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Abstract: Classical fractional order controller tuning techniques usually establish the parameters
of the controller by solving a system of nonlinear equations resulted from the frequency domain
specifications like phase margin, gain crossover frequency, iso-damping property, robustness to
uncertainty, etc. In the present paper a novel fractional order generalized optimum method for
controller design using frequency domain is presented. The tuning rules are inspired from the
symmetrical optimum principles of Kessler. In the first part of the paper are presented the generalized
tuning rules of this method. Introducing the fractional order, one more degree of freedom is
obtained in design, offering solution for practically any desired closed-loop performance measures.
The proposed method has the advantage that takes into account both robustness aspects and desired
closed-loop characteristics, using simple tuning-friendly equations. It can be applied to a wide range
of process models, from integer order models to fractional order models. Simulation results are given
to highlight these advantages.

Keywords: fractional order controller design method; performance optimization; robust control
system; symmetrical optimum principle

1. Introduction

Fractional calculus has become very useful over the last years due to its many applications in almost
all applied sciences. There are applications in acoustic wave propagation in inhomogeneous porous
material, diffusive transport, fluid flow, dynamical processes in self-similar structures, dynamics of
earthquakes, optics, geology, viscoelastic materials, biosciences, bioengineering, medicine, economics,
probability and statistics, astrophysics, chemical engineering, physics, splines, tomography, fluid
mechanics, electromagnetic waves, nonlinear control, signal processing, control of power electronics,
converters, chaotic dynamics, polymer science, proteins, polymer physics, electrochemistry, statistical
physics, thermodynamics, neural networks, etc. [1–7].

Many researchers consider this mathematical tool very useful and provide significant contributions
in their field. The work of Podlubny [8] had a major impact in control engineering. He proposed a
generalization of the PID controller, namely the PIλDµ controller, involving an integrator of order λ
and a differentiator of order µ and of Oustaloup [9], who introduced the CRONE approach for these
systems. They also demonstrated that the response of this type of controller is better, in comparison
with the classical PID controller, when used for the control of fractional order systems. There are
also numerous different forms of fractional order controllers available, proper in some particular
cases. For example, in [10,11] is presented a particular fractional-order control scheme, the PDD1/2,
which derives from the classical PD scheme with the introduction of the half-derivative term.
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The fractional order controller design techniques are in general based on extensions of the classical
PID control theory, with an emphasis on the increased flexibility in the tuning strategy resulting better
control performances as compared to classical control tuning methods.

Several works approach the tuning of the fractional order PID controller through frequency domain
specifications, firstly described by [12]. Tuning the fractional order controller implies solving the
system of nonlinear equations composed of the design constraints, usually by optimization method [13]
or by approximation methods [14]. There are also available tuning algorithms using time domain cost
functions and optimization routines [15], constrained integral optimization methods, the fractional
extension of the MIGO algorithm designed by Astrom et al. as an improvement to the Ziegler–Nichols
rules [16,17] and auto-tuning methods [18]. Several applications use fractional order techniques, as it
is presented in the survey [2].

All of these works use one of the several definitions of fractional order derivative (or integral)
described above:

The Riemann–Liouville definition [12]:

D−αc f (t) =
1

Γ(α)

t∫
c

(t− τ)α−1 f (τ)dτ, t > c, α ∈ R+, (1)

where Γ(n) =
∞∫
0

tn−1e−tdt is the Euler’s Gamma function which is a generalization of a factorial and

n ∈ R+ is an extension of the fractional integral.
The Caputo definition [12]:

CDα f (t) =
1

Γ(m− α)

t∫
0

f (m)(τ)

(t− τ)α−m+1
dτ, m− 1 < α < m, m ∈ N. (2)

The Grünwald–Letnikov’s definition of the fractional-order derivative [12]:

GLDα f (t) =
m∑

k=0

f (k)(0+)tk−α

Γ(m + 1− α)
+

1
Γ(m + 1− α)

t∫
0

(t− τ)

m−α

f (m+1)(τ)dτ, m > α− 1. (3)

