

Put ε1 = 1
8A0

, ε2 = 2 into Equation (51) and ignore the first three terms on the left-hand side
of Equation (51), it follows that

∂α
t ‖It(Γ(x, s))‖2

L2
ρ(0,1) ≤

10A0 + A2

16A0(1 + A0)
‖It(Γ(x, s))‖2

L2
ρ(0,1) . (52)

Integration over (0, t) in Equation (52), leads to

Dα−1
t ‖It(Γ(x, s))‖2

L2
ρ(0,1) ≤ ⊂

∗
∫ t

0
‖Iτ(Γ(x, s))‖2

L2
ρ(0,1) dτ. (53)

where
⊂∗ = 10A0 + A2

16A0(1 + A0)
.

Applying Lemma 3.2 to Equation (53), after putting

Y(t) =
∫ t

0
‖Iτ(Γ(x, s))‖2

L2
ρ(0,1) dτ

Y(0) = 0, (54)

and
∂α

t Y(t) = Dα−1
t ‖It(Γ(x, s))‖2

L2
ρ(0,1) , (55)

then ∫ t

0
‖Iτ(Γ(x, s))‖2

L2
ρ(0,1) dτ

≤ Y(0)Eα(⊂∗tα) + Γ(α)Eα,α(⊂∗tα)D−α
t (0) = 0. (56)

Replacing t by T, It follows then from Equation (56) that

∫ T

0
‖Iτ(Γ(x, s))‖2

L2
ρ(0,1) dτ ≤ 0. (57)
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Hence Φ = 0 a.e in Q.
We now complete the proof of Theorem 5.3, We suppose that for (ψ, ζ1) ∈ Im(K)⊥, we have

∫ T

0
(Lu, ψ)L2

ρ(0,1) dt + (`1u, ζ1)H1
ρ(0,1) = 0, (58)

then we should show that ψ = 0, ζ1 = 0. Take u ∈ D(K) such that `1u = 0 in (58), then we have

∫ T

0
(Lu, ψ)L2

ρ(0,1) dt = 0, ∀u ∈ D(K). (59)

It follows from Theorem 5.4, and Equation (59), that ψ = 0 a.e in Q. Hence Equation (58) takes
the forms

(`1u, ζ1)H1
ρ(0,1) = 0 ∀u ∈ D(K). (60)

Since Im`1 is dense in H1
ρ(0, 1), we deduce from Equation (60) that ζ1 = 0.

6. Application of the Method

To test the efficiency of the HAM for solving the fractional non-local mixed problem with the
Bessel operator, we consider the equivalent initial-boundary value problem

∂α
t u− 1

x
∂u
∂x −

∂2u
∂x2 + f (x, t) u(x, t) = g(x, t), 0 < x, α < 1, 0 < t < T, (61)

u(x, 0) = ω(x), x ∈ (0, 1), (62)

ux(1, t) = 0, u(1, t) = d(t), (63)

for some given functions f , g, d and ω.
To apply the HAM to Equation (61) with the initial Condition (62), we consider the initial

approximation
u0(x, t) = u(x, 0), (64)

and the linear operator with the non-integer order

L[φ(x, t; q)] = ∂α
t φ(x, t; q) , 0 < α < 1, (65)

which satisfies the property L(c) = 0, where c represents an integral constant. Thus, in view of
Equation (61), we consider the fractional partial differential operator

F [φ(x, t; q)] = ∂α
t φ(x, t; q)− 1

x
∂φ

∂x
− ∂2φ

∂x2 + f (x, t) φ((x, t)− g(x, t),

hence the zeroth-order deformation equation is given by

(1− q)L[φ(x, t; q)− u0(x, t)] = qh̄F [φ(x, t; q)],

then, at q = 0 and q = 1, we have

φ(x, t; 0) = u0(x, t) = u(x, 0), and φ(x, t; 1) = u(x, t),

respectively.
On the other hand, the mth-order deformation equation is given by

L[um(x, t)− χmum−1(x, t)] = h̄Rm(~um−1), (66)
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where

Rm(~um−1(x, t)) = ∂α
t um−1 −

1
x

∂um−1

∂x
− ∂2um−1

∂x2 + f (x, t) um−1 − (1− χm)g(x, t), (67)

and

χm =

{
0, m ≤ 1,
1, m > 1.

