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Abstract: In this study, we present a novel numerical scheme for the approximate solutions of
linear as well as non-linear ordinary differential equations of fractional order with boundary
conditions. This method combines Cosine and Sine (CAS) wavelets together with Green function,
called Green-CAS method. The method simplifies the existing CAS wavelet method and does
not require conventional operational matrices of integration for certain cases. Quasilinearization
technique is used to transform non-linear fractional differential equations to linear equations and
then Green-CAS method is applied. Furthermore, the proposed method has also been analyzed for
convergence, particularly in the context of error analysis. Sufficient conditions for the existence of
unique solutions are established for the boundary value problem under consideration. Moreover,
to elaborate the effectiveness and accuracy of the proposed method, results of essential numerical
applications have also been documented in graphical as well as tabular form.

Keywords: Green-CAS method; CAS wavelets; Caputo integration and derivative; fractional
differential equations; collocation points

1. Introduction

Fractional calculus, which is the generalization of ordinary integration and differentiation,
has become an essential component in recipes for genre of science and engineering. This significance
of fractional calculus is its essence of being a potential tool with higher accuracy and concluding
precise results in different areas. The distinctive feature of fractional operators is that the fractional
differential operators are of non-local character. Hence, the subject takes history along with non-local
distributed effects into account [1–3]. Several problems of physical nature are central to, and crux of
fractional differential equation. Recently many researchers have focused on techniques and methods
for solving fractional differential equations [4–10]. In essence, fractional calculus has been deployed
for fluid dynamics [11], bio engineering [12], electromagnetism [13], modeling the transfer of heat
in heterogeneous media [14] and anomalous diffusion [15,16]. The manipulative control actions of
human operators interacting with fractional-order plants are studied in [17]. The authors introduced
a generalized fractional crossover model, which is justified and validated with the experimental data.
In [18], a model is developed by generalizing the crossover model which characterizing the human
control of systems with both integer and fractional-order plant dynamics. Present work has examined
the characteristics of human control using fractional-order dynamics.

Wavelet analysis is well established and successful mathematical tool with numerous applications
in engineering and science. Wavelets consists of expressions of functions expanded as summation
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of basic functions. These basic functions are achieved by translation and compression of a mother
wavelet function. Thus, inheriting properties of locality and smoothness, which makes it easy to
study the properties of integer and locality in the process of expressing function [19]. Wavelet has
stirred considerable interest in applying them for numerical solutions of classical ordinary and partial
differential equations. Recently, researcher have successfully extended some standard wavelet methods
for numerical solutions for fractional differential equations as well. It is somehow surprising that
among different solution techniques, the Cosine and Sine (CAS) wavelet method have rather less
attention. CAS wavelet technique have been used to approximate solutions for Fredholm integral
equations [20], and integro-differential equations [20–22]. Moreover, CAS wavelet operational matrices
have been used to approximate solutions of non-linear Volterra integro-differential equations [23].
The CAS Picard methods has been used to approximate the solutions of non-linear fractional differential
equations [24]. Other applications of some wavelet methods in the area of applied mathematics include
numerical integration, numerical solutions of fractional ordinary and fractional partial differential
equations [25–28]. Meanwhile, different types of wavelets are used such as the Haar wavelet [29,30],
B-spline [31], Daubechies [32] and Legendre wavelet [33,34].

The application of Chebyshev wavelets method for numerical solutions of fractional fourth,
sixth and eighth order linear and non-linear boundary value problems is considered in [35].
The reproducing kernel Hilbert space method is used in [36] for the solutions of fourth order fractional
boundary value problems. In [37], authors constructed a new pseudospectral integration matrix of any
arbitrary order a ∈ R+ for the solution of fractional initial and boundary value problems. They used
the Chebyshev interpolating polynomial for functions at the Gauss–Lobatto points in [−1, 1]. A novel
approach is introduced in [38] for the solution of fractional initial and boundary-values problems.
Solution is approximated by the truncated series of fractional powers of the independent variables.

In this paper, we have tried to develop a simple and efficient wavelet-based numerical scheme
for solution of fractional differential equations. This technique is based on implementation of Green
function along with CAS wavelets. This method is not only easy to implement but also it does not
require the conventional operational matrices of integration. The convergence of proposed method has
been derived and elaborated in the context of error analysis for further applications. The method has
been further analyzed in terms of the efficiency and accuracy by considering a number of documented
examples. Moreover, the comparison from these results have also been documented in tabular form
against previous studies [39,40].

The present paper is organized as follows: In the second section we review some basic definitions
needed in the sequel. We give a brief introduction of CAS wavelet method. Moreover, for the sake
of completeness, the CAS wavelet operational matrix is also discussed. In Section 3, we present
numerical method called Green-CAS method for fractional boundary value problems. The procedure
for implementation of the method is also elaborated in this section. In the fourth section of the paper,
we establish sufficient conditions for the existence of unique solution for certain class of boundary
value problems with mixed boundary conditions. Section 5 gives comparison of the Green-CAS
method with some previous studies [39,40]. The method is tested for a number of problems to study
the efficiency and accuracy. Furthermore, in Section 6, we workout error analysis for the method.
Finally, in last section we conclude the work.

2. Fractional Calculus and CAS Wavelets

In this section, we review some basic definitions of fractional calculus. These definitions serve as
underpinnings infrastructure for the upcoming section.

Definition 1. [41] The Riemann–Liouville fractional integral operator of order α ∈ R+ is defined as

Iα
t f (t) =

1
Γ(α)

∫ t

a
(t− ξ)α−1 f (ξ)dξ, (1)
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for a < t ≤ b.

Definition 2. [41] The Caputo fractional derivative operator of order α ∈ R+ is defined as

Dα
t f (t) =

1
Γ(n− α)

∫ t

a
(t− ξ)n−α−1σ(n) f (ξ)dξ, (2)

for a < t ≤ b, where σ = d
dt and n− 1 < α ≤ n, n ∈ N and n = bαc+ 1.

