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Abstract: An adaptive splitting algorithm was implemented for numerical evaluation of Fourier-type
highly oscillatory integrals involving stationary point. Accordingly, a modified Levin collocation
method was coupled with multi-resolution quadratures in order to tackle the stationary point and
irregular oscillations of the integrand caused by ω . Some test problems are included to verify the
accuracy of the proposed methods.
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1. Introduction

Accurate and efficient evaluation of highly oscillatory integrals is challenging as the analytical and
classical computational methods fail to compute the integrals. The interest of computational scientists
to evaluate these integrals quickly and accurately is developed due to the wide range of applications
of these integrals in different fields of science and engineering such as optics, acoustics, quantum
mechanics, seismology image processing, and electromagnetic [1–4]. Generally, these integrals can be
written as

I[r, ω] =
∫ 1

−1
r(x)eiωΘ(x)dx, (1)

where r, Θ are both smooth and non-oscillatory functions over the interval [−1, 1] , ω � 1 and the
function Θ(x) has a stationary point of order k at x = x0 i.e., Θ′(x0) = Θ′′(x0) = ... = Θ(k−1)(x0) = 0
and Θ(k)(x0) 6= 0. Large values of the frequency ω cause a highly oscillations of the integrand,
which make the existing quadratures and softwares like MATHEMATICA in some cases, inaccurate.
New algorithms need to be developed for accurate and efficient computation of these integrals.

In the last two decades, a number of accurate and efficient methods have been designed for
numerical evaluation of one-dimensional highly oscillatory integrals, which include: the asymptotic
method [5–8], the numerical steepest descent method [9], the Filon(-type) methods [10,11], and the
Levin(-type) methods [12–16]. Among which, the Levin method has attracted much attention as it
can handle highly oscillatory integrals with complicated phase functions. The asymptotic expansion
theory which is considered in [10] is also one of the best methods for evaluation of highly oscillatory
integrals. Since then, many authors [11,17,18] have implemented this method.

The Filon method [11] gives better approximation when the frequency ω −→ ∞, but the method
has its limitations, that is, it is only applicable for linear phase functions. Compared to the Filon
method, Levin’s method has the advantage of solving oscillatory integrals with complicated phase
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functions. According to the Levin method, a one-dimensional oscillatory integral is transformed into
an ordinary differential equation (ODE) and then the ODE can be solved by the collocation method.
Subsequently, a solution of such an integral is obtained.

In [13], the authors presented an improved Levin method with Chebyshev polynomials as a
basis function and better accuracy was obtained. In [15], the authors evaluated non-oscillatory, mildly
oscillatory, and highly oscillatory multi-dimensional integrals by using a meshless method based on a
multi-quadric radial basis function and multi-resolution quadratures. In [14], the authors presented
a meshless method based on a multi-quadric radial basis function (MQ-RBF) and multi-resolution
quadrature to solve highly oscillatory integrals with and without critical points. In [19], the author
split the integration domain into two or more sub-domains in order to separate the critical point
and a two-point Gauss–Legendre quadrature was used to evaluate the integrals with critical points.
The remaining integrals were computed by the modified Levin collocation method.

In [16], the authors developed an algorithm in which the meshless method with a multi-quadric
radial basis function was coupled with the multi-resolution quadrature based on hybrid functions and
the Haar wavelet to evaluate highly oscillatory integrals with critical point(s). The multi-resolution
quadrature based on hybrid function of order 8 to evaluate integral of the form I[ f ] =

∫ b
a f (x)dx,

is given by

Q8
h[ f ] =

h
241920

n

∑
k=1

[
295627 f

(
a +

h
2
(16k− 15)

)
+ 71329 f

(
a +

h
2
(16k− 13)

)
+ 471771 f

(
a +

h
2
(16k− 11)

)
+ 128953 f

(
a +

h
2
(16k− 9)

)
+ 128953 f

(
a +

h
2
(16k− 7)

)
+ 471771 f

(
a +

h
2
(16k− 5)

)
+ 71329 f

(
a +

h
2
(16k− 3)

)
+ 295627 f

(
a +

h
2
(16k− 1)

)]
, (2)

where h = b−a
8n .

