
mathematics

Article

Efficient Pipelined Broadcast with Monitoring
Processing Node Status on a Multi-Core Processor

Jongsu Park

School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea; jspark@yonsei.ac.kr

Received: 12 November 2019; Accepted: 29 November 2019; Published: 1 December 2019 ����������
�������

Abstract: This paper presents an efficient pipelined broadcasting algorithm with the inter-node
transmission order change technique considering the communication status of processing nodes.
The proposed method changes the transmission order for the broadcast operation based on the
communication status of processing nodes. When a broadcast operation is received, a local bus checks the
remaining pre-existing transmission data size of each processing node; it then transmits data according to
the changed transmission order using the status information. Therefore, the synchronization time can be
hidden for the remaining time, until the pre-existing data transmissions finish; as a result, the overall
broadcast completion time is reduced. The simulation results indicated that the speed-up ratio of the
proposed algorithm was up to 1.423, compared to that of the previous algorithm. To demonstrate
physical implementation feasibility, the message passing engine (MPE) with the proposed broadcast
algorithm was designed by using Verilog-HDL, which supports four processing nodes. The logic
synthesis results with TSMC 0.18 µm process cell libraries show that the logic area of the proposed
MPE is 2288.1 equivalent NAND gates, which is approximately 2.1% of the entire chip area. Therefore,
performance improvement in multi-core processors is expected with a small hardware area overhead.

Keywords: broadcast; collective communication; pipelined broadcast; multi-core processor;
message passing

1. Introduction

Multi-core processor and many-core processor have become dominant processor models in
many modern computer systems including smartphones, tablet PCs, desktop computers and even
high-performance server systems [1,2]. Modern high-performance processors comprise two or more
independent cores, and each core can be connected to various interconnection network topologies,
such as bus, ring, mesh, and crossbar. Whereas the performance of a single core is limited by physical
constraints, recent technological advances have made processors with many cores feasible [3,4].
The parallelism provided by multi- or many-core processors gives greater cost-performance benefits
over single-core processors.

To maximize the performance of these multi-core processors, it is important to support efficient
data communication among cores. Data communications among processors are undertaken by
using point-to-point and collective communications. Point-to-point communication is used when
there is a single sender and a single receiver, and it is relatively easy to implement efficiently.
Collective communication is for multiple senders and/or receivers, and it is difficult to implement
efficiently because the topology-aware implementation is required for good performance [5].
To ensure implementation efficiency, collective communications are generally converted into groups of
point-to-point communication [6]. Common collective communication patterns are broadcast, scatter,
gather, all-gather, all-to-all, reduce, all-reduce, and so on [7,8].

Collective communication operations are generated through the use of programming that uses
multiprocessing libraries, such as OpenMP, message passing interface (MPI), or compute unified

Mathematics 2019, 7, 1159; doi:10.3390/math7121159 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math7121159
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/12/1159?type=check_update&version=2

Mathematics 2019, 7, 1159 2 of 22

device architecture (CUDA). Generally, using collective communication operations reduces the code
size and also increases performance, compared to using point-to-point communication operations.
Moreover, collective communication operations account for approximately up to 80% of the total data
transmission time; therefore, it is very important to improve their execution time [9–11].

Broadcasting is a frequently used form of collective communications; it is used to disseminate data
messages in the root node (core) to all the other nodes (core) that belong to the same communicator.
Following the advent of the sequential tree algorithm [12], various broadcast algorithms have been
proposed; these include the binary tree, binomial tree [13], minimum spanning tree, and distance
minimum spanning tree algorithms, as well as Van de Gejin’s hybrid broadcast [14] and modified
hybrid broadcast [15] algorithms. These algorithms offer performance efficiency by tuning network
topologies in collective communications.

Since then, pipelined broadcast algorithms have been proposed to accelerate the processing time
of broadcast communication at the operating system level [9,16], by utilizing the maximum bandwidth.
There have also been a few diverse works on pipelined broadcast algorithms [17–21] that look to
improve the processing time of broadcast communication. In the pipelined broadcast algorithm, data
are packetized into k partitions to make k-pipeline stages, so that it activates most communication
ports efficiently. However, the action of packetizing incurs k-1 number of additional synchronization
processes. As a result, the pipelined broadcast algorithm has an inherent limitation in improving the
performance of broadcast communication because it improves the data transmission time but incurs
an unnecessary synchronization time-cost.

