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Abstract: We show that there is a one-to-one correspondence between positive operator-monotone
functions on the positive reals, monotone Riemannian metrics, and finite positive Borel measures
on the unit interval. This correspondence appears as an integral representation of weighted
harmonic means with respect to that measure on the unit interval. We also investigate the
normalized/symmetric conditions for operator-monotone functions. These conditions turn out
to characterize monotone metrics and Morozowa–Chentsov functions as well. Concrete integral
representations of such functions related to well-known monotone metrics are also provided.
Moreover, we use this integral representation to decompose positive operator-monotone functions.
Such decomposition gives rise to a decomposition of the associated monotone metric.
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1. Introduction

This paper is motivated from functional analysis aspects in quantum statistical mechanics.
In classical statistics, the (Fisher) information is a measurement of the amount of information that an
observable random variable conveys about an unknown parameter of its distribution. The quantum
Fisher information in quantum statistics is an analogous concept to the classical one; see e.g., [1]. Recall
that a physical observable of a quantum mechanical system is represented by a self-adjoint operator
A acting on a Hilbert space (H, 〈·, ·〉). The state of the physical system is often modeled by a unit
vector x in H. In this case, the expectation of A in that state is given by the inner product 〈Ax, x〉.
If dimH < ∞, the states (i.e., the expectation of the states) can be realized as Tr(DA) where D is the
density matrix associated with the state. In order for a difficult-to-measure observable to measure a
conserved quantity, Wigner and Yanase [2] proposed the so-called skew information defined by

ID(A) = −1
2

Tr([D
1
2 , A]

1
2 ),

here, [·, ·] is the commutator. Dyson introduced other measures of quantum Fisher information, namely,

ID(β, A) = −1
2

Tr([Dβ, A] · [D1−β, A])
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with parameter β ∈ (0, 1), known as the Wigner–Yanase–Dyson skew information; see more information
in [3]. Chentsov [4] proved that the Fisher information is a Riemannian metric. Morozowa and
Chentsov [5] extended the analysis of quantum system by replacing Riemannian metrics with a
monotone metric associated to each invertible density matrix. A monotone metric is a positive-definite
sesquilinear forms KD defined on the tangent space of a quantum system, where D is an invertible
density matrix. The works [5–7] show that every monotone Riemannian metric is associated to an
operator-monotone function f : (0, ∞) → (0, ∞). Hence, the theory of positive operator-monotone
functions plays an important role in quantum information theory.

Many physicists and mathematicians have made contributions to this theory; see, e.g., [7–12].
Certain integral representations of operator-monotone increasing/decreasing functions are used to
obtain the formulas of Morozowa–Chentsov functions associated with certain Wigner–Yanase–Dyson
metrics; see [9,13,14]. Applications of positive operator-monotone functions and monotone metrics
also arise in other areas of physics: entropy (e.g., [15]), quantum entanglement ([16]), uncertainty
relations ([17]), electrical network synthesis ([18]), and condensed matter physics ([19]).

Recall that a continuous function f : (0, ∞) → (0, ∞) is said to be operator-monotone for all
invertible positive operators A and B, we have

A 6 B =⇒ f (A) 6 f (B),

where f (A) is the functional calculus of f defined on the spectrum of A. Fundamental results about
operator-monotone functions were collected in ([20], Section 2). Throughout this paper, OM(R+) is
the set of operator-monotone functions from R+ = (0, ∞) to itself. The set OM(R+) and the set of
finite (positive) Borel measures on [0, 1] are equipped with usual algebraic operations and pointwise
orders. Recall that the t-weighted harmonic mean !t is defined by

a !t b =
[
(1− t)a−1 + tb−1

]−1
, a, b > 0.

This paper focuses on a one-to-one correspondence between four kind objects:

(i) monotone (Riemannian) metrics onMn

(ii) positive operator-monotone functions on R+

(iii) Morozowa–Chentsov functions on R+ ×R+

(iv) finite (positive) Borel measures on [0, 1].