Lemma 1. [24] Assume that ur+1(t) ∈ L2[0, 1] is a differentiable and bounded function such that there exits
γ > 0; ∀ t ∈ [0, 1] : | d2

dt2 ur+1(t)| ≤ γ. Let uk,M
r+1(t) be the approximation of ur+1(t), then we have

|ur+1(t)− uk,M
r+1(t)| ≤

γ

π2

∞

∑
n=2k

∞

∑
m̂=M+1

1

(n + 1)
5
2 m̂2

, (3)

and uk,M
r+1(t) converges to ur+1(t) as k, M and r approach ∞.

Wavelets are special kind of family of functions constructed from specific transformations namely
translation and dilation of a single function called the mother wavelet,

ψa,b(t) = |a|−
1
2 ψ(

t− b
a

), a, b ∈ R, a 6= 0. (4)

If the parameter |a| < 1, then the wavelet (4) corresponds to higher frequencies with smaller
support in time domain and becomes compressed form of mother wavelet. On contrary, when |a| > 1
the wavelet has larger support in time domain and corresponds to lower frequencies. Discretizing the
parameters as a = a−k

0 , b = nb0a−k
0 , a0 > 1, b0 > 1 where k and n are positive integers, we obtain the

following family of discrete wavelets

ψk,n(t) = |a0|
k
2 ψ(ak

0t− nb0), (5)

where ψk,n(t) form a basis for L2(R). In particular, if a0 = 2 and b0 = 1, then these wavelets produce
an orthonormal basis. The orthonormal CAS wavelets [20] are defined on the interval [0, 1] as

ψk,n(t) =

{
2

k
2 CASm̂(2kt− n + 1), for t ∈ [ n−1

2k , n
2k ];

0, otherwise;
(6)

where CASm̂(t) = cos(2m̂πt) + sin(2m̂πt) and n = 1, 2, 3, · · · , 2k, is the translation parameter.
The non-negative integer k is the level of resolution and m̂ is any positive integer. CAS wavelet have
compact support, i.e.,

supp(ψk,n(t)) = {t : ψk,n(t) 6= 0} =
[n− 1

2k ,
n
2k

]
. (7)

2.1. Function Approximations

Any function u(t) ∈ L2[0, 1) can be expressed as CAS wavelet series:

u(t) =
∞

∑
n=0

∑̂
m∈Z

cnm̂ψn,m̂(t), (8)
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where cnm̂ =< u(t), ψn,m̂(t) >=
∫ 1

0 u(t)ψn,m̂(t)dt. Therefore, the series (8) is truncated as

u(t) ∼=
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂ψn,m̂(t) = CTΨ(t), (9)

where C and Ψ are vectors of the form

C = [c0,−M, c0,−M+1, · · · , c0,M, c1,−M, c1,−M+1, · · · , c1,M, · · · , c2k−1,−M, c2k−1,−M+1, · · · , c2k−1,M]T ,

Ψ(t) =[ψ0,−M(t), ψ0,−M+1(t), · · · , ψ0,M(t), ψ1,−M(t), ψ1,−M+1(t), · · · , ψ1,M(t), · · · , ψ2k−1,−M(t),

ψ2k−1,−M+1(t), · · · , ψ2k−1,M(t)]T .

The collocation points for the CAS wavelet are taken as ti = 2i−1
2m , where i = 1, 2, · · · , m.

The CAS wavelet matrix Ψm,m can be written as

Ψm×m =
[
Ψ
( 1

2m
)
, Ψ
( 3

2m
)
, · · · , Ψ

(2m− 1
2m

)]
. (10)

If we fix k = 1, M = 1, we have n = 0, 1; m̂ = −1, 0, 1 and i = 1, 2, · · · , 6, then the CAS
wavelet matrix is given by

Ψ6×6 =



−0.5176 −1.4142 1.9319 0 0 0
0 0 0 −0.5176 −1.4142 1.9319

1.4142 1.4142 1.4142 0 0 0
0 0 0 1.4142 1.4142 1.4142

1.9319 −1.4142 −0.5176 0 0 0
0 0 0 1.9319 −1.4142 −0.5176


. (11)

2.2. CAS Wavelet Operational Matrix

For simplicity Equation (9) can be written as

u(t) ∼=
m

∑
i=1

ciψi(t) = CTΨ(t), (12)

where the index i is determined by the expression i = M(2n + 1) + (m̂ + n + 1) and m = 2k(2M + 1).
Any arbitrary function u(t) ∈ L2(R) can be expanded in terms of a block-pulse function [42]

given as

u(t) ∼=
m

∑
i=1

aibi(t) = ATB(t), (13)

the term ai is the coefficient of the block-pulse functions bi. So the CAS wavelet can be expanded in
terms of block-pulse as

Ψ(t) = Ψm×mB(t). (14)

The fractional integral of block-pulse function is given by

(Iα
t b)(t) = Kα

m×mB(t), (15)

where Kα
m×m is given in [18] with Pα

m×m = Ψm×mKα
m×m(Ψm×m)−1. The operational matrix Pα

m×m for
α = 0.75 and for fixed values of k = 1 and M = 1 is given by
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P0.75
6×6 =



0.0584 −0.0087 −0.1227 0.0367 0.0620 0.0166
0 0.0584 0 −0.1227 0 0.0620

0.1091 −0.0258 0.3697 0.5041 −0.1227 0.0367
0 0.1091 0 0.3697 0 −0.1227

−0.0893 0.0052 0.1091 −0.0258 0.0584 −0.0087
0 −0.0893 0 0.1091 0 0.0584


. (16)

3. Approximate Solutions of BVP via Green-CAS Wavelet Method

We present the implementation procedure for the proposed method for solving linear and
non-linear ordinary fractional boundary value problems numerically, called Green-CAS technique.
In general, this method does not require the use of operational matrix for fractional differential equation.
Interestingly, accuracy is not compromised, rather enhanced by using Green-CAS method for solving
fractional boundary value problems.