First, this paper explains an enhanced algorithm for pipelined broadcasting; it is called an “atomic
pipelined broadcast algorithm” [22]. In this preliminary study, the enhanced algorithm accelerates the
processing time of broadcast communication by drastically reducing the number of synchronization
processes in the conventional pipeline broadcast algorithm. This reduced number of synchronization
processes is accomplished by developing a light-weight protocol and employing simple hardware logic,
so that the message broadcast can be performed in an atomic fashion with full pipeline utilization.

Additionally, this paper proposes an inter-node transmission order change technique considering
the communication status of processing nodes. The reinforcement learning algorithms have been
already adopted in various transmission orders or selection problems in 5G networks [23,24]. However,
these pre-existing algorithms could not be applied to on-chip communications because they have
too high of an implementation complexity supported by software to be implemented to hardware
logic. For on-chip communications, the proposed method has appropriate complexity and efficient
performance. The proposed method changes the transmission order for the broadcast operation
based on the communication status of processing nodes. When a broadcast operation is received,
a local bus checks the remaining pre-existing transmission data size of each processing node; it then
transmits data according to the changed transmission order using the status information. Therefore,
the synchronization time can be hidden for the remaining time, until the pre-existing data transmissions
finish; as a result, the overall broadcast completion time is reduced.

To validate this approach, the proposed broadcast algorithm is implemented to a bus functional
model (BFM) with SystemC, and then evaluated in the simulations from using various communication
data sizes and numbers of nodes. The simulation results indicate that the speed-up ratio of the
atomic pipelined broadcast algorithm is up to 4.113, compared to that of the previous pipelined
broadcast algorithm, which lacks any changes to the transmission order, when a 64-byte date message
is broadcasted among 32 nodes.

In order to demonstrate physical implementation feasibility, the message passing engine (MPE)
supporting the proposed atomic broadcast algorithm and the enhanced transmission order change
technique was designed by using Verilog-HDL, which comprises four processing nodes. The logic
synthesis results with TSMC 0.18 µm process cell libraries show that the logic area of the proposed
MPE was 2288.1 equivalent NAND gates, which represents approximately 2.1% of the entire chip

Mathematics 2019, 7, 1159 3 of 22

area. Therefore, performance improvement is expected with a small hardware area overhead, if the
proposed MPE were to be added to multi-core processors.

The remainder of this paper is organized as follows. Section 2 introduces trends in the
interconnection networks of multi-core processors, as well as the previous algorithms that served as
the motivation for the thinking behind this paper. Section 3 explains the proposed atomic pipelined
broadcast algorithm with the inter-node transmission order change technique. Section 4 provides the
simulation results, and a discussion thereof. Section 5 details the modified MPE implementation and
synthesis results, and Section 6 provides concluding remarks.

2. Background Research

2.1. Interconnection Networks on Multi-Core Processors

An interconnection network in multi-core processors transfers information from any source core
to any desired destination core. This transfer should be completed with as small latency as possible.
It should allow a large number of such transfers to take place concurrently. Moreover, it should be
inexpensive as compared to the cost of the rest of the machine. The network consists of links and
switches, which help to send the information from the source core to the destination core. The network
is specified by its topology, routing algorithm, switching strategy, and flow control mechanism.

The leading companies in multi-core processors have developed their own interconnection
network architectures for data communication among cores. Intel has developed two processor
types: general-purpose processors such as those in the I7 series, and high-performance computing
processors such as the Xeon Phi processor. In Intel’s general-purpose processors, a crossbar is used for
interconnection among cores, and quick-path interconnection (QPI) is used for interconnection among
processors [25,26].

Figure 1 is a block diagram of a multi-core processor with external QPI. The processor has one
or more cores, and it also typically comprises one or more integrated memory controllers. The QPI
is a high-speed point-to-point interconnection network. Although it is sometimes classified as a
type of a serial bus, it is more accurately considered a point-to-point link, as data are sent in parallel
across multiple lanes and its packets are broken into multiple parallel transfers. It is a contemporary
design that uses some techniques similar to those seen in other point-to-point interconnections,
such as peripheral component interconnect express (PCIe) and a fully-buffered dual in-line memory
module (FB-DIMM). The physical connectivity of each link consists of 20 differential signal pairs and
a differential forwarded clock. Each port supports a link pair consisting of two uni-directional links
that connect two processors; this supports traffic in both directions, simultaneously [27]. Additionally,
the QPI comprises a cache coherency protocol to maintain the distributed memory and caches coherent
during system operation [28].