We show that there is a bijection between the finite Borel measures µ on [0, 1] and the positive
operator-monotone functions f via a canonical representation

f (x) =
∫ 1

0
1 !t x dµ(t), x ∈ R+. (1)

Moreover, the map µ 7→ f is bijective, affine, and order-preserving. This means that the functions
x 7→ 1 !t x for t ∈ [0, 1] form building blocks for the set OM(R+). This integral representation reflects
some interesting information of operator-monotone functions. In fact, a function f ∈ OM(R+) is
normalized if and only if its associated measure µ is a probability measure. We also show that
an f ∈ OM(R+) is symmetric (in the sense that f (x) = x f (1/x) for all x > 0) if and only if the
corresponding measure µ is invariant under the function t 7→ 1− t on [0, 1]. The normalized/symmetric
conditions on f ∈ OM(R+) turn out to characterize such conditions for the associated monotone
metrics and the associated Morozowa–Chentsov functions as well.

The canonical representation (1) also reflects the geometry of the set of (symmetric) normalized
operator-monotone functions. More precisely, the extreme points of the convex set of such functions
are obtained via the affinity of the map µ 7→ f . Furthermore, the representation (1) has benefits
in decomposing positive operator-monotone functions as the sum of three explicit parts, namely,
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its singularly-discrete part, its absolutely-continuous part, and its singularly-continuous part.
Such decomposition leads to a decomposition of the associated monotone metrics as well.

The rest of this paper is organized as follows. In Section 2, we recall fundamental results
about monotone Riemannian metrics on the smooth manifold of invertible density matrices. Then,
in Section 3, we establish an integral representation for positive operator-monotone functions
with respect to a Borel measure on the unit interval. Moreover, we investigate some attractive
properties from such representations. In Sections 4 and 5, we illustrate monotone metrics of
type singularly-discrete and of type absolutely-continuous, respectively. Section 6 deals with
decompositions of operator-monotone functions. We summarize the paper in Section 7.

2. Monotone Riemannian Metrics on the Smooth Manifold of Invertible Density Matrices

We denote the set of (n× n) complex matrices byMn. Recall that a density matrix is a positive
semidefinite matrix with trace 1. The set Dn of all (n× n) invertible density matrices is an open subset
of the set of (n× n) Hermitian matrices. This is because the function A 7→ x∗Ax is continuous for each
x ∈ Cn. Hence, the set Dn forms a smooth manifold.

A metric K onMn is a parametrized family {KD}D∈Dn of sesquilinear forms KD :Mn ×Mn → C
such that

(i) KD is positive definite in the sense that KD(A, A) > 0 for all A ∈ Mn, and KD(A, A) = 0 if and
only if A = 0.

(ii) The map D 7→ KD(A, A) is continuous for each A ∈ Mn.

The metric K is said to be monotone if for every D ∈ Dn, A ∈ Mn and stochastic map T :Mn →
Mn, we have

KT(D)(T(A), T(A)) 6 KD(A, A).

Here, recall that a linear map T :Mn →Mn is said to be stochastic if T is completely positive
and T preserves invertible density matrices. It turns out that a differentiable monotone metric on Dn

determines a Riemannian metric; see more information in [10].
Let 〈·, ·〉 be the Hilbert–Schmidt inner product onMn, i.e.,

〈A, B〉 = Tr(A∗B) for any A, B ∈ Mn.

For each D ∈ Dn, let LD and RD be the left (right) multiplication operators fromMn to itself,
i.e., LD : X 7→ DX and RD : X 7→ XD. Then, (LD, RD) is a pair of commuting invertible positive
operators such that Lt

D = LDt and Rt
D = RDt for any t ∈ R.

Morozowa and Chentsov [5] gave an explicit form of a monotone metric K. Indeed,
for each D ∈ Dn and A ∈ Mn, the value KD(A, A) appears in terms of the so-called associated
Morozowa–Chentsov function, and we obtain KD(A, B) by means of polarization. Petz [6,7] improved
this representation to the Hilbert–Schmidt inner product and operator-monotone function on R+

as follows:

Theorem 1. ([6,7]) There is a one-to-one correspondence between operator-monotone function f : R+ → R+

and monotone metric K such that for any D ∈ Dn and A, B ∈ Mn,

KD(A, B) = 〈A,K−1
D (B)〉 = Tr A∗g(LD, RD)B, (2)

where KD = R
1
2
D f (LDR−1

D )R
1
2
D and g is the associated Morozowa–Chentsov function defined by

g(x, y) =
1

y f (x/y)
for any x, y > 0. (3)
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Here, g(LD, RD) is computed by applying functional calculus on the pair of commuting operators LD
and RD.

3. Characterizations of Positive Operator-Monotone Functions and Monotone Metrics

In this section, we characterize operator-monotone functions from R+ to R+ in terms of finite
positive Borel measures on the unit interval. These results give rise to characterizations of monotone
metrics as well. The normalized/symmetric conditions for monotone metrics and operator-monotone
functions are also considered.