For a = 0, b = 1, and n = 4, the truncation error bound of the hybrid function Q8
h[ f ] is given

E =
−3194621× h9

14515200
f (ξ1)

(8), (3)

for some ξ1 in (a, b) [20].
The formula of the Haar wavelet based quadrature for computing the same integral is given as

Qw
H [ f ] = h

n

∑
i=1

f (xi) = h
n

∑
i=1

f (a + h(i− 0.5)) , (4)

where h = b−a
n and n = 2M. The truncation error of the quadrature rule Qw

H [ f ] is given by

|E| = h3

6
f
′′
(ς1),

for some ς1 ∈ (a, b) [20].
The current work is the extension of the work reported in [16,19]. According to the proposed

procedure, the interval of integration is divided into two or more subintervals in order to isolate the
stationary point. Integrals defined over a stationary point oriented interval can be computed by the
multi-resolution quadratures even for higher frequencies, while the remaining integrals with high
oscillations can be approximated by the Levin collocation quadrature. Theoretical error analysis of the
individual methods and the proposed algorithm was performed. Numerical results met the theoretical
proofs of the proposed algorithm.
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2. Evaluation Procedure

Levin type quadratures fail to compute Fourier-type oscillatory integrals (1) containing a
stationary point. We propose a splitting algorithm, which couples two types of quadrature rules
to tackle the stationary point. In this algorithm, we subdivide the interval [−1, 1] in such a manner that
the stationary point is separated in a very small interval and can be handled by the multi-resolution
quadratures. The evaluation procedure is discussed as follows.

2.1. Levin Quadrature

The Levin quadrature is applicable to evaluate Fourier-type oscillatory integrals of the form

I[r, ω] =
∫ b

a
r(x)eiωΘ(x)dx, (5)

where Θ′(x) 6= 0. To find the approximate solution of the integral (5), an approximate function Ŝ(x) is
assumed to satisfy the following differential equation

L
(

S(x)eiωΘ(x)
)
= r(x)eiωΘ(x), x ∈ Rn, n = 1, 2, 3, ..., (6)

where L is defined as

L =


d

dx

[
Ŝ(x)eiωΘ(x)

]
, for n = 1

∂n[Ŝ(x)eiωΘ(x)]
∂x1∂x2...︸ ︷︷ ︸

n-variable

, for n ≥ 2.

On applying the interpolation condition to (6), one can find the approximate solution Ŝ(x).
Consequently, the desired solution of integral (5) can be obtained as

I(r, ω) =
∫ b

a

d
dx

[
Ŝ(x)eiωΘ(x)

]
= Ŝ(b)eiωΘ(b) − Ŝ(a)eiωΘ(a).

2.2. Chebyshev Differentiation Matrix and Its Approximation

The Chebyshev differentiation matrix D [13] is used to approximate the derivative of a function
and can be explicitly defined as

Dkj =


vk
vj

. (−1)k+j

(xk−xj)
, k, j = 0, ..., N − 1, k 6= j

−ΣN−1
n=0,n 6=k, Dkn, k = j,

(7)

where

vj =

{
2, j = 0, N − 1

1, j = 1, ..., N − 2,
(8)

and xj = cos( π j
N−1 ), j = 0, 1, 2, ..., N − 1 are the N Chebyshev–Gauss–Lobatto nodes. If an integral is

defined over any domain [a, b], then, the Chebyshev–Gauss–Lobatto nodes xj can be obtained by the

transformation equation xj =
b−a

2 cos
(

π j
N−1

)
+ a+b

2 , j = 0, 1, ..., N − 1.
If u is a vector of function values of f (x) at Chebyshev–Gauss–Lobatto nodes, then

the approximate values of f ′(x) at Chebyshev–Gauss–Lobatto nodes can be obtained by Du.
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The procedure is applied to compute the first derivative of the following oscillatory type functions.
The results in terms of absolute errors are shown in Figure 1.

f1(x) = cos(ωx10), f2(x) = sinh(5x). (9)
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Figure 1. (a) Maximum error norm (L∞) for f ′1(x) and f ′2(x), ω = 1, N = 2, 4, ..., 20; (b) absolute errors
(Labs) of f ′1(x) at different frequencies for fixed nodes N = 20.