Consider the following class of fractional boundary value problem:

Dα
0 u(t) + f (t, u(t)) = 0, with u(0) = u0, u(1) = u1. (17)

Lemma 2. [43] Let 0 < α ≤ 2, and f (t, u(t)) : [0, 1]×R −→ R is continuous, then u(t) is the solution of
Equation (17) if and only if u(t) satisfies the following Fredholm integral equation

u(t) =
∫ 1

0
G(t, ξ) f (ξ, u(ξ))dξ + u0 + t(u1 − u0), (18)

where

G(t, ξ) =


1

Γ(α)

[
− (t− ξ)α−1 + t(1− ξ)α−1], if 0 ≤ ξ < t;

t
Γ(α) (1− ξ)α−1, if t ≤ ξ ≤ 1.

(19)

The graph for the function in Equation (19), for α = 2, k = 3, and M = 5, is shown in Figure 1.
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Figure 1. Green function for fixed values of M = 5, k = 3 and for α = 2 .
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Numerical Procedure to Fractional Linear Differential Equations

In this subsection, we describe the procedure of implementation of Green-CAS method
to approximate the numerical solutions for the linear fractional differential equations with
boundary conditions.

Consider the class of linear fractional differential equations

Dα
t u(t) + a(t)Dβ

t u(t) + b(t)u′(t) + d(t)u(t) = g(t), 1 < α ≤ 2, 0 < β ≤ 1, (20)

with Dirichlet boundary condition

u(0) = p1, u(1) = p2, (21)

or mixed boundary conditions of the form

(1) u′(0) = q1, u(1) = q2 or (2) u(0) = r1, u′(1) = r2, (22)

where t ∈ [0, 1] and p1, p2, q1, q2, r1 and r2 are constants and g is a linear function.
Case #1 Equation (20) with Dirichlet boundary condition (21). Approximate the higher order

derivative term as

Dα
t u(t) =

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂ψn,m̂(t). (23)

Applying the fractional integral operator on both sides of Equation (23), we get

u(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα
t ψn,m̂(t)) + ty1 + y2. (24)

Using the boundary conditions (21), Equation (24) becomes

u(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα
t ψn,m̂(t)) + t

(
p2 − p1 −

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα
t ψn,m̂(1))

)
+ p1. (25)

u(t) = ∑2k−1
n=0 ∑M

m̂=−M cnm̂

( ∫ t
0

(t−ξ)α−1

Γ(α) ψn,m̂(ξ))dξ − t
∫ 1

0
(1−ξ)α−1

Γ(α) ψn,m̂(ξ))dξ
)
+ t(p2 − p1) + p1

u(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂

∫ 1

0
G1(t, ξ)ψn,m̂(ξ))dξ + t(p2 − p1) + p1, (26)

where

G1(t, ξ) =


1

Γ(α)

(
(t− ξ)α−1 − t(1− ξ)α−1

)
, if 0 ≤ ξ < t;

− t
Γ(α) (1− ξ)α−1, if t ≤ ξ ≤ 1.

Differentiating both sides of the Equation (25)

u′(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα−1
t ψn,m̂(t)) +

(
p2 − p1 −

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα
t ψn,m̂(1))

)
. (27)

u′(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂

( ∫ t

0

(t− ξ)α−2

Γ(α− 1)
ψn,m̂(ξ))dξ −

∫ 1

0

(1− ξ)α−1

Γ(α)
ψn,m̂(ξ))dξ

)
+ p2 − p1
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u′(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂

∫ 1

0
G2(t, ξ)ψn,m̂(ξ))dξ + (p2 − p1), (28)

where

G2(t, ξ) =


1

Γ(α−1) (t− ξ)α−2 − 1
Γ(α) (1− ξ)α−1, if 0 ≤ ξ < t;

− 1
Γ(α) (1− ξ)α−1, if t ≤ ξ ≤ 1.

Similarly taking β order derivative on both sides in Equation (25)

Dβ
t u(t) =

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(I
α−β
t ψn,m̂(t)) +

t1−β

Γ(2− β)

(
p2 − p1 −

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα
t ψn,m̂(1))

)
. (29)

Dβ
t u(t) = ∑2k−1

n=0 ∑M
m̂=−M cnm̂

( ∫ t
0

(t−ξ)α−β−1

Γ(α−β)
ψn,m̂(ξ))dξ −

∫ 1
0

t1−β

Γ(2−β)
(1−ξ)α−1

Γ(α) ψn,m̂(ξ))dξ
)
+ t1−β

Γ(2−β)
(p2 − p1)

Dβ
t u(t) =

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂

∫ 1

0
G3(t, ξ)ψn,m̂(ξ))dξ +

t1−β

Γ(2− β)
(p2 − p1), (30)

where

G3(t, ξ) =


1

Γ(α−β)
(t− ξ)α−β−1 − t1−β

Γ(2−β)Γ(α) (1− ξ)α−1, if 0 ≤ ξ < t;

− t1−β

Γ(2−β)Γ(α) (1− ξ)α−1, if t ≤ ξ ≤ 1.

Inserting (23), (26), (28) and (30) into (20), we obtain

∑2k−1
n=0 ∑M

m̂=−M cnm̂

(
ψn,m̂(ξ) + a(t)

∫ 1
0 G3(t, ξ)ψn,m̂(ξ)dξ + b(t)

∫ 1
0 G2(t, ξ)ψn,m̂(ξ)dξ + d(t)

∫ 1
0 G1(t, ξ)ψn,m̂(ξ)dξ

)
= f (t), (31)

where f (t) = −(p2 − p1)[a(t) t1−β

Γ(2−β)
+ b(t) + td(t)] + d(t)p1 + g(t).

The Equation (31) at the collocation points ti =
2i−1
2m , i = 1, 2, , 3, · · · , m, in matrix form is

CT
{

Ψm×m + AĜ3m×mΨm×m + BĜ2m×mΨm×m + DĜ1m×mΨm×m

}
= FT . (32)

Case #2(a) Equation (20) with mixed boundary condition 22 (1), Equation (24) can be written as

u(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα
t ψn,m̂(t)) + tq1 +

(
q2 − q1 −

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα
x ψn,m̂(1))

)
. (33)

u(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂

∫ 1

0
G4(t, ξ)ψn,m̂(ξ))dξ + tq1 + q2 − q1, (34)

where

G4(t, ξ) =


1

Γ(α)

(
(t− ξ)α−1 − (1− ξ)α−1

)
, if 0 ≤ ξ < t;

− 1
Γ(α) (1− ξ)α−1, if t ≤ ξ ≤ 1.