For real sequences, we use the notation xn ↑ x for the case that (xn) is an increasing sequence
converging to x. The expression xn ↓ x is used for the decreasing case.

Lemma 1. For given a finite (positive) Borel measure µ on [0, 1], the function

f : R+ → R+, f (x) =
∫ 1

0
1 !t x dµ(t)

is well-defined and continuous.

Proof. For each x > 0, since 1 !t x 6 max(1, x) for any t ∈ [0, 1], we have

∫ 1

0
|1 !t x| dµ(t) 6

∫ 1

0
max(1, x) dµ(t) = max(1, x) · µ([0, 1]) < ∞.

For each x > 0, the positivity of the function t 7→ 1 !t x implies that the resulting integral f (x)
is positive.

We shall show that f is left and right continuous. First, note that the increasingness of function
x 7→ 1 !t x implies that f is increasing. To show that f is left continuous at a point x > 0, let (xn)∞

n=1
be a sequence in R+ such that xn ↑ x. For convenience, put φ(t) = 1 !t x and φn(t) = 1 !t xn for each
n ∈ N and t ∈ [0, 1]. Then (φn(t))∞

n=1 is a increasing sequence of positive real numbers such that
φn(t) → φ(t) as n → ∞ for each fixed t. It follows that the sequence ( f (xn)) = (

∫
φn) is increasing.

Moreover, the monotone convergence theorem implies that

f (xn) =
∫ 1

0
φn(t) dµ(t) →

∫ 1

0
φ(t) dµ(t) = f (x).

This means that f (xn) ↑ f (x). Thus, f is left continuous.
For the right continuity of f , let x > 0 and consider a sequence (xn)∞

n=1 in R+ such that xn ↓ x.
For convenience, put φ(t) = 1 !t x and φn(t) = 1 !t xn for each n ∈ N and t ∈ [0, 1]. Then, for each fixed
t, the sequence (φn(t))∞

n=1 is a decreasing sequence in R+ such that φn(t)→ φ(t) as n→ ∞. It follows
that the sequence ( f (xn)) = (

∫
φn) is decreasing. Note that the family (φn(t))∞

n=1 is bounded by an
integrable function φ1. By the dominated convergence theorem, the sequence ( f (xn)) converges to
f (x), hence, f (xn) ↓ f (x). Therefore, f is right continuous.

Lemma 2. A necessary and sufficient condition for a continuous function f : R+ → R+ to be
operator-monotone is that there is a unique finite Borel measure ν on [0, ∞] such that

f (x) =
∫ ∞

0

x(λ + 1)
x + λ

dν(λ), x ∈ R+. (4)

Proof. See, e.g., ([20], Theorem 2.7.11).
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Theorem 2. There is a bijection between the set of finite Borel measure on [0, 1] and the set OM(R+) that
sending a measure µ to an f ∈ OM(R+) satisfying the representation

f (x) =
∫ 1

0
1 !t x dµ(t), x > 0. (5)

Moreover, the map µ 7→ f is bijective, affine, and order-preserving.

Proof. The function f in (5) is well-defined and continuous by Lemma 1. To show that f is
operator-monotone, let us consider invertible operators A and B on a Hilbert space such that A 6 B.
The monotonicity of weighted harmonic means and Bochner integrals implies that

f (A) =
∫ 1

0
I !t A dµ(t) 6

∫ 1

0
I !t B dµ(t) = f (B).

This means that the map µ 7→ f is well-defined. For the injectivity of this map, let µ1 and µ2 be
finite Borel measures on [0, 1] such that f1 = f2 where

f1(x) =
∫ 1

0
1 !t x dµ1(t), f2(x) =

∫ 1

0
1 !t x dµ2(t), x > 0.

Then, for each i = 1, 2 and x > 0, we get

fi(x) =
∫ ∞

0

x(λ + 1)
x + λ

dµiΨ(λ),

where Ψ : [0, ∞]→ [0, 1], t 7→ t/(t + 1). Here, the measure µiΨ is defined by E 7→ µi(Ψ(E)) for each
Borel set E. Lemma 2 implies that µ1 = µ2.