Now, for m ≥ 1, the solution of the mth-order deformation Equation (66) can be obtained
recessively through the iterative scheme:

um(x, t) = χmum−1(x, t) + h̄L−1 [Rm(~um−1(x, t))] ,

or
um(x, t) = χmum−1(x, t) + h̄ ∂−α

t [Rm(~um−1(x, t))] . (68)

To illustrate the efficiency of the HAM in solving fractional partial differential equations in the
form of Equation (61), we apply this method to the following test examples:

Example 1. Consider the fractional homogeneous initial/boundary value problem

∂α
t u− 1

x
∂u
∂x −

∂2u
∂x2 = 0, 0 < x < 1, 0 < t < T, 0 < α < 1,

u(x, 0) = −1
4
{
−1 + x2 − 2 ln(x)

}
, x ∈ (0, 1),

u(1, t) = tα

Γ(α+1) , ux(1, t) = 0, ∀ t ∈ (0, T).

 (69)

Taking f (x, t) = g(x, t) = 0, d(t) = tα

Γ(α+1) and u0(x, t) = u(x, 0) = 1
4 −

x2

4 + ln x
2 , then in view of

Equation (68) we have
u1(x, t) = h̄ ∂−α

t [R1(~u0(x, t))] ,

= h̄ ∂−α
t

[
∂α

t u0 − 1
x

∂u0
∂x −

∂2u0
∂x2

]
,

= h̄ ∂−α
t (1) .

u2(x, t) = χ2u1 + h̄ ∂−α
t [R2(~u1(x, t))] ,

= u1 + h̄ ∂−α
t

[
∂α

t u1 − 1
x

∂u1
∂x −

∂2u1
∂x2

]
,

= h̄ ∂−α
t (1) + h̄ ∂−α

t
[
∂α

t
(
h̄ ∂−α

t (1)
)]

,
= h̄ ∂−α

t (1) + h̄2 ∂−α
t (1) ,

= h̄ (1 + h̄) ∂−α
t (1) .

u3(x, t) = χ3u2 + h̄ ∂−α
t [R2(~u2(x, t))] ,

= u2 + h̄ ∂−α
t

[
∂α

t u2 − 1
x

∂u2
∂x −

∂2u2
∂x2

]
,

= h̄ ∂−α
t (1) + h̄2 ∂−α

t (1) + h̄ ∂−α
t

[
∂α

t

(
h̄ ∂−α

t (1) + h̄2 ∂−α
t (1)

)]
,

= h̄ ∂−α
t (1) + 2h̄2 ∂−α

t (1) + h̄3 ∂−α
t (1) .

= h̄ (1 + h̄)2 ∂−α
t (1) .
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u4(x, t) = χ4u3 + h̄ ∂−α
t [R2(~u3(x, t))] ,

= u3 + h̄ ∂−α
t

[
∂α

t u3 − 1
x

∂u3
∂x −

∂2u3
∂x2

]
,

= h̄ ∂−α
t (1) + 2h̄2 ∂−α

t (1) + h̄3 ∂−α
t (1) +

h̄ ∂−α
t

[
∂α

t

(
h̄ ∂−α

t (1) + 2h̄2 ∂−α
t (1) + h̄3 ∂−α

t (1)
)]

,

= h̄ ∂−α
t (1) + 2h̄2 ∂−α

t (1) + h̄3 ∂−α
t (1) + h̄2 ∂−α

t (1) + 2h̄3 ∂−α
t (1) + h̄4 ∂−α

t (1) ,
= h̄ ∂−α

t (1) + 3h̄2 ∂−α
t (1) + 3h̄3 ∂−α

t (1) + h̄4 ∂−α
t (1) ,

= h̄ (1 + h̄)3 ∂−α
t (1) .

and so on. Thus, the series solution is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · · ,
= 1

4 −
x2

4 + ln x
2 + h̄ ∂−α

t (1) + h̄ (1 + h̄) ∂−α
t (1) + h̄ (1 + h̄)2 ∂−α

t (1) + · · · ,
= 1

4 −
x2

4 + ln x
2 + h̄ ∂−α

t (1)
{

1 + (1 + h̄) + (1 + h̄)2 + · · ·
}

,
= 1

4 −
x2

4 + ln x
2 + h̄ ∂−α

t (1)∑∞
j=0(1 + h̄)j.