Again, the first order and β order derivative of u in Equation (33) has the form

u′(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα−1
t ψn,m̂(t)) + q1 =

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂Pα−1
1 ψn,m̂(t) + q1, (35)

Dβ
t u(t) = ∑2k−1

n=0 ∑M
m̂=−M cnm̂(I

α−β
t ψn,m̂(t)) + t1−β

Γ(2−β)
q1 = ∑2k−1

n=0 ∑M
m̂=−M cnm̂Pα−β

2 ψn,m̂(t) + t1−β

Γ(2−β)
q1. (36)
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Substituting equations (23) and (34)–(36) into Equation (20), we have

CT
{

Ψm×m + APα−1
1 Ψm×m + BPα−β

2 Ψm×m + DĜ4m×mΨm×m

}
= KT , (37)

where KT is known vector that is the approximation of function k(t) = −q1[a(t) t1−β

Γ(2−β)
+ b(t)+ d(t)(t−

1)]− d(t)q2 + g(t).
Case #2(b) Equation (20) with mixed boundary condition 22 (2), the Equation (24) becomes

u(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα
t ψn,m̂(t)) + t

(
r2 −

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂(Iα−1
x ψn,m̂(1))

)
+ r1. (38)

u(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂

∫ 1

0
G5(t, ξ)ψn,m̂(ξ))dsdξ + tr2 + r1, (39)

where

G5(t, ξ) =


1

Γ(α) (t− ξ)α−1 − t
Γ(α−1) (1− ξ)α−2, if 0 ≤ ξ < t;

− t
Γ(α−1) (1− ξ)α−2, if t ≤ ξ ≤ 1.

Again, the first order and β-order derivative of u in Equation (38) has the form

u′(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂

( ∫ t

0

(t− ξ)α−2

Γ(α− 1)
ψn,m̂(ξ))dξ −

∫ 1

0

(1− ξ)α−2

Γ(α− 1)
ψn,m̂(ξ))dξ

)
+ r2,

u′(t) =
2k−1

∑
n=0

M

∑
m̂=−M

cnm̂

∫ 1

0
G6(t, ξ)ψn,m̂(ξ))dξ + r2, (40)

where

G6(t, ξ) =


1

Γ(α−1)

{
(t− ξ)α−2 − (1− ξ)α−2

}
, if 0 ≤ ξ < t;

− 1
Γ(α−1) (1− ξ)α−2, if t ≤ ξ ≤ 1,

and

Dβ
t u(t) = ∑2k−1

n=0 ∑M
m̂=−M cnm̂

( ∫ t
0

(t−ξ)α−β−1

Γ(α−β)
ψn,m̂(ξ))dξ − t1−β

Γ(2−β)

∫ 1
0

(1−ξ)α−2

Γ(α−1) ψn,m̂(ξ))dξ
)
+ t1−β

Γ(2−β)
r2

Dβ
t u(t) =

2k−1

∑
n=0

M

∑
m̂=−M

cnm̂

∫ 1

0
G7(t, ξ)ψn,m̂(ξ))dξ +

t1−β

Γ(2− β)
r2, (41)

where

G7(t, ξ) =


1

Γ(α−β)
(t− ξ)α−β−1 − t1−β

Γ(α−1)Γ(2−β)
(1− ξ)α−2, if 0 ≤ ξ < t;

− t1−β

Γ(2−β)Γ(α−1) (1− ξ)α−2, if t ≤ ξ ≤ 1.

Using (23) and (39)–(41) in (20), we obtain

∑2k−1
n=0 ∑M

m̂=−M cnm̂

(
ψn,m̂(ξ) + a(t)

∫ 1
0 G7(t, ξ)ψn,m̂(ξ)dξ + b(t)

∫ 1
0 G6(t, ξ)ψn,m̂(ξ)dξ + d(t)

∫ 1
0 G5(t, ξ)ψn,m̂(ξ)dξ

)
= s(t), (42)

where s(t) = −r2[a(t) t1−β

Γ(2−β)
+ b(t) + td(t)]− d(t)r1 + g(t).
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The Equation (42) can be written in vector form and in matrix notation once the collocation points
ti =

2i−1
2m , i = 1, 2, , 3, · · · , m, are used

CT
{

Ψm×m + AĜ7m×mΨm×m + BĜ6m×mΨm×m + DĜ5m×mΨm×m

}
= ST . (43)

For the sake of convenience, we use some matrix notations.
The Ĝ1, Ĝ2, · · · , Ĝ7, can be obtain by using CAS wavelet approximations and orthogonality

property of wavelets. For example, the Green function can be approximated by CAS wavelet as follows

G1(t, ξ) =
2k−1

∑
n=0

M

∑
m̂=−M

[ψn,m̂(t)]TĜ1ψn,m̂(ξ).

Therefore
2k−1

∑
n=0

M

∑
m̂=−M

∫ 1

0
G1(t, ξ)ψn,m̂(ξ)dξ = Ĝ1m×mΨm×m. (44)

By using the orthogonality of the sequence {ψn,m(t)} on [0, 1], we get

2k−1

∑
n=0

M

∑
m̂=−M

∫ 1

0
ψn,m(ξ)[ψn,m(ξ)]

Tdξ = Im×m,

where Im×m is an identity matrix with dimension m×m.
Similarly,

2k−1

∑
n=0

M

∑
m̂=−M

∫ 1

0
Gj(t, ξ)ψn,m̂(ξ)dξ = Ĝjm×mΨm×m, for j = 1, 2, · · · , 7,

where C = {C1, C2, C3, · · · , Cm} is an unknown vector, and A, B, D are the diagonal matrices given
by

A =


a(t1) 0 · · · 0

0 a(t2) · · · 0
...

...
. . .

...
0 0 · · · a(tm)

 , B =


b(t1) 0 · · · 0

0 b(t2) · · · 0
...