To show the surjectivity of this map, we consider f ∈ OM(R+). By Lemma 2, there is a finite
Borel measure ν on [0, ∞] such that (4) holds. Define a finite Borel measure µ on [0, 1] by µ = νΨ−1.
A direct computation shows that

f (x) =
∫ 1

0
1 !t x dµ(t), x > 0.

Hence, the map µ 7→ f is surjective. It is straightforward to show that this map is affine and
order-preserving.

From Theorems 1 and 2, we get:

Corollary 1. There is a one-to-one correspondence between monotone metrics, Morozowa–Chentsov functions,
and finite positive Borel measures on [0, 1] via the representations (2), (3), and (5).

The work [7] studied the normalized condition on a monotone metric KD(I, I) = Tr(D−1) in terms
of the associated operator-monotone function. Recall that f ∈ OM(R+) is normalized if f (1) = 1.
The next result gives a complete characterization of normalized monotone metrics.

Corollary 2. Let K be a monotone metric onMn with the associated function f ∈ OM(R+), the associated
Morozowa–Chentsov function g, and the associated measure µ on [0, 1]. Then the following statements are
equivalent:

(i) KD(I, I) = Tr(D−1) for any D ∈ Dn.
(ii) f is normalized.

(iii) g(x, x) = 1/x for any x ∈ R+.
(iv) µ is a probability measure.
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Thus, there is a one-to-one correspondence between normalized monotone metrics, normalized positive
operator-monotone functions, and probability Borel measures on [0, 1] via the representations (2), (3), and (5).

Proof. The content of ([7], Corollary 6) indicates that the assertion (i) is equivalent to (ii). The assertion
(ii) is clearly equivalent to (iii). The equivalence between (ii) and (iv) follows from the integral
representation (5) in Theorem 2.

This corollary asserts that every normalized positive operator-monotone function can be regarded
as an average of the special operator-monotone functions x 7→ 1 !t x for t ∈ [0, 1].

Recall from [21] that if f ∈ OM(R+), then the transpose of f , defined by x 7→ x f (1/x) for any
x > 0, also belongs to OM(R+). The function f is said to be symmetric if it coincides with its transpose.
We say that a Borel measure µ on [0, 1] is symmetric if µΘ = µ where Θ : [0, 1]→ [0, 1], t 7→ 1− t. Recall
also from [7] that a monotone metric K is symmetric if KD(A, B) = KD(B∗, A∗) for any D ∈ Dn and
A, B ∈ Mn.

The associated measure of transpose of f ∈ OM(R+) can be computed as follows.

Proposition 1. Let f ∈ OM(R+) be a function with associated measure µ. Then the associated measure of the
transpose of f is given by µΘ where Θ : [0, 1]→ [0, 1], t 7→ 1− t.

Proof. It follows from the integral representation (5) of f that

x f (
1
x
) = x

∫ 1

0
1 !t

1
x

dµ(t) =
∫ 1

0
x !t 1 dµ(t) =

∫ 1

0
1 !t x dµΘ(t). (6)

By Theorem 2, the transpose of f has µΘ as its associated measure.

The next result provides a complete characterization of symmetric monotone metrics.

Theorem 3. Let K be a monotone metric onMn with the associated function f ∈ OM(R+), the associated
Morozowa–Chentsov function g, and the associated measure µ on [0, 1]. Then the following statements
are equivalent:

(i) K is symmetric.
(ii) f is symmetric.

(iii) g(x, y) = g(y, x) for any x, y ∈ R+.
(iv) µ is symmetric.

Thus, there is a one-to-one correspondence between symmetric monotone metrics, symmetric positive
operator-monotone functions, and symmetric Borel measures on [0, 1] via the representation (2) and the
integral representation

f (x) =
1
2

∫ 1

0
[(1 !t x) + (x !t 1)] dµ(t), x ∈ R+. (7)

Proof. The content of ([7], Theorem 7) indicates the equivalence between (i) and (ii). The latter
condition is equivalent to (iii). From the formula (6) in Proposition 1 and the uniqueness of the
associated measure (Theorem 2), we have that f (x) = x/ f (1/x) if and only if µ = µΘ. Thus,
the assertions (ii) and (iv) are equivalent. Theorem 1 establishes the correspondence between monotone
metrics and operator-monotone functions via (2). From the canonical representation (5) and an
observation that

f (x) =
x

f (1/x)
=

1
2

[
f (x) +

x
f (1/x)

]
,

we can write the function f in a symmetric form (7), relating f to its associated measure.
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It follows from Corollaries 2 and 3 that there is a one-to-one correspondence between normalized
symmetric positive operator-monotone functions and probability symmetric Borel measures on [0, 1]
via the integral representation (7).