If the auxiliary parameter h̄ is selected so that |1 + h̄| < 1, then the last power series converges, and gives

u(x, t) = 1
4 −

x2

4 + ln x
2 − ∂−α

t (1) ,
= 1

4 −
x2

4 + ln x
2 + tα

Γ(α+1) .

which is the exact solution for 0 < α < 1.
Moreover, for α = 1, setting u0(x, t) = 1

4 −
x2

4 + ln x
2 , then successive applications of Equation (68) implies

u1(x, t) = h̄ t,
u2(x, t) = h̄ (1 + h̄) t,
u3(x, t) = h̄ (1 + h̄)2 t,
u4(x, t) = h̄ (1 + h̄)3 t,

· · ·

Hence, the series solution becomes

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · · ,
= 1

4 −
x2

4 + ln x
2 + h̄ t + h̄ (1 + h̄) t + h̄ (1 + h̄)2 t + · · · ,

= 1
4 −

x2

4 + ln x
2 + h̄ t

{
1 + (1 + h̄) + (1 + h̄)2 + · · ·

}
,

= 1
4 −

x2

4 + ln x
2 + h̄ t ∑∞

j=0(1 + h̄)j,

= 1
4 −

x2

4 + ln x
2 − t, provided that |1 + h̄| < 1,

which is the exact solution in this case. Figure 1 shows the h̄-curve corresponding to the truncated series solution
of order 8, which indicates that the permissible values of h̄ should satisfy −2 < h̄ < 0.



Mathematics 2019, 7, 1167 12 of 18

-3 -2 -1 1
t

-30

-20

-10

10

20

ut

Figure 1. The h-curve based on the 8th order approximation and α = 1.

Example 2. Consider the fractional nonhomogeneous initial/boundary value problem

∂α
t u− 1

x
∂u
∂x −

∂2u
∂x2 = 4− e−t, 0 < x < 1, 0 < t < T, , 0 < α < 1,

u(x, 0) = 1− x2 + 2 ln(x), x ∈ (0, 1),
u(1, t) = −∂−α

t
(
e−t) , ux(1, t) = 0, ∀ t ∈ (0, T).

 (70)

Taking f (x, t) = 0, g(x, t) = 4− e−t, d(t) = −∂−α
t
(
e−t) and u0(x, t) = u(x, 0) = 1− x2 + 2 ln(x),

then in view of Equation (68) we have

u1(x, t) = h̄ ∂−α
t [R1(~u0(x, t))] ,

= h̄ ∂−α
t

[
∂α

t u0 − 1
x

∂u0
∂x −

∂2u0
∂x2 − (1− χ1) g(x, t)

]
,

= h̄ ∂−α
t
(
e−t) .

u2(x, t) = χ2u1 + h̄ ∂−α
t [R2(~u1(x, t))] ,

= u1 + h̄ ∂−α
t

[
∂α

t u1 − 1
x

∂u1
∂x −

∂2u1
∂x2 − (1− χ2) g(x, t)

]
,

= h̄ ∂−α
t
(
e−t)+ h̄ ∂−α

t
[
∂α

t
(
h̄ ∂−α

t
(
e−t))] ,

= h̄ ∂−α
t
(
e−t)+ h̄2 ∂−α

t
(
e−t) ,

= h̄ (1 + h̄) ∂−α
t
(
e−t) .

u3(x, t) = χ3u2 + h̄ ∂−α
t [R2(~u2(x, t))] ,

= u2 + h̄ ∂−α
t

[
∂α

t u2 − 1
x

∂u2
∂x −

∂2u2
∂x2 − (1− χ3) g(x, t)

]
,

= h̄ (1 + h̄) ∂−α
t
(
e−t)+ h̄ ∂−α

t
[
∂α

t
(
h̄ (1 + h̄) ∂−α

t
(
e−t))] ,

= h̄ (1 + h̄) ∂−α
t
(
e−t)+ h̄2 (1 + h̄) ∂−α

t
(
e−t) ,

= h̄ (1 + h̄)2 ∂−α
t
(
e−t) .