From Figure 1, it is shown that the accuracy for the derivative of the functions approximated by
the Chebyshev differentiation matrix Du at Chebyshev–Gauss–Lobatto nodes improves on increasing
N, and decaying for large frequency ω. In the Levin procedure, we are concerned with the derivative
of a smooth function S(x), which is independent of ω.

2.3. Chebyshev–Levin Quadrature

The Chebyshev differentiation matrix is used to find the approximate solution Ŝ(x) of ODE (6).
If Θ(x) is any phase function of integral (1) such that Θ′(x) 6= 0 for all x ∈ [a, b], then the discretized
form of the ODE (6) at Chebyshev–Gauss–Lobatto nodes is given by

Ŝ′ + iωΘ′ � Ŝ = R, (10)

where � represents Hadamard product of the real valued function Θ′ and the vector Ŝ. If Ŝ′ = DŜ,
then the descretized form ODE (10) is given as

(D + iω ∑)Ŝ = R, (11)

where ∑ = diag(Θ′) and can be written in Matlab built-in form as Γ = Θ′. ∗ E. Particularly if Θ(x) = x,
Equation (11) can be written as

(D + iωI)Ŝ = R, (12)

where I is the identity matrix and each of Ŝ and R are column matrices of order N × 1. The vectors
Ŝ, Θ and R are obtained from the real valued functions Ŝ(x), Θ(x) and r(x), respectively,
at Chebyshev–Gauss–Lobatto nodes as

Ŝ = [s(x0) s(x1) ... s(xN−1)]
T , Θ = [Θ(x0) Θ(x1) ... Θ(xN−1)]

T ,

and R = [r(x0) r(x1) ... r(xN−1)]
T .
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Equation (12) can be written in matrix form as

AŜ = R, (13)

where A is a square matrix of order N × N and both column vectors Ŝ and R have length N. Then the
system of Equation (13) for the unknown vector Ŝ(x) is solved. Subsequently, the desired numerical
solution of the oscillatory integral (5) can be obtained by the Levin’s procedure as

QC−L[r] = Ŝ(xN−1)eiωΘ(xN−1) − Ŝ(x0)eiωΘ(x0).

2.4. Adaptive Splitting

The Chebyshev–Levin quadrature QC−L[r] fails to evaluate the Fourier-type oscillatory integral (1)
with a stationary point at x = x0. In this section, an adaptive splitting is used to evaluate the integral
(1). According to this splitting, the domain interval is bifurcated into two or more sub-intervals in such

manner that the stationary point is isolated in a very small interval. For this, a parameter ζ = ( n
10ω )

1
k ,

a point in the vicinity of stationary point x0, is defined such that for fixed n, ζ → 0 as ω → ∞.
Case-I When the stationary point x0 = a lies at the left end point of the domain, then integral (1)

can be split as

I[r, ω] =
∫ ζ

x0

r(x)eiωΘ(x)dx +
∫ b

ζ
r(x)eiωΘ(x)dx = I1[r, ω] + I2[r, ω] (14)

The integral I1[r, ω] is computed by the quadrature rule Q8
h[ f ] or Qw

H [ f ] and the second integral
I2[r, ω] is approximated by the proposed method QC−L[r]. The following transformation equation is
used to discretize the interval [ζ, b] into Chebyshev–Gauss–Lobatto nodes.

xj =
(b− ζ) cos( jπ

N−1 )

2
+

ζ + b
2

, j = 0, 1, ..., N − 1. (15)

As the stationary point occurs anywhere in the interval [a, b] and hence for this, we have to discuss
the following case as case-II.