Mathematics 2019, 7, x 3 of 23

area. Therefore, performance improvement is expected with a small hardware area overhead, if the
proposed MPE were to be added to multi-core processors.

The remainder of this paper is organized as follows. Section 2 introduces trends in the
interconnection networks of multi-core processors, as well as the previous algorithms that served as
the motivation for the thinking behind this paper. Section 3 explains the proposed atomic pipelined
broadcast algorithm with the inter-node transmission order change technique. Section 4 provides the
simulation results, and a discussion thereof. Section 5 details the modified MPE implementation and
synthesis results, and Section 6 provides concluding remarks.

2. Background Research

2.1. Interconnection Networks on Multi-Core Processors

An interconnection network in multi-core processors transfers information from any source core
to any desired destination core. This transfer should be completed with as small latency as possible.
It should allow a large number of such transfers to take place concurrently. Moreover, it should be
inexpensive as compared to the cost of the rest of the machine. The network consists of links and
switches, which help to send the information from the source core to the destination core. The
network is specified by its topology, routing algorithm, switching strategy, and flow control
mechanism.

The leading companies in multi-core processors have developed their own interconnection
network architectures for data communication among cores. Intel has developed two processor types:
general-purpose processors such as those in the I7 series, and high-performance computing
processors such as the Xeon Phi processor. In Intel’s general-purpose processors, a crossbar is used
for interconnection among cores, and quick-path interconnection (QPI) is used for interconnection
among processors [25,26].

Figure 1 is a block diagram of a multi-core processor with external QPI. The processor has one
or more cores, and it also typically comprises one or more integrated memory controllers. The QPI is
a high-speed point-to-point interconnection network. Although it is sometimes classified as a type of
a serial bus, it is more accurately considered a point-to-point link, as data are sent in parallel across
multiple lanes and its packets are broken into multiple parallel transfers. It is a contemporary design
that uses some techniques similar to those seen in other point-to-point interconnections, such as
peripheral component interconnect express (PCIe) and a fully-buffered dual in-line memory module
(FB-DIMM). The physical connectivity of each link consists of 20 differential signal pairs and a
differential forwarded clock. Each port supports a link pair consisting of two uni-directional links
that connect two processors; this supports traffic in both directions, simultaneously [27]. Additionally,
the QPI comprises a cache coherency protocol to maintain the distributed memory and caches
coherent during system operation [28].

Core Core Core
…..

Processor Cores

Crossbar Router /
Non-routing global links

interface

In
te

gr
at

ed
 M

em
or

y
Co

nt
ro

lle
r

…..
Intel QuickPath Interconnects

…
..Memory

Interface

Figure 1. Block diagram of multi-core processor with Intel quick-path interconnection (QPI) interconnection.
Reproduced from [27], Intel: 2019.

Mathematics 2019, 7, 1159 4 of 22

The up-to-date Intel Xeon Phi processor, codenamed “Knight Landing” (KNL), comprises
36 processor tiles, where each processor tile consists of two cores, two vector processing units
(VPU), and 1 MByte L2. All processor tiles are interconnected to 2D mesh interconnection, and the
interconnection among Xeon Phi processors is an Intel omni-path fabric interconnection [29–31].
Figure 2 is a block diagram of an Intel Xeon Phi Processor with omni-path fabric interconnection.
The omni-path fabric is connected through the two x16 lanes of PCI express to the KNL die, and it
provides two 100-Gbits-per-second ports, out of the package [32].

Mathematics 2019, 7, x 4 of 23

Figure 1. Block diagram of multi-core processor with Intel quick-path interconnection (QPI)
interconnection. Reproduced from [27], Intel: 2019.