u4(x, t) = χ4u3 + h̄ ∂−α
t [R2(~u3(x, t))] ,

= u3 + h̄ ∂−α
t

[
∂α

t u3 − 1
x

∂u3
∂x −

∂2u3
∂x2 − (1− χ4) g(x, t)

]
,

= h̄ (1 + h̄)2 ∂−α
t
(
e−t)+ h̄ ∂−α

t
[
∂α

t
(
h̄ (1 + h̄)2 ∂−α

t
(
e−t))] ,

= h̄ (1 + h̄)3 ∂−α
t
(
e−t) .
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and so on. Thus, the series solution is given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · · ,
= 1− x2 + 2 ln(x) + h̄ ∂−α

t
(
e−t)+ h̄ (1 + h̄) ∂−α

t
(
e−t)+ h̄ (1 + h̄)2 ∂−α

t
(
e−t)+ · · · ,

= 1− x2 + 2 ln(x) + h̄ ∂−α
t
(
e−t) {1 + (1 + h̄) + (1 + h̄)2 + · · ·

}
,

= 1− x2 + 2 ln(x) + h̄ ∂−α
t
(
e−t)∑∞

i=0(1 + h̄)j.

Again, if we select the auxiliary parameter h̄ so that |1 + h̄| < 1, then the power series in the last term
converges, and we obtain

u(x, t) = 1− x2 + 2 ln(x)− ∂−α
t
(
e−t) , for 0 < α < 1.

For α = 1 and u0(x, t) = 1− x2 + 2 ln(x), successive applications of Equation (68) imply

u1(x, t) = h̄ (1− e−t),
u2(x, t) = h̄ (1 + h̄) (1− e−t),
u3(x, t) = h̄ (1 + h̄)2 (1− e−t),
u4(x, t) = h̄ (1 + h̄)3 (1− e−t),

· · ·

Thus, the series solution is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t) + · · · ,
= 1− x2 + 2 ln(x) + h̄ (1− e−t) + h̄ (1 + h̄) (1− e−t) + h̄ (1 + h̄)2 (1− e−t) + · · · ,
= 1− x2 + 2 ln(x) + h̄ (1− e−t)

{
1 + (1 + h̄) + (1 + h̄)2 + · · ·

}
,

= 1− x2 + 2 ln(x) + h̄ (1− e−t) ∑∞
i=0(1 + h̄)i,

= e−t − x2 + 2 ln(x), provided that |1 + h̄| < 1,

which is the exact solution in this case. Figure 2, shows the h̄-curve corresponding to the truncated series
solution of order 12, which indicates that the parameter h̄ should satisfy −2 < h̄ < 0.
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Figure 2. The h-curve based on the 12th order approximation and α = 1.
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Example 3. Consider the fractional nonhomogeneous initial/boundary value problem

∂α
t u− 1

x
∂u
∂x −

∂2u
∂x2 + u = g(x, t), 0 < x < 1, 0 < t < T, 0 < α < 1,

u(x, 0) = 1 + x2 − 2 ln(x), x ∈ (0, 1),
u(1, t) = 2 + ∑∞

n=1(−1)n ∂−n α
t

(
1− 2 et) , ux(1, t) = 0, ∀ t ∈ (0, T),

 (71)

Taking f (x, t) = 1, g(x, t) = 2 et− 4+ x2− 2 ln(x) and u0(x, t) = u(x, 0) = 1+ x2− 2 ln(x), then in
view of Equation (68) we have

u1(x, t) = h̄ ∂−α
t [R1(~u0(x, t))] ,

= h̄ ∂−α
t

[
∂α

t u0 − 1
x

∂u0
∂x −

∂2u0
∂x2 + u0 − (1− χ1) g(x, t)

]
,

= h̄ ∂−α
t
(
1− 2et) .

u2(x, t) = χ2u1 + h̄ ∂−α
t [R2(~u1(x, t))] ,

= u1 + h̄ ∂−α
t

[
∂α

t u1 − 1
x

∂u1
∂x −

∂2u1
∂x2 + u1 − (1− χ2) g(x, t)