Note that the set of normalized (symmetric) operator-monotone functions on R+ is a convex set.
We denote the Dirac measure concentrated at a point t by δt. Now, the integral representation (5) also
reflects the geometry of this set as follows.

Corollary 3.

(i) The (only) extreme points of the convex set of normalized positive operator-monotone functions are the
functions x 7→ 1 !t x where t ∈ [0, 1].

(ii) The functions x 7→ (1 !t x + x !t 1)/2 for t ∈ [0, 1] are extreme points of the convex set of normalized
symmetric positive operator-monotone functions.

Proof. The assertions (i) and (ii) are consequences of the affinity of the map µ 7→ f in Theorem 2
together with the following claims:

(1) The Dirac measures are the only extreme points of the convex set of probability Borel measures
on [0, 1].

(2) The measures (δt + δ1−t)/2 for t ∈ [0, 1] are extreme points of the convex set of probability
symmetric Borel measures on [0, 1].

To prove (1), note that the Dirac measures are extreme points of that set. Suppose there is a
probability measure µ on [0, 1] which is an extreme point, but µ is not a Dirac measure. Then there is
an s ∈ [0, 1] such that 0 < µ({s}) < 1. Define

ν =
µ− µ({s})δs

1− µ({s}) .

We can verify that ν is a probability positive measure on [0, 1]. It follows that

µ = µ({s})δs + (1− µ({s}))ν,

i.e., µ is a non-trivial convex combination of two probability Borel measures. This contradicts the
assumption that µ is an extreme point.

To prove (2), consider the measure (δt + δ1−t)/2 where t ∈ [0, 1]. Suppose that there are a constant
α ∈ (0, 1) and probability measures µ1, µ2 on [0, 1], which are invariant under the function Θ, such that

1
2
(δt + δ1−t) = αµ1 + (1− α)µ2.

For any s ∈ [0, 1]− {t, 1− t}, we have

0 = αµ1({s}) + (1− α)µ2({s}) = αµ1({1− s}) + (1− α)µ2({1− s}),

so that µ1({s}) = µ1({1− s}) = 0. Since µ1 is a probability measure, we get µ1({t}) + µ1({1− t}) = 1.
Since µ1({t}) = µ1({1− t}), we have µ1({t}) = µ1({1− t}) = 1/2. We now get µ1 = (δt + δ1−t)/2
and, similarly, µ2 = (δt + δ1−t)/2. Hence, the trivial combination is the only convex combination for
(δt + δ1−t)/2, i.e., this measure is an extreme point of that set.

4. Singularly-Discrete Monotone Metrics

This section provides typical examples of “singularly-discrete”monotone metrics.
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Example 1. Consider the operator-monotone function f (x) = 1. The associated Morozowa–Chentsov function
is given by c(x, y) = 1/y. For each D ∈ Dn, we have KD = RD and thus K−1

D = RD−1 . Hence, its associated
monotone metric is given by

KD(A, B) = 〈A, RD−1(B)〉 = Tr(D−1 A∗B).

The associated Borel measure on [0, 1] is given by the Dirac measure δ0.

Example 2. Consider the operator-monotone function f (x) = x. The associated Morozowa–Chentsov function
is given by c(x, y) = 1/x. For each D ∈ Dn, we have KD = LD and thus K−1

D = LD−1 . Hence, its associated
monotone metric is given by

KD(A, B) = 〈A, LD−1(B)〉 = Tr(A∗D−1B).

Its associated Borel measure is given by the Dirac measure δ1.

Example 3. For each t ∈ [0, 1], the operator-monotone function x 7→ 1 !t x corresponds to the Dirac measure δt.
By affinity of the map µ 7→ f , the measure ∑n

i=1 ai δti , where ti ∈ [0, 1] and ai > 0, is associated to the function
x 7→ ∑n

i=1 ai(1 !ti x).

Example 4. The smallest monotone metric is given by the Bures metric, introduced by Uhlmann [22].
This metric is represented by the Morozowa–Chentsov function

c(x, y) =
2

x + y
,

which is associated to the operator-monotone function f (x) = (1 + x)/2. By Example 3, its associated measure
of this metric is given by the probability measure (δ0 + δ1)/2.