The up-to-date Intel Xeon Phi processor, codenamed “Knight Landing” (KNL), comprises 36
processor tiles, where each processor tile consists of two cores, two vector processing units (VPU),
and 1 MByte L2. All processor tiles are interconnected to 2D mesh interconnection, and the
interconnection among Xeon Phi processors is an Intel omni-path fabric interconnection [29–31].
Figure 2 is a block diagram of an Intel Xeon Phi Processor with omni-path fabric interconnection. The
omni-path fabric is connected through the two x16 lanes of PCI express to the KNL die, and it
provides two 100-Gbits-per-second ports, out of the package [32].

Figure 2. Block diagram of Intel Xeon Phi processor with omni-path fabric interconnection.
Reproduced from [32], IEEE: 2016.

AMD also uses a crossbar to interconnect cores and the interconnection among processors is
HyperTransport, which is a high-speed point-to-point interconnection network similar to Intel QPI
[33,34]. Figure 3 is a block diagram of an AMD processor with HyperTransport interconnection,
which provides scalability, high bandwidth, and low latency. The distributed shared-memory
architecture includes four integrated memory controllers (i.e., one per chip), giving it four-fold
greater memory bandwidth and capacity compared to traditional architectures without the use of
costly power-consuming memory buffers [35].

Figure 3. Block diagram of AMD processor with HyperTransport interconnection. Reproduced from
[35], IEEE: 2007.

Omni-
Path

Package

Xeon Phi Processor
“Knight Landing”

DDR 4

16 Gbyte
MCDRAM

Omni-Path Ports
100Gbps/port

x4 PCIe

x16 PCIe

Mem AMD
Opteron

AMD
OpteronHT

Mem AMD
Opteron

AMD
OpteronHT

SOA
accelerator

XML
accelerator

Flops
accelerator

Processor

Processor

PCIe
bridge

Other
Optimized

silicon

I/O hub DRAM

DRAM

8 Gbyte/s

8 Gbyte/s

8 Gbyte/s

8 Gbyte/s

Figure 2. Block diagram of Intel Xeon Phi processor with omni-path fabric interconnection. Reproduced
from [32], IEEE: 2016.

AMD also uses a crossbar to interconnect cores and the interconnection among processors
is HyperTransport, which is a high-speed point-to-point interconnection network similar to Intel
QPI [33,34]. Figure 3 is a block diagram of an AMD processor with HyperTransport interconnection,
which provides scalability, high bandwidth, and low latency. The distributed shared-memory
architecture includes four integrated memory controllers (i.e., one per chip), giving it four-fold greater
memory bandwidth and capacity compared to traditional architectures without the use of costly
power-consuming memory buffers [35].

Mathematics 2019, 7, x 4 of 23

Figure 1. Block diagram of multi-core processor with Intel quick-path interconnection (QPI)
interconnection. Reproduced from [27], Intel: 2019.

The up-to-date Intel Xeon Phi processor, codenamed “Knight Landing” (KNL), comprises 36
processor tiles, where each processor tile consists of two cores, two vector processing units (VPU),
and 1 MByte L2. All processor tiles are interconnected to 2D mesh interconnection, and the
interconnection among Xeon Phi processors is an Intel omni-path fabric interconnection [29–31].
Figure 2 is a block diagram of an Intel Xeon Phi Processor with omni-path fabric interconnection. The
omni-path fabric is connected through the two x16 lanes of PCI express to the KNL die, and it
provides two 100-Gbits-per-second ports, out of the package [32].

Figure 2. Block diagram of Intel Xeon Phi processor with omni-path fabric interconnection.
Reproduced from [32], IEEE: 2016.

AMD also uses a crossbar to interconnect cores and the interconnection among processors is
HyperTransport, which is a high-speed point-to-point interconnection network similar to Intel QPI
[33,34]. Figure 3 is a block diagram of an AMD processor with HyperTransport interconnection,
which provides scalability, high bandwidth, and low latency. The distributed shared-memory
architecture includes four integrated memory controllers (i.e., one per chip), giving it four-fold
greater memory bandwidth and capacity compared to traditional architectures without the use of
costly power-consuming memory buffers [35].

Figure 3. Block diagram of AMD processor with HyperTransport interconnection. Reproduced from
[35], IEEE: 2007.