The frequency domain fractional-order controller design methods are generally based on the
following design specifications [12]:

1. Phase margin φm and gain crossover frequency ωcg:
2. Iso-damping property;
3. High-frequency noise rejection;
4. Good output disturbance rejection; and
5. Steady-state error cancellation;

Noting with Hp(s) the transfer function of the process and with Hc(s) the transfer function of the
controller, these design specifications can be mathematically described as:

1.
∣∣∣∣HC( jωgc)·HP

(
jωgc

)∣∣∣∣ = 0dB; arg
(
HC( jωgc)·HP

(
jωgc

))
= −π+ φm;

2. darg(HC( jω)·HP( jω))
dω

∣∣∣∣
ω=ωgc

= 0;

3.
∣∣∣∣T( jω) = HC( jω)·HP( jω)

1+HC( jω)·HP( jω)

∣∣∣∣ ≤ AdB, with A the desired noise attenuation for frequencies ω ≥ ωT

rad/s;
4.

∣∣∣∣S( jω) = 1
1+HC( jω)·HP( jω)

∣∣∣∣ ≤ BdB, with B the desired value of the sensitivity function for frequencies
ω ≤ ωS rad/s.
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Using the frequency definition of fractional order [12]:

( jω)α = e j πα2 = ωα cos
πα
2

+ jωα sin
πα
2

, (4)

it is easy to imagine the complexity of the resulted inequality system.
In contrast, the proposed method offers new, simple and tuning-friendly rules for fractional order

PID controllers, with guaranteed phase margin and gain crossover frequency, while the fractional order
offers an excellent tradeoff between dynamic performances and stability robustness.

The paper is structured as follows. After this first, brief introductory part, the second section
describes the proposed controller design method, followed by case studies for different process models,
from integer order model to fractional order model. The work ends with concluding remarks.

2. The Proposed Controller Design Method

The design method is inspired by the ‘symmetrical optimum’ introduced by Kessler [19]. The
plant to be controlled is assumed to be of the form:

HP(s) =
K0

m∏
i=1

(
1 + Tpis

) n∏
j=1

(
1 + Tpjs

)
eTms

, (5)

where Tpi correspond to large (compensable) time constants with respect to the sum of the ‘parasitic’
time constants Tpj and time delay Tm, i.e.,:

Tpi >>
n∏

j=1

T j + Tm = TΣ. (6)

Therefore, for the frequencies below 1/TΣ the plant transfer function can be approximated by:

HP(s) =
K0

(1 + TΣs)
m∏

i=1

(
1 + Tpis

) (7)

and in the region of the crossover frequency is furthermore approximated by a cascade of pure
integrators:

HP(s) �
K0

(1 + TΣs)
m∏

i=1

(
Tpis

) =

K0
m∏

i=1
(Tpi)

sm(1 + TΣs)
=

K′0
sm(1 + TΣs)

. (8)

The Kessler’s ‘symmetrical optimum’ can be expressed as follows: ‘The crossover frequency of the
compensated system is ωcr = 1/(2T∑) and the PI(D) is adjusted such that a region with a slope of −20
dB/s is secured for one octave on the right and m octaves on the left of the crossover frequency” [20].

The resulting tuning rules for a PI controller, in the case when m = 1, are the well-known Kessler’s
equations [20]:

HC(s) = KC·Tc

(
1 +

1
Tcs

)
with KC =

1
8T2

ΣK′0
; TC = 4TΣ (9)

obtained from the open loop: Hol(s) =
1+4TΣs

8T2
Σs2(1+TΣs)

, with gain crossover frequency and open loop gain:

ωgc =
1

2TΣ
; k =

1
8T2

Σ

. (10)