More generally, let us consider the operator-monotone function f (x) = 1− α + αx, where α ∈ [0, 1].
For each D ∈ Dn, we have

KD = R
1
2
D f (LDR−1

D )R
1
2
D = (1− α)RD + αLD,

so that KD(X) = (1− α)XD + αDX for any X ∈ Mn. Its associated measure is given by the probability
measure (1− α)δ0 + αδ1.

Example 5. The largest monotone metric is the metric represented by the Morozowa–Chentsov function

c(x, y) =
x + y
2xy

.

This metric is associated to the operator-monotone function f (x) = 2x/(x + 1). It follows from Example
3 that its associated measure of this metric is δ1/2.

More generally, let us consider the operator-monotone function

f (x) =
x

α + (1− α)x
,

where α ∈ [0, 1]. For each D ∈ Dn, a direct computation reveals that

KD = [(1− α)RD−1 + αLD−1 ]
−1 .

Its associated measure is given by the probability measure δα.
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Remark 1. In Theorem 2, the map f 7→ µ is not order-preserving in general. Consider f (x) = 2x/(1 + x)
and g(x) = (1 + x)/2. Then µ f = δ1/2 and µg = (δ0 + δ1)/2. We have f 6 g but µ f 
 µg.

5. Absolutely-Continuous Monotone Metrics

In this section, we illustrate the one-to-one correspondence between positive operator-monotone
functions, absolutely-continuous Borel measures, and certain type of monotone metrics. We call
such metrics absolutely-continuous monotone metrics. Such functions will be typical examples of
absolutely-continuous type in the next section.

Example 6. Consider the operator-monotone function x 7→ log (1 + x). Using improper integration, we have

log (1 + x) =
∫ ∞

1

x
λ(x + λ)

dλ =
∫ 1

1/2
(1 !t x)

(1− t)2

t
d
(

t
1− t

)
=
∫ 1

0
(1 !t x)h(t) dt,

where h(t) = (1/t)χ[1/2,1](t). Here, χ[1/2,1] denotes the characteristic function on the set [1/2, 1]. Thus,
its associated measure is given by the absolutely-continuous measure having h as its density function. Hence,
the function log (1 + x) gives rise to a monotone metric.

Example 7. For each 0 < α < 1, consider the Morozowa–Chentsov function c(x, y) = x−αyα−1. This function
is associated to the operator-monotone function f (x) = xα. For each D ∈ Dn, we have

KD = R
1
2
D(R−

1
2

D LDR−
1
2

D )αR
1
2
D = R

1
2
DR−

α
2

D Lα
DR−

α
2

D R
1
2
D

= R
D

1
2

R
D−

α
2

LDα R
D−

α
2

R
D

1
2
= R

D
1−α

2
LDα R

D
1−α

2
= LDα RD1−α .

Thus, the associated monotone metric is given by

KD(A, B) = 〈A,K−1
D (B)〉 = 〈A, D−αBDα−1〉 = Tr(A∗D−αBDα−1).

To compute its associated measure, we recall a standard result from contour integrations:

xα =
∫ ∞

0

xtα−1

x + t
· sin απ

π
dt.

Denoting Ψ(t) = t/(1− t), we have

xα =
∫ 1

0
(1 !t x)Ψ(t)α−1 · 1

Ψ(t) + 1
· sin απ

π
dΨ(t) =

∫ 1

0
(1 !t x) dµ(t),

where the associated measure µ is given by

dµ(t) =
sin απ

π
· 1

t1−α(1− t)α
dt.

Example 8. The Kubo–Mori–Bogoliubov metric with Morozowa–Chentsov function

c(x, y) =
log x− log y

x− y

is associated to the operator-monotone function f (x) = (x− 1)/ log x. Using Example 7 and Fubini’s theorem,
we have

f (x) =
∫ 1

0
xλ dλ =

∫ 1

0

∫ 1

0

sin λπ

π
· 1 !t x

t1−λ(1− t)λ
dt dλ =

∫ 1

0
(1 !t x)

∫ 1

0

sin λπ

πt1−λ(1− t)λ
dλ dt.
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This means that the associated measure of f is given by dµ(t) = h(t) dt, where

h(t) =
∫ 1

0

sin λπ

πt1−λ(1− t)λ
dλ.

Using integration by parts twice, we have

∫ sin πλ

t1−λ(1− t)λ
dλ =

1
π2 + log2 ( t

1−t
) · [ −π cos πλ

t1−λ(1− t)λ
+ log

(
t

1− t

)
· sin πλ

t1−λ(1− t)λ

]
+ C.