Omni-
Path

Package

Xeon Phi Processor
“Knight Landing”

DDR 4

16 Gbyte
MCDRAM

Omni-Path Ports
100Gbps/port

x4 PCIe

x16 PCIe

Mem AMD
Opteron

AMD
OpteronHT

Mem AMD
Opteron

AMD
OpteronHT

SOA
accelerator

XML
accelerator

Flops
accelerator

Processor

Processor

PCIe
bridge

Other
Optimized

silicon

I/O hub DRAM

DRAM

8 Gbyte/s

8 Gbyte/s

8 Gbyte/s

8 Gbyte/s

Figure 3. Block diagram of AMD processor with HyperTransport interconnection. Reproduced
from [35], IEEE: 2007.

Mathematics 2019, 7, 1159 5 of 22

ARM is a leading embedded system-on-a-chip (SoC) technology, with its ARM multi-core
processors and advanced microcontroller bus architecture (AMBA) intellectual properties (IPs). Since
AMBA was first introduced in 1996, it has described a number of buses and interfaces for on-chip
communications. The first version of AMBA contained only two buses: the advanced system bus
(ASB) and the advanced peripheral bus (APB). However, the current version adds a wide collection
of high-performance buses and interfaces, including the advanced high-performance bus (AHB),
the advanced extensible interface (AXI), and AXI coherency extensions (ACE) [36]. Since AMBA bus
protocols are today the de facto standard for embedded processors and can be used without royalties,
the AMBA bus has been widely used in high-performance multi-core processor SoC designs [37–39].
In up-to-date multi-core processors for mobile applications such as the Samsung Exynos Octa 9820 [39]
and the Qualcomm Snapdragon 855 [40], multiple cores are interconnected via the AMBA bus.
Additionally, in 2012, the chip implementation of a multi-core processor, in which 32 cores are
interconnected via the AMBA bus, was presented [41].

2.2. Pipelined Broadcast

Various broadcast algorithms have been proposed, including the binary tree, binomial tree,
minimum spanning tree, and distance minimum spanning tree algorithms, as well as Van de Gejin’s
hybrid broadcast and modified hybrid broadcast algorithms. These algorithms offer performance
efficiency by tuning network topologies in collective communications [12].

Since then, pipelined broadcast algorithms have been proposed to accelerate the processing time
of broadcast communication by utilizing the maximum bandwidth [9,16]. A few diverse works on
pipelined broadcast algorithms [17–21] have considered the means of improving the processing time
of broadcast communication.

In the pipelined broadcast algorithm, data to be broadcast are partitioned into k packets as shown
in Figure 4, and the packets are transmitted through a k-step pipeline as in Figures 2–5; this means the
communication channels can be heavily used during the period from step 3 to throughout step k with
iterative synchronization processes, which is unavoidable on the mesh network level to verify the next
destination. Consequently, the algorithm shows better performance as the data size increases. Thus,
the value of k is very important in balancing the trade-offs between the number of synchronization
processes and the utilization of the communication channels. The value of k is known to be optimal if
it is chosen according to Equation (1) [16].

kopt =

1 if

√
(p− 2)nβ/α < 1

n if
√
(p− 2)nβ/α > n√

(p− 2)nβ/α otherwise
, (1)

p : number of processing nodes;
α : cycles required for each syncronization;
β : cycles required for sin gle byte data transfer;
n : data vector length.

Mathematics 2019, 7, x 5 of 23

ARM is a leading embedded system-on-a-chip (SoC) technology, with its ARM multi-core
processors and advanced microcontroller bus architecture (AMBA) intellectual properties (IPs). Since
AMBA was first introduced in 1996, it has described a number of buses and interfaces for on-chip
communications. The first version of AMBA contained only two buses: the advanced system bus
(ASB) and the advanced peripheral bus (APB). However, the current version adds a wide collection
of high-performance buses and interfaces, including the advanced high-performance bus (AHB), the
advanced extensible interface (AXI), and AXI coherency extensions (ACE) [36]. Since AMBA bus
protocols are today the de facto standard for embedded processors and can be used without royalties,
the AMBA bus has been widely used in high-performance multi-core processor SoC designs [37–39].
In up-to-date multi-core processors for mobile applications such as the Samsung Exynos Octa 9820
[39] and the Qualcomm Snapdragon 855 [40], multiple cores are interconnected via the AMBA bus.
Additionally, in 2012, the chip implementation of a multi-core processor, in which 32 cores are
interconnected via the AMBA bus, was presented [41].