Mathematics 2019, 7, 1166 4 of 21

In the same research Voda and Landau conclude that in the case of a pure integrator plant (l/sT1), a
damped response with 43% overshoot is obtained–due to the zero (1 + 4T∑s) in the closed loop–having
a rise time of 3.1T∑ and a settling time of 16.3T∑. The gain margin is GM >2.7 and the phase margin
(PM) is 36.8◦. These performances, excepting phase margin which cannot be modified, can be corrected
by using a reference filter or by using a PI with the proportional part acting only on the output. The
above-mentioned performance becomes unacceptable due to a large sensitivity with respect to the
modification of the plant gain accompanied by an alleviation of the phase margin. This shortcoming
can be much stronger if T∑ corresponds to the sum of parasitic time constants [18]. A way for
control system performance enhancement, including the value of the phase margin, is obtained by the
generalization of the tuning rules in terms of [21]:

KC =
1

β
√
βT2

ΣK′0
; TC = βTΣ (11)

with the recommended values for β constrained to the range [4,18]. The exact value of β is chosen as a
result of a compromise between the imposed closed loop performances (overshoot, settling time, etc.)
and the desired phase margin. The case of β = 4 is the solution presented in [21].

The gain crossover frequency and the gain of the open loop in this case are:

ωgc =
1√
βTΣ

; k =
1

β
√
βT2

Σ

. (12)

A more generalized form of this method and a new approach, including one more degree of
freedom using fractional order derivatives are proposed in the present work.

2.1. The Generalized Optimum Method

For the plant transfer function as in (8), with an integral behavior, the ideal form of the open loop
transfer function which can reject a step disturbance is:

Hol(s) =
k
s2 .

The closed loop in this case will ensure perfect disturbance rejection in steady state, but the phase
margin is 0◦, the system is at stability limit, a highly oscillatory system. To correct this problem,
a positive phase element is added to the open loop:

Hol(s) =
k
s2 ·

T1s + 1
T2s + 1

, with T1 > T2. (13)

To ensure maximum stability (maximum value of phase margin), the gain crossover frequency is
imposed to be at the maximum value of the open loop phase characteristic. Analytically this can be
expressed by the equations: 

∣∣∣∣Hol
(
jωgc

)∣∣∣∣ = 0dB = 1
d∠Hol( jω)

dω

∣∣∣∣
ω=ωgc

= 0
. (14)

Solving this equation system yields the gain crossover frequency and the open loop gain:

ωgc =
1

√
T1·T2

and k =
1

T1·T2

√
T2

T1
(15)

being a generalization of (12), with one more degree of freedom, ensuring better performances than
the classical method.



Mathematics 2019, 7, 1166 5 of 21

Choosing the time constants:
T2 = TΣ and T1 = β·TΣ,

the particular tuning rules are obtained in terms of Preitl and Precup [21] and for β = 4 the Kessler’s
optimum method [20].

2.2. Fractional Order Optimum Method

The above presented method has the disadvantage of compromise between the desired closed
loop performances and the desired phase margin. To eliminate this disadvantage, one more degree of
freedom can be added using a fractional order correction element in Equation (13):

Hol(s) =
k
s2 ·
β2Tsα + 1
Tsα + 1

,α ∈ <, (16)

where α is the fractional order, the generalization of the classical operation of derivation and integration
to orders other than integer [12]. Theoretically, this parameter can take any real, positive value.
However, for the controller to have physical meaning, the interval of the fractional orders of integration
and differentiation is usually limited to (0, 2) [12].

The multiplication term of the time constant is chosen β2 instead of β to avoid the square root
from the controller’s tuning equations.

Considering this fractional order form of the open loop, the system Equation (14) becomes:
∣∣∣∣∣∣ k
( jωgc)

2 ·
β2T( jωgc)

α
+1

T( jωgc)sα+1

∣∣∣∣∣∣ = 0dB = 1

d
dω

∣∣∣∣∣∣ k
( jωgc)

2 ·
β2T( jωgc)

α
+1

T( jωgc)sα+1

∣∣∣∣∣∣
ω=ωgc

= 0
.