]
,

= h̄ ∂−α
t
(
1− 2 et)+ h̄ ∂−α

t
[
∂α

t
(
h̄ ∂−α

t
(
1− 2 et))+ h̄ ∂−α

t
(
1− 2et)] ,

= h̄ ∂−α
t
(
1− 2 et)+ h̄2 ∂−α

t
(
1− 2 et)+ h̄2 ∂−2α

t
(
1− 2 et) ,

= h̄ (1 + h̄) ∂−α
t
(
1− 2 et)+ h̄2 ∂−2α

t
(
1− 2 et) .

u3(x, t) = χ3u2 + h̄ ∂−α
t [R2(~u2(x, t))] ,

= u2 + h̄ ∂−α
t

[
∂α

t u2 − 1
x

∂u2
∂x −

∂2u2
∂x2 + u2 − (1− χ3) g(x, t)

]
,

= h̄ (1 + h̄)2 ∂−α
t
(
1− 2 et)+ 2 h̄2 (1 + h̄)∂−2α

t
(
1− 2 et)+ h̄3 ∂−3α

t
(
1− 2 et) .

u4(x, t) = χ4u3 + h̄ ∂−α
t [R2(~u3(x, t))] ,

= u3 + h̄ ∂−α
t

[
∂α

t u3 − 1
x

∂u3
∂x −

∂2u3
∂x2 + u3 − (1− χ4) g(x, t)

]
,

= h̄ (1 + h̄)3 ∂−α
t
(
1− 2 et)+ 3 h̄2 (1 + h̄)2 ∂−2α

t
(
1− 2 et)+

3 h̄3 (1 + h̄) ∂−3α
t

(
1− 2 et)+ h̄4 ∂−4α

t
(
1− 2 et) ,

= h̄ ∂− α
t
[
(1 + h̄) + h̄ ∂− α

t
]3 (1− 2 et) ,

continuing in this manner we obtain

un(x, t) = h̄ ∂− α
t
[
(1 + h̄) + h̄ ∂− α

t
]n−1 (1− 2 et) n ≥ 1.

Hence, the series solution is given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · · ,
= 1 + x2 − 2 ln(x) + h̄ ∑∞

n=1 ∂− α
t
[
(1 + h̄) + h̄ ∂− α

t
]n−1 (1− 2 et) .

If we take h̄ = −1, then all terms involving the factor (1+ h̄) will vanish, and we are left with the dominant
terms involving the operator ∂−α

t . Thus, the series solution takes the form

u(x, t) = 1 + x2 − 2 ln(x) +
∞

∑
n=1

(−1)n ∂−n α
t

(
1− 2 et) .

Figure 3, shows the h̄-curve corresponding to the truncated series solution of order 12,
which indicates that the values of h̄ should lie in the range −2 < h̄ < 0.
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Figure 3. The h-curve based on the 12th order approximation and α = 1.

Table 1 shows the absolute error in approximating the solution of the fractional equation in
example 3, generated by the truncated series solution u(10) = ∑9

i=0 ui(x, t), using h̄ = −1 and α = 1,
for different values of x and t, where the exact solution in this case is

u(x, t) = et + x2 − 2 ln(x).

Table 1. Absolute error |u− u(10)| corresponding to the values of the approximate solution u(10) of
example 3 with h̄ = −1, α = 1.

t \ x 0.1 0.2 0.3 0.5 0.7

0.1 9.628 ×10−13 5.471 ×10−13 5.844×10−13 4.219 ×10−13 1.217 ×10−13

0.2 2.215 ×10−12 7.052 ×10−13 6.679 ×10−13 1.678 ×10−12 1.134 ×10−12

0.5 1.444 ×10−11 1.595 ×10−11 1.599 ×10−11 1.498 ×10−11 1.552 ×10−11

0.7 5.240 ×10−10 5.255 ×10−10 5.255 ×10−10 5.245 ×10−10 5.250 ×10−10

0.9 8.490 ×10−9 8.491 ×10−9 8.491 ×10−9 8.490 ×10−9 8.491 ×10−9

1 2.731×10−8 2.731×10−8 2.731 ×10−8 2.731 ×10−8 2.731 ×10−8

Let us mention that the accuracy in these results can be improved by increasing the order of the
truncated series solution. On the other hand Tables 2–7 show the approximate solutions generated
by an mth order truncated series, u(m), for several values of m, with h̄ = −1, using different values of
α = 0.5, t = 0.2 and x.