...
. . .

...
0 0 · · · b(tm)

 and D =


d(t1) 0 · · · 0

0 d(t2) · · · 0
...

...
. . .

...
0 0 · · · d(tm)

 .

The Green-CAS wavelet coefficient vector C can be obtained from the algebraic equations (32)
and (37) or (32) and (43). This in turn gives the approximate solution when inserted in (26), (34) and
(39) respectively.

4. Existence and Uniqueness

The primary objective of this paper is to develop a numerical scheme for fractional boundary
value problems. In practice, however, one may be typically interested in finding the conditions for the
existence of solutions on given domain. We know establish the conditions under which there exists
unique solution of fractional boundary value problems. There is a vast literature on the existence
theory of fractional boundary value problems. We refer the interested readers to [44–47] and references
therein. We examine the existence and uniqueness of solution for the class of fractional differential
equations (20) subject to relatively general mixed boundary conditions

µ1u(0) + µ2u′(0) = p, η1u(1) + η2u′(1) = q, (45)

where µ1, µ2, η1, η2, p, q ∈ R. Please note that for µ1 = 1, µ2 = 0, and p = p1, and η1 = 1, η2 = 0, q = p2,
the boundary conditions (45) reduce to boundary condition in (21). Furthermore, for µ1 = 0, µ2 = 1,
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and p = q1, and η1 = 1, η2 = 0, q = q2, the boundary conditions (45) reduce to boundary the first
condition in (22). Finally, for µ1 = 1, µ2 = 0, and p = r1, and η1 = 0, η2 = 1, q = r2, the boundary
conditions (45) reduces to the second boundary condition in (22).

For convenience, we introduce following notations:
g(t, u, v, w) := f (t) − a(t)v(t) − b(t)w(t) − d(t)u(t), where v(t) := Dβu(t) and w(t) := u′(t).

Also, we define λ(t) = 1
∆ (µ2 − tµ1), where ∆ = µ1(η1 + η2)− η1µ2.

In the following, we transform the boundary value problem (20) and (45) to an equivalent
integral equation.

Lemma 3. Assume a, b, d and f are continuous real valued functions defined on [0, 1] and ∆ 6= 0. Then
u ∈ C[0, 1] is a solution of the boundary value problem (20) and (45) iff u solves the integral equation

u(t) =
∫ 1

0
G(t, s)g(s, u(s), v(s), w(s))ds, (46)

where

G(t, s) =


1

Γ(α)

[
(t− s)α−1 + η1λ(t)(1− s)α−1]+ η2λ(t)

Γ(α−1) (1− s)α−2, for s ≤ t;
η1λ(t)
Γ(α) (1− s)α−1 + η2λ(t)

Γ(α−1) (1− s)α−2, for s ≤ t.
(47)

We define the set B = {u(t) : D$
t u ∈ C[0, 1]}, where $ ∈ {0, β, 1} and norm for this set as

‖u‖ = ∑
$

max
t∈[0,1]

|D$u(t)|. The space B furnished with the norm ‖.‖ is a Banach space.

The proof of Lemma 3 is similar to the proof of Lemma 2.1 in [45].

Theorem 1. Under the assumptions of Lemma 3, there exists at least one solution of the boundary value problem
(20) and (45), provided L(B + C + D̃) < Γ(α).

Proof. The fixed points of the operator Ψ : B → B defined as

Ψu(t) =
∫ 1

0
G(t, s)g(s, u(s), v(s), w(s))ds, (48)

are the solutions of the boundary value problem (20) and (45). Let f̃ , ã, b̃, d̃ and λ̃ be maximum values
for modulus of f , a, b, d and λ respectively and L := max{ã, b̃, d̃}. Define the set Ω = {u ∈ B : ‖u‖ ≤
R}, where R is chosen so that it satisfies the condition R ≥ max

{
3B f̃

Γ(α)−3AB , 3C f̃
Γ(α)−3AC , 3D̃ f̃

Γ(α)−3AD̃

}
,

where A := ã + b̃ + d̃) and B := 1 + (|η1| + |η2|(α − 1))λ̃, C :=
(

α + (|η1|+ |η2|) |µ1|
|∆|

)
and D̃ :=

Γ(α)
Γ(α−β)

+ |η1|+α|η2|
|∆|Γ(2−β)

. It is to be noted that

|Ψu(t)| ≤ ( f̃ +RA)
∫ 1

0
|G(t, s)|ds. (49)

Since (t− s)α−1 ≤ (1− s)α−1. Therefore, from Equation (47), we have following estimate for G:

|G(t, s)| ≤ (1− s)α−1

Γ(α)
(1 + |η1|λ̃) +

|η1|λ̃
Γ(α− 1)

(1− s)α−2 ≤ B
(1− s)α−2

Γ(α− 1)
.

Similarly, we have

| d
dt
G(t, s)| ≤

(
α + (|η1|+ |η2|)

|µ1|
|∆|

)
(1− s)α−2

Γ(α− 1)
= C

(1− s)α−2

Γ(α− 1)
, |Dβ

t G(t, s)| ≤ D̃
(1− s)α−2

Γ(α− 1)
.



Mathematics 2019, 7, 1164 11 of 20

Therefore, inequality (49) may further be refined as |Ψu(t)| ≤ 1
Γ(α) ( f̃ +RA)B) ≤ R3 . By similar

argument, we have the estimates |Ψ′u(t)| ≤ 1
Γ(α) ( f̃ + RA)C) ≤ R

3 , and |Dβ
t Ψu(t)| ≤ 1

Γ(α) ( f̃ +

RA)D̃) ≤ R
3 . Therefore ‖Ψu‖ ≤ R

3 + R
3 + R

3 = R. Hence Ψ : Ω → Ω. Now, we prove that Ψ
is contraction. Let u, ũ ∈ Ω. Then, we have

|g(t, u, v, w)− g(t, ũ, ṽ, w̃)| ≤ ã|v− ṽ|+ b̃|w− w̃|+ d̃|u− ũ|
≤ L(|v− ṽ|+ |w− w̃|+ |u− ũ|).