The explicit form of the equations for the gain crossover frequency and phase conditions, using
the frequency definition of fractional order, Equation (4), are:

K
ω2 ·

√
1+2β2Tωα cos απ2 +(β2Tωα)2

1+2Tωα cos απ2 +(Tωα)2

∣∣∣∣∣∣
ω=ωgc

= 1

d
dω

(
−π+ arctan

β2Tωα sin απ
2

1+β2Tωα cos απ2
− arctan

Tωα sin απ
2

1+Tωα cos απ2

)∣∣∣∣∣
ω=ωgc

= 0
. (17)

The solution of this system, the fractional order generalization of Equation (14) is:

ωgc =

(
1
βT

) 1
α

and k =
1
β

(
1
βT

) 2
α

. (18)

Using these equations, for any chosen value of the fractional order, at the crossover frequency the
phase always reaches its maximum value:

arctan
β sin απ

2

1 + β cos απ2
− arctan

1
β sin απ

2

1 + 1
β cos απ2

or, expressed in terms of phase margin:

PM = arctan

(
β2
− 1

)
tan απ

2

(β+ 1)2 + β tan2 απ
2

. (19)
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With the particular values T = TΣ and α = 1 the results from (8), while for β = 2, the Kessler’s
form (Equation (9)) is obtained.

The obtained phase margin and gain crossover frequency as function of the fractional order
is plotted in Figures 1 and 2. For simplicity reasons is considered T = T∑ = 1, without affecting
the conclusions.
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It can be observed that both gain crossover frequency and phase margin increases with the
fractional order α, meaning increased stability and smaller settling time as higher the α is. For α = 1
the “classical” Kessler’s phase margin value of 36.8◦ and gain crossover frequency is obtained, as in
Equation (10).

From the step response of the closed control loop with different values of α the corresponding
overshoots can be determined, resulting the plot from Figure 3. This plot reveals that the overshoot
decreases with the increasing fractional order.
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The main advantage of the Kessler’s optimum method-the steady state speed error cancellation-is
maintained with the fractional order system as well. Moreover, the higher the fractional order, the better
the transient response of the closed loop system, as it is presented in Figure 4.
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Figure 4. Transient for ramp input for different fractional order.

Having two more degrees of freedom-due to the parameter β and fractional order α–the controller
design problem becomes an optimization problem: select the proper β and α to ensure the desired
closed loop performance measures.

In Figure 5 the gain crossover frequency evolution (which is inversely proportional with the
settling time) with respect to parameters β and α is presented. In a similar manner the maximum
phase margin, Figure 6, or any other desired performance measure of the closed loop system can be
represented. With this optimization technique the desired performances of the system can be ensured,
no matter how rigorous they are.
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The controller parameter tuning algorithm can be described as follows:

1. Having the process mathematical model of the form of Equation (5), the open loop transfer function
form is imposed as in Equation (16) to provide zero steady-state position and velocity error.

2. Using Equations (18) and (19) the tuning parameters K, α and β for the desired values of gain
crossover frequency and phase margin are computed.

3. Having the open loop in Equation (17) and the process model in Equation (5), the transfer function
of the fractional order controller in one of the forms presented in [22] is obtained.

The controller obtained with the proposed method being a fractional order one, engineers
are faced with the problem of implementation. Actually, the fractional-order controller itself is an
infinite-dimensional linear filter due to the fractional-order differentiator. A band-limit implementation
is important in practice. Finite dimensional approximation of the fractional order controller should be
used in a proper range of frequency of practical interest. A possible approximation method, the most
widely applicable, is the Oustaloup recursive algorithm [23].

3. Case Studies

The results obtained with the controller tuning method presented in the previous section
are illustrated.

3.1. Integer Order Plant, without Zero

It is considered a plant described by the transfer function:

HP(s) =
1

s(Ts + 1)
. with T = 1,

a typical process model from mechatronics. This model could be the transfer function from position
to armature voltage in a DC motor. Applying the general tuning rules presented in the introductory
section, results the following nonlinear inequalities system:

KP

√
1 + 2Kiω

−λ
gc cos

π·λ
2

+ω−2λ
gc ·K2

i =
√

ReHP2 + ImHP2,

Ki sin
(
π·λ

2

)
ωλcg + Ki cos

(
π·λ

2

) = tan
(
π−φm + arctan

( ImHP

ReHP

))
,
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Ki·λ·ω
λ−1
gc · sin

(
π·λ

2

)
K2

i + 2ωλgc·Ki· cos
(
π·λ

2

)
+ω2λ

gc

=
ReP|ω=ωgc ·

d
dω ImP

∣∣∣
ω=ωgc

− ImP|ω=ωgc ·
d

dωReP
∣∣∣
ω=ωgc

ReP2
∣∣∣
ω=ωgc

+ ImP2
∣∣∣
ω=ωgc

,

K2
P·
(
ω2λ + 2Ki·ω

λ
· cos

(
π·λ

2

)
+ K2

i

)
[
ωλ(ReP + KP) + KiKP· cos

(
π·λ

2

)]2
+

[
ωλ·ImP−KiKP· sin

(
π·λ

2

)]2 ≤ A2,ω ≥ ωT,

ω2λ
·

(
ReP2 + ImP2

)
[
ωλ(ReP + KP) + KiKP· cos

(
π·λ

2

)]2
+

[
ωλ·ImP−KiKP· sin

(
π·λ

2

)]2 ≤ B2,ω ≤ ωS,

where Kp, Ki, and λ are the tuning parameters of the fractional PI controller HC(s) = KP
(
1 + Ki

sλ

)
.

The resulted system can be solved by optimization routines or approximation methods. A possible
solution for the present case study, obtained with the fmincon command in Matlab® (20192-academic
use, MathWorks, Inc., Natick, MA, USA) is Kp = 0.97, Ki = 0.1 and λ = 2.245. With these parameters the
gain crossover frequency is 0.6 (rad/s) and the phase margin is 60◦.

As opposed to this complex design, following the proposed method at least the same performances
can be achieved using simple, user-friendly equations, more suitable for industrial applications.
The open loop structure in this case is:

Hol(s) =
k
s2 ·
β2sα + 1
sα + 1

, α ∈ <.

The parameters α and β can be established using the equations:

ωgc =

(
1
β

) 1
α

and k =

(
1
β

) 2+α
α

.

The maximum achievable phase margin results from Equation (19):

arctan

(
β2
− 1

)
tan απ

2

(β+ 1)2 + β tan2 απ
2

.

The design problem consists now in an optimization between the desired performances: finding
the proper values of β and α to have maximum value of the phase margin, maximum value of gain
crossover frequency. With the chosen values of β and α, the controller structure results from the open
loop and the process transfer function.

In Table 1 the frequency domain performance measures are presented (phase margin, gain crossover
frequency) and the control system main performance measures for a unit step input (overshoot, rise
time) for different values of the parameters α and β.
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Table 1. Performance measures for different β and α values.

α

Gain
Crossover
Frequency

(rad/s)

Phase Margin
(◦)

Overshoot
(%)

Rise Time
(s)

β = 2

1 0.50 36.87 43.2 2.15
1.1 0.53 42.63 38.2 2.01
1.2 0.56 49.29 33.0 1.95
1.3 0.58 57.08 28.0 1.79
1.4 0.60 66.38 23.4 1.69
1.5 0.63 77.65 22.4 1.59

β = 3

1 0.33 50.90 24.9 3.39
1.1 0.36 58.00 18.5 3.26
1.2 0.40 65.85 15.4 3.19
1.3 0.42 74.62 15.0 2.62
1.4 0.45 84.50 14.9 2.43
1.5 0.48 95.76 14.8 2.22

β = 4

1 0.25 56.30 17.3 4.91
1.1 0.28 63.64 14.5 4.70
1.2 0.31 71.59 13.3 4.58
1.3 0.34 80.31 13.1 4.08
1.4 0.37 89.96 13.0 3.74
1.5 0.39 100.78 12.9 3.35