Hence,

h(t) =
1
π

∫ 1

0

sin λπ

t1−λ(1− t)λ
dλ =

1

t(1− t)
(

π2 + log2( t
1−t )

) .

Example 9. Consider the dual 1/ f (1/x) of the function f in Example 8. We have the integral representation

1
f (1/x)

=
x

x− 1
log x =

∫ 1

0
1 !tx dt,

that is, this function corresponds to the Lebesgue measure.

6. Explicit Descriptions of Positive Operator-Monotone Functions

In this section, we give an explicit description of arbitrary operator-monotone functions on R+ by
decomposing them into typical concrete ones we have encountered in Sections 4 and 5. It is important
to note that the one-to-one correspondences (2) and (5) are both affine. Thus, if we can decompose an
operator-monotone function, then it gives rise to a decomposition of the associated monotone metric
as well. We also investigate such decomposition when such functions are normalized or symmetric.
For this section, we denote Lebesgue measure by m.

Theorem 4. For each f ∈ OM(R+), there is a unique triple ( fac, fsc, fsd) of operator-monotone functions on
R+ such that f = fac + fsc + fsd and

(i) there are a countable set D ⊆ [0, 1] and a summable family {at}t∈D ⊆ R+ such that for each x ∈ R+

fsd(x) = ∑
λ∈D

at(1 !t x); (8)

(ii) there is a (unique m-a.e.) integrable function h : [0, 1]→ R+ such that

fac(x) =
∫ 1

0
h(t)(1 !t x) dm(t), x ∈ R+; (9)

(iii) its associated measure of fsc is continuous and mutually singular to m.

Moreover, the associated measure of fsd is given by ∑t∈D at δt.

Proof. Let µ be the associated measure of f . By a standard result in measure theory (e.g., [23]), there is
a unique triple (µac, µsc, µsd) of finite Borel measures on [0, 1] such that µ = µac + µsc + µsd where

(I) µsd is a discrete measure
(II) µac is absolutely continuous with respect to m

(III) µsc is a continuous measure mutually singular to m.
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Define

fac(x) =
∫ 1

0
1 !t x dµac, fsd(x) =

∫ 1

0
1 !t x dµsd, fsc(x) =

∫ 1

0
1 !t x dµsc.

Then fac, fsd, fsc ∈ OM(R+) and f = fac + fsd + fsc. The condition (I) means precisely that there
are a countable set D ⊆ [0, 1] and a family {aλ}λ∈D in R+ such that ∑λ∈D aλ < ∞ and µsd = ∑t∈D atδt.
Hence, we arrive at the formula (8). Note that this series converges since

∑
t∈D

at(1 !t x) 6 ∑
t∈D

at max(1, x) < ∞, x ∈ R+.

The condition (II) means precisely the condition (ii) by Radon–Nikodym theorem. The uniqueness
of ( fac, fsc, fsd) follows from the uniqueness of (µac, µsc, µsd) and the correspondence between
operator-monotone functions and measures. The measure ∑t∈D at δt is associated to fsd since the
associated measure of x 7→ 1 !t x is δt for each t ∈ [0, 1] by Example 3.

Theorem 4 asserts that every f ∈ OM(R+) consists of three parts. The singularly-discrete part
fsd is a countable sum of x 7→ 1 !tx for t ∈ [0, 1], given by (8). Such type of functions include the
straight lines with positive slopes, the constant functions, the multiple functions x 7→ kx, and the
examples in Section 4. The absolutely-continuous part fac arises explicitly as an integral with respect to
Lebesgue measure given by (9). Typical examples of such functions are already provided in Section 5.
The singularly-continuous part fsc admits an integral representation with respect to a continuous
measure mutually singular to Lebesgue measure.

Proposition 2. The operator-monotone function fac defined by (9) is normalized if and only if the average of
the density function h is 1, i.e.

∫ 1
0 h(t) dt = 1. This function is symmetric if and only if h ◦Θ = h.

Proof. It follows from Corollary 2 and Theorem 3.

We say that a density function h : [0, 1] → R+ is symmetric if h ◦ Θ = h. Next, we
decompose a normalized operator-monotone function as a convex combination of normalized
operator-monotone functions.