Therefore, from (48) and above inequality, we have following estimates

|Ψu(t)−Ψũ(t)| ≤
∫ 1

0
|G(t, s)||g(s, u, v, w)− g(t, ũ, ṽ, w̃)|ds

≤ L‖u− ũ‖
∫ 1

0
|G(t, s)|ds ≤ LB

Γ(α)
‖u− ũ‖

Similarly, |Ψu(t)−Ψũ(t)| ≤ LC
Γ(α)‖u− ũ‖ and |Ψu(t)−Ψũ(t)| ≤ LD̃

Γ(α)‖u− ũ‖.
Finally, ‖Ψu− Ψũ‖ ≤ κ‖u− ũ‖ where κ < 1. Thus, Ψ is contraction. By contraction mapping

theorem, there exists a unique solution of the boundary value problem (20) and (45).

Remark 1. Theorem 1 can be proved under weaker conditions on a, b, d and f . That is the continuity condition
may be dropped and assuming a, b, d and f from the space L1[0, 1].

5. Applications

In this section, we discuss some numerical examples to test the accuracy of the proposed
Green-CAS method. The results are compared with some other numerical methods available
in literature.

5.1. Linear Case

We implement the Green-CAS wavelet to solve the linear fractional differential equations with
boundary conditions.

Example 1. Consider

Dα
t u(t) + a(t)u(t) = g(t), 1 < α ≤ 2, t ∈ [0, 1], (50)

with boundary conditions
u(0) = 0, u(1) = 0.

If a(t) = sin(t) cos(t) and g(t) = Γ(α+2)
Γ(3) t− Γ(3)

Γ(3−α)
t2−α + sin(t) cos(t)(tα − t)t, then one can find the

analytic solution of the above system as u(t) = t(tα − t). The numerical solutions are obtained by the proposed
method discussed in the above section. The absolute error between exact and numerical solutions for the different
values of α, k and M are shown in Table 1. The numerical solutions obtained from Green-CAS method are
documented in a graphical form in Figure 2 for different values of α. The maximum absolute error decrease by
increasing value of M and k.
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Table 1. Maximum absolute error for different values of α, k and M

α
k = 3 k = 5

M = 3 M = 5 M = 7 M = 3 M = 5 M = 7

1.1 6.40456× 10−4 3.93807× 10−4 2.81392× 10−4 1.42542× 10−4 8.69363× 10−5 6.18848× 10−5

1.3 9.77420× 10−4 5.47839× 10−4 3.67537× 10−4 1.64122× 10−4 9.13982× 10−5 6.11330× 10−5

1.5 7.58102× 10−4 3.87391× 10−4 2.44023× 10−4 9.60560× 10−5 4.88417× 10−5 3.06953× 10−5

1.7 4.56135× 10−4 2.12592× 10−4 1.25754× 10−4 4.36385× 10−5 2.02588× 10−5 1.19623× 10−5

1.9 2.32443× 10−4 9.89421× 10−4 5.50011× 10−5 1.68449× 10−5 7.15737× 10−6 4.18048× 10−6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

t

u(t)

 

 

α=1.2

α=1.4

α=1.6

α=1.8

α=2.0

Figure 2. Numerical solutions for fixed values of k = 3, M = 4 and different values of α.

Example 2. Consider fractional boundary value problem with variable coefficient

(1− t)2Dα
t u(t)− (1− t)u(t) = 1, 1 < α ≤ 2, (51)

u(0) = 1, u(1) =
1
2

.

The approximate solutions are obtained for different values of α by the Green-CAS method, as discussed
in Section 3. For the case, when α = 2, the absolute error for M = 4 and k = 9 are presented in Table 2.
Also, numerical results of proposed method are compared with the results of Haar wavelets method [30] and the
method based on Taylor’s expansion [48]. The comparison shows that the present method is quite satisfactory
and competitive with other methods.

Table 2. Absolute error for fixed values of M = 4 and k = 9.

Method [48] Haar Wavelets [30] Green-CAS

0.1 1.590477× 10−4 2.281673× 10−4 1.855711× 10−7 9.343142× 10−9

0.2 1.047506× 10−4 2.469834× 10−4 1.030758× 10−7 7.580838× 10−9

0.3 2.784706× 10−5 1.858469× 10−4 5.238972× 10−8 6.246745× 10−9

0.4 4.550068× 10−5 1.157510× 10−4 2.279295× 10−8 5.196516× 10−9

0.5 1.167467× 10−4 6.412753× 10−5 6.420743× 10−9 4.339887× 10−9

0.6 1.812416× 10−4 3.403860× 10−5 2.670990× 10−9 1.618514× 10−9

0.7 2.228086× 10−4 2.153643× 10−5 5.052727× 10−9 2.993625× 10−9

0.8 2.213083× 10−4 1.719699× 10−5 1.285991× 10−8 2.438836× 10−9

0.9 1.543950× 10−4 1.205234× 10−5 2.474367× 10−8 1.935839× 10−9
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Example 3. Consider the Bagley–Torvik equation

a(t)Dα
t u(t) + b(t)Dβ

t u(t) + c(t)u(t) = g(t), 1 < α ≤ 2, (52)

subject to the boundary conditions
u(0) = u0, u(1) = u1. (53)

For Bagley–Torvik equation we substitute the values α = 2, β = 1.5, a(t) = b(t) = c(t) = 1, and

g(t) = 2 + 4
√

t
π + t2 in (52). It can be conventionally verified that the exact solution to Equation (52) is

u(t) = t2. For numerical solutions at α = 2 and β = 1.5, the algebraic matrix form of Equation (52) after
applying Green-CAS method becomes

CT
{

Ψm×m + P2−β
m×mΨm×m + Ĝ1m×mΨm×m

}
= FT , (54)

where FT is the evaluation of the function f (t) = 2 + 4
√

t
π + t2 − t at the collocation points. The approximate

solution of Equation (52) for the values α = 2 and 0 < β ≤ 1, we get

CT
{

Ψm×m + Ĝ3m×mΨm×m + Ĝ1m×mΨm×m

}
= HT . (55)

where HT is a vector of the function h(t) = 2 + 3
3−β t2−β + t2 − t at the collocation points. The absolute error

is obtained from the exact and numerical solution at fixed values of α = 2 and different values of β as shown in
the tabular form in Table 3.