Table 2. Approximate solutions of Problem (71) generated by u(m), at α = 0.5 and t = 0.2, with different
values of x and m.

m x u(m) x u(m) x u(m) x u(m)

3 0.1 6.509 0.3 4.392 0.8 2.980 0.9 2.914
5 6.610 4.493 3.081 3.016
7 6.618 4.500 3.089 3.023
8 6.618 4.501 3.089 3.023
9 6.618 4.501 3.089 3.024

10 6.618 4.501 3.089 3.024
11 6.618 4.501 3.089 3.024
12 6.618 4.501 3.089 3.024
13 6.618 4.501 3.089 3.024
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Table 3. Approximate solutions of Problem (71) generated by u(m), at α = 0.75 and t = 0.2,
with different values of x and m.

m x u(m) x u(m) x u(m) x u(m)

3 0.1 6.111 0.3 3.982 0.8 2.570 0.9 2.505
5 6.113 3.995 2.584 2.518
7 6.113 3.996 2.584 2.518
8 6.113 3.996 2.584 2.518
9 6.113 3.996 2.584 2.518

10 6.113 3.996 2.584 2.518

Table 4. Approximate solutions of Problem (71) generated by u(m), at α = 0.35 and t = 0.2,
with different values of x and m.

m x u(m) x u(m) x u(m) x u(m)

4 0.1 7.126 0.3 5.007 0.8 3.59697 0.9 3.53141
8 7.293 5.176 3.764 3.698

12 7.297 5.180 3.768 3.702
14 7.297 5.180 3.768 3.702
15 7.29 5.180 3.768 3.702
16 7.297 5.180 3.768 3.702
17 7.297 5.180 3.768 3.702
18 7.297 5.180 3.768 3.702

Table 5. Approximate solutions of Problem (71) generated by u(m), at α = 0.5 and x = 0.2, with different
values of t and m.

m x u(m) x u(m) x u(m) x u(m)

3 0.1 4.776 0.2 5.15228 0.5 6.50956 0.8 8.43529
5 4.807 5.254 7.071 9.944
8 4.808 5.262 7.178 10.393
11 4.808 5.262 7.182 10.423
12 4.808 5.262 7.182 10.430
13 4.808 5.262 7.182 10.431
14 4.808 5.262 7.182 10.431
15 4.808 5.262 7.182 10.431
16 4.808 5.262 7.182 10.431

Table 6. Approximate solutions of Problem (71) generated by u(m), at α = 0.75 and x = 0.2,
with different values of t and m.

m x u(m) x u(m) x u(m) x u(m)

3 0.1 4.501 0.2 4.743 0.5 5.742 0.8 7.306
5 4.504 4.756 5.880 7.812
6 4.504 4.757 5.885 7.848
7 4.504 4.757 5.886 7.857
8 4.504 4.757 5.887 7.859

10 4.504 4.757 5.887 7.860
12 4.504 4.757 5.887 7.860
13 4.504 4.757 5.887 7.860
14 4.504 4.757 5.887 7.860
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Table 7. Approximate solutions of Problem (71) generated by u(m), at α = 0.35 and x = 0.2,
with different values of t and m.

m x u(m) x u(m) x u(m) x u(m)

10 0.1 5.232 0.2 5.937 0.5 8.798 0.8 13.373
12 5.232 5.941 8.871 13.730
13 5.232 5.941 8.873 13.746
14 5.232 5.941 8.874 13.754
15 5.232 5.941 8.874 13.759
16 5.232 5.941 8.874 13.761
17 5.232 5.941 8.874 13.762
18 5.232 5.941 8.874 13.762
19 5.232 5.941 8.874 13.763
20 5.232 5.941 8.874 13.763
21 5.232 5.941 8.874 13.763
22 5.232 5.941 8.874 13.763

In view of the numerical results presented in Tables 2–7, it is noticed that when the value of α is
decreased and the value of t is increased, higher order truncated series solutions are required to obtain
the desired accuracy.

7. Conclusions

Some results concerning whether the non-local initial-boundary value problem for a fractional
order parabolic equation is well posed are obtained. The homotopy analysis method is applied to
obtain some numerical results . A set of examples is provided to illustrate the efficiency of the HAM in
solving some non-local time-fractional order initial-boundary value problems.
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