Case-II When a < x0 < b, then the split form of the integral (1) is given as

I[r, ω] =
∫ x0−ζ

a
r(x)eiωΘ(x)dx +

∫ x0+ζ

x0−ζ
r(x)eiωΘ(x)dx +

∫ b

x0+ζ
r(x)eiωΘ(x)dx

= I1[r, ω] + I2[r, ω] + I3[r, ω].
(16)

The integral I2[r, ω] contains the stationary point and is computed by the multi-resolution
quadratures Q8

h[ f ] or Qw
H [ f ] with n quadrature points. The integrals containing no stationary point

are computed by QC−L[r] with N collocation points. The following transformation Equation (15) for
integral I3[r, ω] is used to descretize the interval in Chebyshev–Gauss–Lobatto nodes.

xj =
(b− x0 − ζ) cos( jπ

N−1 )

2
+

x0 + ζ + b
2

, j = 0, 1, ..., N − 1,

and similarly we modify the transformation Equation (15) for I1[r, ω]. The final values of the
component integrals are combined as

i. If Q8
h[ f ] is used to compute the integral having a stationary point, then Chebyshev–hybrid

quadrature is given by
ChQ = Q8

h[ f ] + QC−L[r].
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ii. If Qw
H [ f ] is used for computing the integral having stationary point, then Chebyshev–Haar

quadrature can be written as
CHQ = Qw

H [ f ] + QC−L[r].

Algorithm-I:

1 . xj = cos( i∗π
N−1 ); j = 0, 1, ..., N − 1;

2 . ξ =
(

N0
10∗ω

)1/k
; (Slitting parameter.)

3 . [D] = Cheb.di f f .matrix(N, 1, 2);
4 . R = r(xj), for j = 1, 2, 3, ..., N; ( where r(x) is the amplitude function of (1).)
5 . B = D + i ∗ω ∗ I(N, N); (The coefficient matrix of the ODE (8) and I is the identity matrix.)
6 . p̂ = inv(B) ∗ R′; (The approximate solution of the ODE (8).)
7 . App1 = p̂N−1 ∗ exp(i ∗ ω ∗ Θ(xN−1)) − p̂x0 ∗ exp(i ∗ ω ∗ Θ(x0)); (Approximate Chebshev

solution of integral having no stationary point.)
8 . App2 = hybrid8(a, b, ω, n); (Approximate hybrid solution of the integral having stationary

point.)
9 . ChQ = App1 + App2; (Solution of integral (1)).

3. Error Bounds

In this section, error bounds of the individual methods as well as the proposed Algorithm-I in the
inverse power of ω are obtained to ensure the asymptotic convergence rate of the new algorithm.

Lemma 1 ([19]). Suppose that Θ(x) is a real valued and smooth function in (a, b) and |Θ(k)(x)| ≥ 1 for all
x ∈ (a, b) and a fixed value of k. Then

∣∣∣∫ b
a eiωΘ(x)dx

∣∣∣ ≤ c(k)ω−1/k holds when:

i. k ≥ 2 or
ii. k = 1 and Θ′(x) is monotonic.

The bound c(k) is independent of Θ and ω, and c(k) = 5.2k−1 − 2.

Lemma 2 ([3,19]). Under the assumption on Θ(x) in Lemma 1, the following result is obtained∣∣∣∣∫ b

a
eiωΘ(x)F(x)dx

∣∣∣∣ ≤ c(k)ω
−1
k

[
| F(b) | +

∫ b

a
| F
′
(x) | dx

]
.

Lemma 3. Suppose that the integral I2(r, ω) of (14) has a unique stationary point at x = x0 which lies at the
left end of the domain. Then the error bound of the Chebyshev–Levin quadrature QC−L[r] with N collocation
points for computing I2 is given by

|E2| = |I2(r, ω)−QC−L[r]| = O
(
(b− ζ)N

ω1/k

)
,

where k is the order of stationary point.

Proof. Let p̂(x) = ∑N−1
i=0 λiTi(x) be the approximate Chebyshev interpolating polynomial of the first

kind of order N − 1 that satisfies the following ODE

p′(x) + iωΘ′(x)p(x) = r(x).