Table 3. Absolute error for α = 2, k = 3 and different values of β and M.

t
β = 1.5, α = 2

M = 3 M = 4 M = 5 M = 6 M = 7

0.2 7.74305× 10−5 4.58037× 10−5 3.00416× 10−5 2.11037× 10−5 1.55693× 10−5

0.4 7.57783× 10−5 4.45792× 10−5 2.90871× 10−5 2.03323× 10−5 1.49287× 10−5

0.6 7.61337× 10−5 4.49713× 10−5 2.94556× 10−5 2.06653× 10−5 1.52270× 10−5

0.8 7.76240× 10−5 4.63196× 10−5 306255× 10−5 2.16776× 10−5 1.61088× 10−5

β = 0.5, α = 2

0.2 2.06054× 10−4 1.33957× 10−4 9.52476× 10−5 7.18385× 10−5 5.64925× 10−5

0.4 2.67027× 10−4 1.75371× 10−4 1.25682× 10−4 9.54010× 10−5 7.54226× 10−5

0.6 2.61842× 10−4 1.71871× 10−4 1.23122× 10−4 9.34253× 10−5 7.38397× 10−5

0.8 1.96070× 10−4 1.27224× 10−4 9.03248× 10−5 6.80420× 10−5 5.34518× 10−5

5.2. Non-Linear Case

The technique named quasilinearization was presented by Kalabas and Bellman [49] as
a generalization of a specific method (Newton-Raphson) [43] which assist in solving the non-linear
ordinary and partial differential equations. We briefly explain implementation procedure for the
quasilinearization technique for linearizing non-linear fractional differential equations.

Let us consider the non-linear fractional boundary value problem

Dα
t u(t) = g(t, u(t)), 1 < α ≤ 2, t ∈ [0, 1], (56)

subject to the boundary conditions u(0) = µ and u(1) = ω.
Suppose the initial approximation of the function u(t) is u0(t). Applying the quasilinearization

technique about u0 to Equation (56), we have

Dα
t (t) = g(t, u0(t)) + [u(t)− u0(t)]gu0(t, u0(t)). (57)
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which is a linear equation, solving (57) for u(t), denoting it u1(t) and expanding (56) about u1(t),
we have

Dα
t u(t) = g(t, u1(t)) + [u(t)− u1(t)]gu1(t, u1(t)), (58)

which is a third approximation. Assume that the iterative procedure is convergent. We continue the
process till the desired accuracy is obtained. The recurrence relation can be written in the form

Dα
t ur+1(t) = g(t, ur(t)) + [ur+1(t)− ur(t)]gur (t, ur(t)). (59)

ur+1(0) = µ, ur+1(1) = ω. (60)

which is a sequence of linear fractional differential equations and the function ur(t) is known function
which can be used to find ur+1(t) ∼= u(t).

Example 4. Temperature distribution equation.
Consider the following mathematical model which describes the temperature distribution in lumped system

of combined convection-radiation in a slab made of materials with variable thermal conductivity

Dα
t u(t)− ηu4(t) = 0, 1 < α ≤ 2, t ∈ [0, 1], (61)

subject to the boundary conditions u′(0) = 0 and u(1) = 1, where u = T−Ta
Ti−Ta

and t = x
Vρca/Ah are

dimensionless temperature and time respectively and η = (T − Ta)β, where V, A, ρ, c, Ti, Ta, ca and
h are the volume, surface area, density, specific heat, the initial temperature, temperature of the convection
environment, specific heat at temperature Ta and heat transfer coefficient of the lumped system, respectively.

Using quasilinearization technique we get the linear fractional differential equation of the form

Dα
t un+1(t) = 4ηu3

n(t)un+1(t)− 3ηu4
n(t), (62)

with boundary conditions u′n+1(0) = 0 and un+1(1) = 1. This boundary value problem is solved by the
procedure discuss in Section 3. Table 4 contains the numerical solutions achieved by the Green-CAS along the
method discuss in [39,40]. It indicates that the results obtained by proposed method are quite better. We compare
our method with numerical solution provided by MAPLE [40] and generalized approximation method yGA [39]
and homotopy perturbation method yHPM [39]. The numerical solutions for different values of η and α are
documented in the graphical form in the Figure 3. Also Figure 4 shows the numerical solutions for k = 3,
M = 4, η = 1.5 and different values of α.

Table 4. Numerical solutions for fixed values of α = 2, M = 10 and k = 7.

η = 0.6

t Maple [40] YGA [39] YHPM [39] GCAS

0.0 0.834542 0.963536 0.640000 0.834430
0.2 0.840390 0.964009 0.652096 0.840307
0.4 0.858269 0.965742 0.689536 0.858211
0.6 0.889247 0.969893 0.755776 0.889211
0.8 0.935346 0.979233 0.866576 0.935328

η = 2.0

0.0 0.694318 0.968771 −0.666667 0.694212
0.2 0.703698 0.968804 −0.625600 0.703636
0.4 0.732894 0.969008 −0.489600 0.732860
0.6 0.785488 0.970024 −0.220267 0.785471
0.8 0.869161 0.975059 −0.246400 0.869156
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Figure 3. Numerical solutions of Equation (61) by Green-CAS for k = 3, M = 4 and different fixed
values of α and η.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

u(t)

Numerical solution by Green−CAS for η=1.5

 

 

α=1.5

α=1.6

α=1.7

α=1.8

α=1.9

α=2.0

Figure 4. Numerical solutions of Equation (61) by Green-CAS for k = 3, M = 4 η = 1.5 and different
values of α.