Corollary 4. Let f ∈ OM(R+) be normalized. Then there are

• a unique triple ( f̃ac, f̃sc, f̃sd) of normalized operator-monotone functions or zero functions,
• a unique triple (kac, ksc, ksd) of real numbers in [0, 1]

such that

f = kac f̃ac + ksc f̃sc + ksd f̃sd, kac + ksc + ksd = 1,

and

(i) there are a countable set D ⊆ [0, 1] and a family {at}t∈D ⊆ [0, 1] such that ∑t∈D at = 1 and
fsd(x) = ∑λ∈D at(1 !t x) for each x ∈ R+;

(ii) there is a (unique m-a.e.) integrable function h : [0, 1] → R+ with average 1 such that fac(x) =∫ 1
0 h(t)(1 !t x) dm(t) for x ∈ R+;

(iii) its associated measure of fsc is continuous and mutually singular to m.
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Proof. Let µ be the associated probability measure of f = fac + fsd + fsc and write µ = µac + µsd + µsc.
Suppose that µac, µsd and µsc are nonzero. Set

µ̃ac =
µac

µac([0, 1])
, µ̃sd =

µsd
µsd([0, 1])

, µ̃sc =
µsc

µsc([0, 1])
,

kac = µac([0, 1]), ksd = µsd([0, 1]), ksc = µsc([0, 1]).

Define f̃ac, f̃sd, f̃sc to be the functions corresponding to the measures µ̃ac, µ̃sd, µ̃sc, respectively.
Now, let us apply Theorem 4 and Proposition 2.

We can decompose a symmetric operator-monotone function as a nonnegative linear combination
of symmetric operator-monotone functions as follows:

Corollary 5. Let f ∈ OM(R+) be symmetric. Then there is a unique triple ( fac, fsc, fsd) of symmetric
operator-monotone functions such that f = fac + fsc + fsd and

(i) there are a countable set D ⊆ [0, 1] and a summable family {at}t∈D ⊆ R+ such that at = a1−t for all
t ∈ D, and fsd(x) = ∑t∈D at(1 !t x) for each x ∈ R+;

(ii) there is a (unique m-a.e.) symmetric integrable function h : [0, 1]→ R+ such that

fac(x) =
1
2

∫ 1

0
h(t)(1 !t x + x !t 1) dm(t), x > 0;

(iii) its associated measure of fsc is continuous and mutually singular to m.

Proof. Let µ be the associated measure of f . Decompose µ = µac + µsd + µsc where µac � m, the
measure µsd is discrete, µsc is continuous, and µsc ⊥ m. Then µΘ = µacΘ + µsdΘ + µscΘ where
Θ : [0, 1] → [0, 1], t 7→ 1− t. It is straightforward to verify that µacΘ � m, the measure µsdΘ is
discrete, µscΘ is continuous, and µscΘ ⊥ m. By Theorem 3, µΘ = µ. The uniqueness of measure
decomposition implies that µacΘ = µac, µsdΘ = µsd and µscΘ = µsc. Again, by Theorem 3 fac, fsd, and
fsc are symmetric operator-monotone functions. Finally, let us apply Theorem 4 and Proposition 2.

A decomposition of any normalized symmetric operator-monotone function as a convex
combination of such ones is also obtained by the normalizing process as in the proof of Corollary 4.

Example 10. Recall that the Wigner–Yanase metric is represented by the Morozowa–Chentsov function

c(x, y) =
4

(
√

x +
√

y)2 .

Its associated operator-monotone function is given by

f (x) =
1
4
(x + 2

√
x + 1).

We see that this function is a convex combination of two singularly-discrete operator-monotone functions
and an absolutely-continuous one. By Example 7 and Theorem 2, its associated measure on the unit interval is

µ =
1
4
(δ1 + 2ν + δ0)

where dν(t) = (π
√

t(1− t))−1 dt.
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7. Conclusions

There are strongly connections between positive operator-monotone functions on the positive
reals, monotone (Riemannian) metrics, Morozowa–Chentsov functions, and finite Borel measures
on the unit interval. Indeed, there are one-to-one correspondences between the four kind objects.
It follows that certain properties (e.g., symmetry, normalization) of monotone metrics can be
investigated through the associated properties of the other objects. Moreover, we can decompose the
operator-monotone functions (thus, the other objects) into three parts, namely, its singularly-discrete
part, its absolutely-continuous part, and its singularly-continuous part. Concrete monotone metrics in
quantum Fisher information theory are illustrated with the associated operator-monotone functions,
the associated Morozowa–Chentsov functions, and the associated measures.
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