Here λi, i = 0, 1, ...N − 1 are the N unknown coefficients, which can be determined by the
following interpolation condition

ψ(xk) = r(xk), k = 0, 1, ...N − 1,
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where ψ(x) = p̂′(x) + iωΘ′(x) p̂(x). By applying the recurrence relation Ti(x) = 2xTi−1(x) −
Ti−2(x), i = 2, 3, ... [20] with T0 = 1 and T1 = x, it follows that the function ψ(x) can be written as

ψ(x) =
N−1

∑
i=2

λi
[
2xT′i−1(x)− T′i−2(x) + (2 + iωxΘ′(x))Ti−1(x)− iωΘ′(x)Ti−2(x)

]
.

Let Φ(x) = Maxx∈[a,b](r(x)− ψ(x)). Using Lemma 2 and [16], the error bound of the integral
I2(r, ω) of (14) computed by the QC−L[r] is given as

|E2| = |I2(r, ω)−QC−L[r]| =
∫ b

ζ
(r(x)− ψ(x))eiωΘ(x)dx ≤

∫ b

ζ
Φ(x)eiωΘ(x)dx

≤ 3(b− ζ + N)‖Φ(m)‖∞(b− ζ)N

N!ωδ
.

(17)

Following the procedure [16] and (17), we can find the error bound of the proposed method
QC−L[r] as

|E2| = |I2(r, ω)−QC−L[r]| = O
(
(b− ζ)N

ω1/k

)
.

Lemma 4. Suppose that the integrand of I1(r, ω) of (14) has a unique stationary point at x = x0 that lies at the
left endpoint of the domain interval. Then the error bound of Q8

h[ f ] for computing I1(r, ω) =
∫ ζ

x0
r(x)eiωΘ(x)dx

with n quadrature points is given by

|E1| =
∣∣∣I1(r, ω)−Q8

h[ f ]
∣∣∣ = O

(
ω−(1+1/k)

)
,

where n = ξ−x0
8h .

Proof. Since the error bound of the hybrid function Q8
h[ f ] with n quadrature points is given by

(See Theorem 1, [16])

|E1| ≤
C(( n

10ω )1/k − a)
4.54× 108 , ω � 1,

where a is the stationary point, C is a constant independent of ω, h and k is the order of stationary
point. Since Q8

h[ f ] can compute the integral I1(r, ω) having stationary point at x = x0. Therefore, the

error bound of the hybrid function Q8
h[ f ] for computing I1(r, ω) =

∫ ζ
x0

r(x)eiωΘ(x)dx, (where ζ is the
nearest point of x0) is given as

|E1| =
∣∣∣I1(r, ω)−Q8

h[ f ]
∣∣∣ ≤ C1(

n
10ω − x0)

4.54× 108 , ω � 1. (18)

If x0 = 0, then (18) becomes

|E1| =
∣∣∣I1(r, ω)−Q8

h[ f ]
∣∣∣ ≤ C1

(
n

45.4× 108ω

)
, (19)

where C1 is independent of h and ω.
Since n = ζ

8h , the inequality in (19) can be written as

|E1| ≤
C1ζ

363.2× 108ωh
. (20)
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Using ζ = ( n
10ω )

1
k , Equation (20) can be written as

|E1| =
C2n1/k

hω1+1/k , where C2 =
C1

363.2× 108+1/k

= O
(

ω−(1+1/k)
)

.

As the Chebyshev–hybrid quadrature splitting method (ChQ) is obtained as

ChQ = Q8
h[ f ] + QC−L[r],

therefore, the error bound of the splitting method ChQ can be obtained as

|E1| = |I[r, ω]− ChQ| ≤ min

(
C2n1/k

hω1+1/k ,
C(b− ζ)N

ω1/k

)
, (21)

where C2 and C are independent of h and ω. For each subinterval of size h, Equation (21) can be
written as

|E1| = |I[r, ω]− ChQ| ≤ O

(
min

{
n1/k

hω1+1/k ,
hN−1

ω1/k

})
.

4. Numerical Examples and Discussion

In this section, the proposed method was tested on solving some benchmark problems [11,19].
The reference solution was obtained by MAPLE 18. The absolute errors Labs and scaled absolute errors
were computed in each test problem. Results of the new methods were compared with methods
reported in [11,19]. MATLAB 2009a platform was used for computation of numerical results.