Example 5. Consider the non-linear oscillator equation

Dα
t u(t)− u(t) + [u(t)]2 + [Dβ

t u(t)]2 − 1 = 0, 1 < α ≤ 2, 0 < β ≤ 1, (63)

subject to the boundary conditions

u(0) = 2, u(1) = 1 + cos(1), (64)

For α = 2 and β = 1 the exact solution of Equation (63) is u(t) = 1 + cos(t). Now applying the
quasilinearization to the (63), we get the sequence of linear fractional differential equation as

Dα
t un+1(t)− (1− 2un(t))un+1(t) + 2Dβ

t un(t)Dβ
t un+1(t) = 1 + [un(t)]2 + [Dβ

t un(t)]2, 1 < α ≤ 2, 0 < β ≤ 1, (65)
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with un+1(0) = 2, un+1(1) = 1 + cos(1). The Equation (65) is linear and for numerical solution we use the
method which is discussed in Section 3. In Table 5 the absolute error of the exact and numerical solutions for
different values of k and M are presented. We observe that the error decrease by increasing the values of k and
M, as promised in convergence analysis. The numerical solutions are shown in the Figure 5 for different values
of α which tend to the exact solution when α approaches 2.

Table 5. Absolute error for fixed values of α = 2, β = 1 and different values of k and M.

t
k = 3 k = 5

M = 3 M = 5 M = 3 M = 5

0.1 2.85045× 10−4 1.93246× 10−4 8.08870× 10−5 5.22195× 10−5

0.2 5.90695× 10−4 3.89928× 10−4 1.59085× 10−4 102123× 10−4

0.3 8.56315× 10−4 5.60635× 10−4 2.26869× 10−4 1.45369× 10−4

0.4 1.06161× 10−3 6.92388× 10−4 2.79110× 10−4 1.78686× 10−4

0.5 1.18694× 10−3 7.72592× 10−4 3.10820× 10−4 1.98898× 10−4

0.6 1.21341× 10−3 7.89112× 10−4 3.17186× 10−4 2.02931× 10−4

0.7 1.12292× 10−3 7.30297× 10−4 2.93571× 10−4 1.87827× 10−4

0.8 8.98148× 10−4 5.84954× 10−4 2.35505× 10−4 1.50731× 10−4

0.9 5.22364× 10−4 3.42238× 10−4 1.38639× 10−4 8.88610× 10−5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

t

u(t)

 

 
α=1.2
α=1.4
α=1.6
α=1.7
exact
α=2.0

Figure 5. Numerical and exact solutions for fixed values of K = 3, M = 4 and different values of α.

6. Error Analysis

In this part, we derive inequality in context of upper bound which shows the convergence of
Green-CAS method. The convergence of CAS wavelet is given in [40]. By following the similar
procedure, we extend the analysis for the present Green-CAS method.

Theorem 2. Suppose that the u′′r+1(t) is continuous and bounded on [0, 1] that is there exist γ > 0 |u′′r+1(t)| ≤
γ ∀ t ∈ [0, 1]. and also assume that uk,M

r+1(t) is approximation of ur+1(t), then we have

|uk,M
r+1(t)− ur+1(t)| ≤

γN
π2Γ(α + 1)

∞

∑
n=2k

∞

∑
m̂=M+1

1

(n + 1)
5
2 m̂2

.

Proof. Consider the non-linear fractional boundary value problems

Dα
t u(t) = f (u(t), t), t ∈ [0, 1], (66)
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with boundary conditions u(0) = u0, u(1) = u1. The integral representation of above Equation (66)
after using boundary conditions, can be written as

u(t) =
∫ 1

0
G(t, ξ) f (u(ξ), ξ)dξ + h(t), (67)

where h(t) = (u1 − u0)t + u0. Applying the quasilinearization technique to Equation (67), we have

ur+1(t) = g(t) +
∫ 1

0
fur (ur(ξ), ξ)G(t, ξ)ur+1(ξ)dξ, (68)

where g(t) = h(t) +
∫ 1

0 G(t, ξ)
[

f (ur(ξ), ξ)− ur(ξ) fur (ur(ξ), ξ)
]
dξ and ur(t) is known and can be used

to obtained ur+1(t). Let uk,M
r+1(t) be the approximation of ur+1(t), by Green-CAS method, then we have

uk,M
r+1(t) ≈ g(t) +

∫ 1

0
fur (ur(ξ), ξ)G(t, ξ)uk,M

r+1(ξ)dξ, (69)

From Equations (68) and (69), we have

|uk,M
r+1(t)− ur+1(t)| ≤

∫ 1

0
| fur (ur(ξ), ξ)|G(t, ξ)|uk,M

r+1(t)− ur+1(t)|dξ. (70)

Therefore, from the Lemma 3 we have,

|uk,M
r+1(t)− ur+1(t)| ≤

γN
π2

∞

∑
n=2k

∞

∑
m̂=M+1

1

(n + 1)
5
2 m̂2
|
∫ 1

0
G(t, ξ)dξ|. (71)

Letting N = max| fur (ur(ξ), ξ)|. The value of
∫ 1

0 G(t, ξ)dξ is

∫ 1

0
G(t, ξ)dξ =

1
Γ(α)

{ ∫ t

0

[
(t− ξ)α−1 − t(1− ξ)α−1

]
dξ − t

∫ 1

t
(1− ξ)α−1dξ

}
,

=
1

Γ(α + 1)
(tα − t),

as −t ≤ 0 since t ∈ [0, 1]. Therefore

∫ 1

0
G(t, ξ)dξ ≤ tα

Γ(α + 1)
≤ 1

Γ(α + 1)
. (72)

Therefore, using (72) into (71), we obtain

|uk,M
r+1(t)− ur+1(t)| ≤

γN
π2Γ(α + 1)

∞

∑
n=2k

∞

∑
m̂=M+1

1

(n + 1)
5
2 m̂2

. (73)

7. Conclusions

A novel method named Green-CAS method has been developed for solving linear and non-linear
fractional differential equations with boundary conditions. One of the advantages of this method
is that it is considerably simple and easy to implement. To check the reliability and accuracy of the
method we tested the method on different physical and hypothetical models. According to Table 4,
our results are better than generalized approximation method and homotopy perturbation method,
and are in good agreement with exact solution.
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The method may be extended to solve boundary value problems for partial differential equations
and fractional differential equations appearing in mathematical modeling and engineering applications.
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