2.2. Pipelined Broadcast

Various broadcast algorithms have been proposed, including the binary tree, binomial tree,
minimum spanning tree, and distance minimum spanning tree algorithms, as well as Van de Gejin’s
hybrid broadcast and modified hybrid broadcast algorithms. These algorithms offer performance
efficiency by tuning network topologies in collective communications [12].

Since then, pipelined broadcast algorithms have been proposed to accelerate the processing time
of broadcast communication by utilizing the maximum bandwidth [9,16]. A few diverse works on
pipelined broadcast algorithms [17–21] have considered the means of improving the processing time
of broadcast communication.

In the pipelined broadcast algorithm, data to be broadcast are partitioned into k packets as
shown in Figure 4, and the packets are transmitted through a k-step pipeline as in Figures 2–5; this
means the communication channels can be heavily used during the period from step 3 to throughout
step k with iterative synchronization processes, which is unavoidable on the mesh network level to
verify the next destination. Consequently, the algorithm shows better performance as the data size
increases. Thus, the value of k is very important in balancing the trade-offs between the number of
synchronization processes and the utilization of the communication channels. The value of k is known
to be optimal if it is chosen according to Equation (1) [16].

Figure 4. Data packetizing into k partitions.

Figure 5. Pipelined broadcast architecture with iterative synchronization processes.

 𝑘 = 1 if 𝑝 − 2 𝑛𝛽/𝛼 < 1𝑛 if 𝑝 − 2 𝑛𝛽/𝛼 > 𝑛𝑝 − 2 𝑛𝛽/𝛼 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (1)

…..

Data(X)

X(k - 2) X(k - 1) X(k)X1 X2 X3

Figure 4. Data packetizing into k partitions.

Mathematics 2019, 7, 1159 6 of 22

Mathematics 2019, 7, x 5 of 23

ARM is a leading embedded system-on-a-chip (SoC) technology, with its ARM multi-core
processors and advanced microcontroller bus architecture (AMBA) intellectual properties (IPs). Since
AMBA was first introduced in 1996, it has described a number of buses and interfaces for on-chip
communications. The first version of AMBA contained only two buses: the advanced system bus
(ASB) and the advanced peripheral bus (APB). However, the current version adds a wide collection
of high-performance buses and interfaces, including the advanced high-performance bus (AHB), the
advanced extensible interface (AXI), and AXI coherency extensions (ACE) [36]. Since AMBA bus
protocols are today the de facto standard for embedded processors and can be used without royalties,
the AMBA bus has been widely used in high-performance multi-core processor SoC designs [37–39].
In up-to-date multi-core processors for mobile applications such as the Samsung Exynos Octa 9820
[39] and the Qualcomm Snapdragon 855 [40], multiple cores are interconnected via the AMBA bus.
Additionally, in 2012, the chip implementation of a multi-core processor, in which 32 cores are
interconnected via the AMBA bus, was presented [41].

2.2. Pipelined Broadcast

Various broadcast algorithms have been proposed, including the binary tree, binomial tree,
minimum spanning tree, and distance minimum spanning tree algorithms, as well as Van de Gejin’s
hybrid broadcast and modified hybrid broadcast algorithms. These algorithms offer performance
efficiency by tuning network topologies in collective communications [12].

Since then, pipelined broadcast algorithms have been proposed to accelerate the processing time
of broadcast communication by utilizing the maximum bandwidth [9,16]. A few diverse works on
pipelined broadcast algorithms [17–21] have considered the means of improving the processing time
of broadcast communication.

In the pipelined broadcast algorithm, data to be broadcast are partitioned into k packets as
shown in Figure 4, and the packets are transmitted through a k-step pipeline as in Figures 2–5; this
means the communication channels can be heavily used during the period from step 3 to throughout
step k with iterative synchronization processes, which is unavoidable on the mesh network level to
verify the next destination. Consequently, the algorithm shows better performance as the data size
increases. Thus, the value of k is very important in balancing the trade-offs between the number of
synchronization processes and the utilization of the communication channels. The value of k is known
to be optimal if it is chosen according to Equation (1) [16].