Figure 7 highlights the closed loop performance improvement for different fractional order in
comparison with the Kessler’s optimum method values (α = 1, β = 2), while Figure 8 deals with the
frequency domain measures. These simulation results are obtained using a second order “crone”
approximation of the fractional order in the frequency domain (10−2, 102) rad/s [23,24].
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Comparing the results with the Kessler’s performance measures—indicated in the first row of the
table, obtained for α = 1, β = 2, and with the blue line on Figures 7 and 8—the advantages are obvious.
For example for β = 2 and α = 1.5 the achieved phase margin value is 77.65◦, instead of 36.87◦ with
the classical method, the overshoot is 22.4% instead of 43.2%, while the rise time is 1.59 s instead of
2.15 s. The integer order approximation of the designed controller is:

HC(s) =
0.79311(s + 9.961)(s + 1.461)

s(s + 9.844)(s + 0.1016)(s2 + 1.113s + 1)
+

(s + 0.1071)
(
s2 + 0.3966s + 0.161

)
s(s + 9.844)(s + 0.1016)(s2 + 1.113s + 1)

.

For β = 4 and α = 1.5 a phase margin of 100.78◦, overshoot 12.9% is obtained, but the rise time
increases to 3.35 s. The best solution for the controller parameters can be achieved by an optimization
procedure based on the imposed performance values.

3.2. Integer Order Plant with Zero

Another advantage of the method consists in the possibility to apply for a large variety of
process models. For a process model having a zero, which is typical for parallel connected systems,
the following transfer function is considered:

HP(s) =
0.5s + 1
s(s + 1)

.

The obtained performances are: for α = 1.3 and β = 2 the overshoot is 26.9%, rise time 1.74 s,
phase margin 55.5◦, gain crossover frequency 0.587 rad/s, while for α = 1.3 and β = 4 the overshoot
decreases to 15.9%, phase margin increases to 83◦, but the gain crossover frequency became 0.345 rad/s
yielding a rise time of 4.23 s. These results are depicted in Figures 9–12.



Mathematics 2019, 7, 1166 13 of 21

Mathematics 2019, 7, x FOR PEER REVIEW 15 of 24 

 

 

Figure 9. Step response of the closed loop with integer order plant with zero for different fractional 

order α and β = 2. 

Figure 9. Step response of the closed loop with integer order plant with zero for different fractional
order α and β = 2.



Mathematics 2019, 7, 1166 14 of 21
Mathematics 2019, 7, 1166 16 of 23 

 

 
Figure 10. Bode plot of the control loop with integer order plant with zero for different fractional 
order α and β = 2. 
Figure 10. Bode plot of the control loop with integer order plant with zero for different fractional order
α and β = 2.



Mathematics 2019, 7, 1166 15 of 21
Mathematics 2019, 7, 1166 17 of 23 

 

 
Figure 11. Step response of the closed loop with integer order plant with zero for different fractional 
order α and β = 4. 

 
Figure 12. Bode plot of the control loop with integer order plant with zero for different fractional 
order α and β = 4. 

Figure 11. Step response of the closed loop with integer order plant with zero for different fractional
order α and β = 4.

Mathematics 2019, 7, 1166 17 of 23 

 

 
Figure 11. Step response of the closed loop with integer order plant with zero for different fractional 
order α and β = 4. 

 
Figure 12. Bode plot of the control loop with integer order plant with zero for different fractional 
order α and β = 4. 

Figure 12. Bode plot of the control loop with integer order plant with zero for different fractional order
α and β = 4.



Mathematics 2019, 7, 1166 16 of 21

The integer order approximation of the designed controller for α = 1.3 and β = 2, the considered
optimum in this case, is:

HC(s) =
0.94585(s+12.1)(s+1.881)

s(s+11.83)(s+2)(s+0.08454)(s2+1.729s+1) +
(s+0.2315)(s2+0.1845s+0.01243)

s(s+11.83)(s+2)(s+0.08454)(s2+1.729s+1) .

3.3. Fractional Order Plant

The more general case considered is a fractional order plant. Such a process model is typical for
effective modeling of high order control plants, for example of modeling experimental heat plant.