Example 1. Consider the following integral [11]

I1[r, ω] =
∫ 1

0
sinh x eiω(x3+x2+x)dx. (22)

Integral (22) is highly oscillatory having no stationary point and can be computed by the
Chebyshev–Levin method QC−L[r]. The absolute errors are shown in Figures 2 and 3 and Table 1.
Figure 2a shows that the asymptotic order of convergence of the proposed method reached to O(ω−3.5),
while the asymptotic order of convergence of the methods reported in [11] is O(ω−2) as shown in
Figure 2b. The proposed method was tested for higher frequencies. The absolute errors are shown in
Table 1. It is shown in the table that the proposed method QC−L[r] improved accuracy on increasing ω.

Integral (22) was computed by the proposed methods QC−L[r] for fixed frequency and varying
nodal points and the results were compared with those obtained by Q8

h[ f ] and Qw
H [ f ]. The results are

shown in Figure 3a, while in Figure 3b, the nodal points are fixed and the frequencies vary. It is shown
in the figure that the proposed method was better than all the other methods. The main advantage of
the proposed method QC−L[r] was that it improved accuracy on increasing ω as well as N.
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Figure 2. (a) Labs scaled by ω3.5 of the QC−L[r], (b) Labs scaled by ω2 of the Filon method (Top) and
Levin method (Middle and Bottom) [11] for test problem 1.

Table 1. Labs produced by the QC−L[r], (n, N = 10) for test Problem 1.

ω QC−L[r] Q8
h[ f ] Qw

H [ f ]

105 4.37× 10−16 7.14× 10−2 7.12× 10−2

106 7.39× 10−18 5.49× 10−2 1.11× 10−1

107 5.86× 10−20 5.48× 10−2 2.02× 10−1

108 8.25× 10−22 2.23× 10−2 2.77× 10−2

109 6.10× 10−24 2.80× 10−2 3.61× 10−2
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QC−L[r] : ω = 100
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Figure 3. (a) Labs produced by QC−L[r], Q8
h[ f ] and Qw

H [ f ], (b) Labs produced by QC−L[r], Q8
h[ f ] and

Qw
H [ f ], (N, n = 10) for test Problem 1.

Example 2. Consider the following integral [19]

I2[r, ω] =
∫ 1

0
eiωx10

dx. (23)

Oscillatory behavior of the real part of the integrand (23) is shown in Figure 4a. The integral
has a stationary point of order k = 10 at x = 0, which lies at the extreme left position of the domain.
The Chebyshev–Levin quadrature QC−L[r] failed to evaluate the integral due to the existence of
stationary point in the domain interval. Multi-resolution quadrature Q8

h[ f ] or Qw
H [ f ] needed dense
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nodes to give the desired accuracy for high frequencies, which was impractical. The integral was
computed by the new splitting procedure ChQ accurately. Results in the form of scaled absolute errors
and relative errors were computed and are shown in Figure 5. In Figure 5a, it has been shown that the
asymptotic order of convergence of the splitting method ChQ reached to O(ω−3). The new splitting
method improved accuracy on increasing nodal points as shown in Figure 5b.

The two splitting methods ChQ and Chebyshev–Haar quadrature (CHQ) were implemented for
fixed nodes and varying frequencies. The results are shown in Figure 6a. The new methods were
compared with the result of the meshless splitting method [16] in Figure 6b. From the figures, it is
shown that the new splitting methods were better than the methods reported in [16]. From all figures,
it is evident that the new splitting methods were more accurate than the existing methods even for
smaller nodes.
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Figure 4. (a) Oscillatory behavior of the real part of test Problem 2 for ω = 500; (b) Oscillation of the
real part of test Problem 3 for ω = 100.
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Figure 5. (a) Labs produced by Chebyshev–hybrid quadrature (ChQ) scaled by ω3, (b) Lrel produced
by ChQ, Chebyshev–Haar quadrature (CHQ), Q8

h[ f ] and Qw
H [ f ] for test Problem 2.
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Figure 6. (a) Lrel produced by ChQ, CHQ, Q8
h[ f ] and Qw

H [ f ] for n = 103, (b) Lrel produced by HQ1 and
HQ2 reported in [16] for n = 103, for test Problem 2.