Figure 4. Data packetizing into k partitions.

Figure 5. Pipelined broadcast architecture with iterative synchronization processes.

 𝑘 = 1 if 𝑝 − 2 𝑛𝛽/𝛼 < 1𝑛 if 𝑝 − 2 𝑛𝛽/𝛼 > 𝑛𝑝 − 2 𝑛𝛽/𝛼 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (1)

…..

Data(X)

X(k - 2) X(k - 1) X(k)X1 X2 X3

Figure 5. Pipelined broadcast architecture with iterative synchronization processes.

In the pipelined broadcast algorithm shown in Figure 5, we could see that k-iterative
synchronization processes were needed in each pipeline step. Suppose that the number of cycles
required for synchronization in one pipeline step is m cycles, and that the operating frequency is f
MHz; then, the total synchronization time will be calculated as in Equation (2). This will incur an O(k)
arithmetic cost, leading to inefficient channel throughput due to diminishing return as k increases.

total_timesync =
m
f
∗ k ∗ 10−6. (2)

In the case of broadcast communication, all data messages should be transferred to every node
within the communicator, as soon as possible. As it is common to simultaneously allocate all channels
to broadcast data, the recommended scenario is to have the host node preempt all pipeline channels
and broadcast the data in the form of nonblocking chain operations, making all pipeline channels
fully utilized.

3. Atomic Pipelined Broadcast with Inter-Node Transmission Order Change

3.1. Atomic Pipelined Broadcast

As a preliminary study, the author presented the enhanced algorithm to overcome the disadvantage
of pipelined broadcasting, which is called an atomic pipelined broadcast algorithm [22]. The term
“Atomic” derives from the concept of an atomic transaction, where a transaction should be performed
either in its entirety or not at all [42]. This algorithm accelerates the processing time of broadcast
communication by drastically reducing the number of synchronization processes involved. This
reduction was accomplished by developing a light-weight protocol and employing simple hardware
logic, so that the data message broadcast can be performed in an atomic fashion with full pipeline
utilization. This section explains the details of the atomic pipelined broadcast and discusses the
resulting performance improvement.

In the conventional pipelined broadcast algorithm described in Section 2.2, each processing node
plays one of three roles: head, body or tail. For example, as shown in Figure 5, PN0 is a head node,
PN1 and PN2 are body nodes, and PN3 is a tail node. In the case of the head node, PN0 sends data
toward PN1, where the broadcast communication is converted into k point-to-point send operations.
In the case of PN3, which is a tail node, the broadcast communication is converted into k point-to-point
receive operations. On the other hand, the body nodes such as PN1 and PN2 receive data from one
node and simultaneously send the data to another, where the broadcast communication converts into k
point-to-point send operations and also k receive operations. At this point, k times as many as iterative
synchronization processes occur, which we want to avoid if there is no need to synchronize in between
the initiation and the completion of the broadcast procedure.

One way to avoid these iterative synchronization processes is by having solid network connections
among all the processing nodes, which can be naturally found in a multi-core processor’s bus structure
such as an AMBA bus. Using this bus structure, we could preempt all the communication channels by
establishing specific protocols, and use the pipeline seamlessly as shown in Figure 6.

Mathematics 2019, 7, 1159 7 of 22

Mathematics 2019, 7, x 6 of 23

 𝑝: number of processing nodes; 𝛼: cycles required for each syncronization;
 𝛽: cycles required for single byte data transfer; 𝑛: data vector length.

In the pipelined broadcast algorithm shown in Figure 5, we could see that k-iterative
synchronization processes were needed in each pipeline step. Suppose that the number of cycles
required for synchronization in one pipeline step is m cycles, and that the operating frequency is f
MHz; then, the total synchronization time will be calculated as in Equation (2). This will incur an O(k)
arithmetic cost, leading to inefficient channel throughput due to diminishing return as k increases. total_time = ∗ 𝑘 ∗ 10 . (2)

In the case of broadcast communication, all data messages should be transferred to every node
within the communicator, as soon as possible. As it is common to simultaneously allocate all channels
to broadcast data, the recommended scenario is to have the host node preempt all pipeline channels
and broadcast the data in the form of nonblocking chain operations, making all pipeline channels
fully utilized.