For:
HP(s) =

1
s1.5(s + 1)

is considered β = 2 and α = 1.2 in the proposed algorithm. The obtained performances are: overshoot
33%, rise time 1.74 s, phase margin 48◦, gain crossover frequency 0.561 rad/s, while for α = 1.2 and
β = 4 the overshoot decreases to 15%, phase margin increases to 67.9◦, but the gain crossover frequency
became 0.315 rad/s yielding a rise time of 4.05 s. The steady-state velocity error is zero, as it is expected.
All these results are highlighted in Figures 13–16. The integer order approximation of the designed
controller in this case is:

HC(s) =
B(s)
A(s)

,

where:
B(s) = 793.1058(s + 10)(s + 9.961)(s + 1.585)(s + 1.461)

·(s + 0.2512)(s + 0.1071)(s + 0.03981)(s + 0.00631)
(
s2 + 0.3966s + 0.161

) ,

A(s) = s(s + 158.5)(s + 25.12)(s + 9.844)(s + 3.981)
·(s + 1)(s + 0..631)(s + 0.1016)(s + 0.1)

(
s2 + 1.113s + 1

) .Mathematics 2019, 7, 1166 19 of 23 
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The cost of such a good results is the implementation of a fractional order controller, instead of a
simple PI or PID controller, but with the present hardware possibilities this is not a real problem.

3.4. Experimental Case Study

In order to prove the efficiency of the proposed method, an experimental case study is included.
The DC motor is a versatile execution element which requires a certain degree of robustness due to
varying operation conditions, load changes and other varying variables linked to it, making it a linear
parameter varying system. It is explicitly chosen this example due to its simplicity in dynamics and
operation. The experimental unit consists in the modular servo system designed by Inteco [25] used
in the particular configuration indicated in Figure 17. The plant is composed of a tachogenerator
(used to measure the rotational speed), inertia load, backlash, incremental encoder, and gearbox with
output disk.
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Approximating this fractional order transfer function with the Oustaloup recursive approximation, 
results: 
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0.793 9.459 16.270 7.672 2.505 0.199( ) .
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Figure 17. The experimental unit: the modular servo system.
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The mathematical model of the modular servo system without backlash and loads has been
determined experimentally for the operating point of 100 rad/s as:

HP(s) =
Ω(s)
u(s)

=
k

s(Ts + 1)
=

194
s(0.6s + 1)

,

where Ω is the angular position of the rotor and u is the input voltage.
Applying the proposed method, it is imposed:

Hol(s) =
k
s2 ·
β2Tsα + 1
Tsα + 1

.

For a gain crossover frequency ωgc = 0.75 and phase margin PM = 72◦, using Equations (19) and
(20), the parameters α = 1.5, β = 2 and k = 0.198 are obtained. Computing the controller transfer function

from the well-known equation HC(s) =
Hol(s)
HP(s)

results HC(s) = 0.001·
(2.4s1.5+1)(0.6s+1)

s(0.6s1.5+1) . Approximating
this fractional order transfer function with the Oustaloup recursive approximation, results:

HC(s) =
0.793s5 + 9.459s4 + 16.270s3 + 7.672s2 + 2.505s + 0.199

s5 + 11.060s4 + 13.070s3 + 11.060s4 + s
.

This controller was implemented using a specialized RT-DAC/PCI-D I/O board and the Real Time
Windows Target toolbox from Matlab®. The obtained results are in accordance with the imposed
values, as it is presented in Figure 18.
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4. Conclusions

A novel tuning method for fractional order controllers is presented, inspired by the Kessler’s
optimum method. The major advantages of the method are:
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1. Ensures practically any closed loop performance measures, given the possibility to choose the
most convenient solution by optimization for the tuning parameters α and β. Each solution will
ensure the maximum possible value of the phase margin.

2. It is a simple method of the same complexity as the Kessler’s optimum method.
3. It can be applied for practically any type of process model, from integer order models to fractional

order models, which can be approximated as in Equation (9).

All the main points of this work were verified both by numerical simulation and experimental
results. The simulated case studies include process transfer functions with integer order, with zeros
and fractional order transfer functions as well. As an experimental case study it was chosen as an
example of great simplicity in mechatronic applications and basic loop control in the manifold of
production systems: the DC motor.
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