Example 3. Consider the following integral [11]

I3[r, ω] =
∫ 1

−1

1
x + 2

eiω(1−cos x− 1
2 x2+x3)dx. (24)

The integral in (24) is highly oscillatory. Irregular high oscillations of real part of the integrand
are shown in Figure 4b. The integral has a stationary point of order 2 at x = 0 ∈ [−1, 1]. The integral
was split according to the case-II of the splitting methods and was computed by the two new splitting
methods ChQ and CHQ. Absolute errors and scaled absolute errors are analyzed in Table 2 and
Figure 7. Figure 7a indicates that the new splitting method ChQ retained the same asymptotic order of
convergence O(ω−3) for this problem as well. In Figure 7b, results of the new splitting methods were
compared with multi-resolution quadratures for fixed frequency and varying nodal points. The new
splitting methods reduced the error up to O(10−15), which was a higher rate of convergence than the
method reported in [11].

Method ChQ was tested for higher frequencies. The results are shown in Table 2. It is shown in
the table that the new methods improved the results on increasing ω as well as N.
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Figure 7. (a) Labs scaled by ω3 of the ChQ, (b) Labs produced by ChQ, CHQ, Q8
h[ f ] and Qw

H [ f ] on
increasing N for test Problem 3.
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Table 2. Labs produced by ChQ for test Problem 3.

y m = 10 m = 20 m = 30 m = 40

105 6.9845× 10−8 2.5559× 10−10 1.8400× 10−13 2.0019× 10−15

106 2.7704× 10−10 1.3929× 10−12 4.0003× 10−15 mp
107 6.1799× 10−12 3.0001× 10−14 mp mp

Example 4. Consider the following integral [11]

I4[r, ω] =
∫ 1

0
exeiω(x3/2+x5/2)dx. (25)

The integral in (25) has a stationary point at x = 0. The integral was computed by the new
splitting algorithms ChQ and CHQ. Results are analyzed in Figures 8 and 9. The result in terms of
scaled absolute errors is shown in Figure 8a. In the same figure, results of the proposed methods are
compared with the results of Filon-type method [11]. It has been shown that the asymptotic order of
convergence of the new method ChQ reached to O(ω−3), while the method reported in [11] was of
order O(ω−2).

Comparison of the proposed methods was performed for fixed ω and varying nodal points and
vice versa as shown in Figure 9. It has been shown that the proposed splitting algorithms ChQ and
CHQ improved the accuracy on increasing ω and N.
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Figure 8. (a) Labs produce by Filon-type method scaled by ω2 in [11], (b) Labs scaled by ω3 of ChQ for
test Problem 4.
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Figure 9. (a) Labs produced by ChQ, CHQ, Q8
h[ f ] and Qw

H [ f ] for fixed ω, (b) Labs produced by ChQ,
CHQ, Q8

h[ f ] and Qw
H [ f ] for fixed nodal points of test Problem 4.

5. Conclusions

An adaptive splitting procedure which couples Chebyshev–Levin quadrature QC−L[r] with
multi-resolution quadratures was implemented to evaluate highly oscillatory integrals with a stationary
point. Theoretical error analysis in terms of inverse powers of ω of the proposed procedure was
performed and numerically verified by solving a few benchmark problems. The asymptotic order of
convergence of both, the Chebyshev–Levin quadrature QC−L[r] and the splitting algorithm reached to
O(ω−3). Results of the proposed algorithm were compared with some existing methods reported in
the literature. Moreover, the improvement in the accuracy could easily be witnessed from the results
of new algorithm.
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Nomenclature

Symbols Discription
QC−L[r] Chebyshev–Levin quadrature
Q8

h[ f ] Quadrature based on hybrid functions
Qw

H [ f ] Quadrature baed on Haar wavelet
ChQ Splitting procedure with Chebyshev–hybrid quadrature
CHQ Splitting procedure with Chebyshev–Haar quadrature
ζ Splitting parameter
k Order of the stationary point
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