3. Atomic Pipelined Broadcast with Inter-Node Transmission Order Change

3.1. Atomic Pipelined Broadcast

As a preliminary study, the author presented the enhanced algorithm to overcome the
disadvantage of pipelined broadcasting, which is called an atomic pipelined broadcast algorithm [22].
The term “Atomic” derives from the concept of an atomic transaction, where a transaction should be
performed either in its entirety or not at all [42]. This algorithm accelerates the processing time of
broadcast communication by drastically reducing the number of synchronization processes involved.
This reduction was accomplished by developing a light-weight protocol and employing simple
hardware logic, so that the data message broadcast can be performed in an atomic fashion with full
pipeline utilization. This section explains the details of the atomic pipelined broadcast and discusses
the resulting performance improvement.

In the conventional pipelined broadcast algorithm described in Section 2.2, each processing node
plays one of three roles: head, body or tail. For example, as shown in Figure 5, PN0 is a head node,
PN1 and PN2 are body nodes, and PN3 is a tail node. In the case of the head node, PN0 sends data
toward PN1, where the broadcast communication is converted into k point-to-point send operations.
In the case of PN3, which is a tail node, the broadcast communication is converted into k point-to-
point receive operations. On the other hand, the body nodes such as PN1 and PN2 receive data from
one node and simultaneously send the data to another, where the broadcast communication converts
into k point-to-point send operations and also k receive operations. At this point, k times as many as
iterative synchronization processes occur, which we want to avoid if there is no need to synchronize
in between the initiation and the completion of the broadcast procedure.

One way to avoid these iterative synchronization processes is by having solid network
connections among all the processing nodes, which can be naturally found in a multi-core processor’s
bus structure such as an AMBA bus. Using this bus structure, we could preempt all the
communication channels by establishing specific protocols, and use the pipeline seamlessly as shown
in Figure 6.

Figure 6. Fully utilized pipelined broadcast architecture with only one initial synchronization process.

In order to realize the seamless atomic transfer, the compiler should not convert the broadcast
routine into multiple point-to-point communications. Instead, a new method is required that is
capable of storing the packetized data words from one node into buffers without synchronization,
and simultaneously forward them to another. Thus, we proposed a new supplementary operation,
which we called Fwd, so that the broadcast routine could be converted into Send, Recv, and Fwd for
the head, tail, and body nodes, respectively.

To support the atomic pipelined broadcast, a communication bus conforms to a cross-bar structure,
through which all processing nodes can send and receive data. All processing nodes can be head,
body, or tail nodes according to the broadcast routine. The role of the body nodes among them
is very important because it stores the packetized data words from one node into buffers without
synchronization and simultaneously forwards them to another.

A Fwd operation should follow the order shown in Figure 7; this order applies to all body
nodes. If the order is not followed, the process should enter a state of a deadlock. This is treated
as a non-interruptible atomic transmission, to ensure both full channel utilization and reliability.
The procedure is as follows:

1. Send request message to i + 1 node.
2. Recv request message from i – 1 node.
3. Recv ready message from i + 1 node.
4. Send ready message to i – 1 node.
5. Recv and Send data messages between adjacent nodes.
6. Recv and Send complete messages between adjacent nodes.

Mathematics 2019, 7, x 7 of 23

Figure 6. Fully utilized pipelined broadcast architecture with only one initial synchronization process.

In order to realize the seamless atomic transfer, the compiler should not convert the broadcast
routine into multiple point-to-point communications. Instead, a new method is required that is
capable of storing the packetized data words from one node into buffers without synchronization,
and simultaneously forward them to another. Thus, we proposed a new supplementary operation,
which we called Fwd, so that the broadcast routine could be converted into Send, Recv, and Fwd for
the head, tail, and body nodes, respectively.

To support the atomic pipelined broadcast, a communication bus conforms to a cross-bar
structure, through which all processing nodes can send and receive data. All processing nodes can
be head, body, or tail nodes according to the broadcast routine. The role of the body nodes among
them is very important because it stores the packetized data words from one node into buffers
without synchronization and simultaneously forwards them to another.

A Fwd operation should follow the order shown in Figure 7; this order applies to all body nodes.
If the order is not followed, the process should enter a state of a deadlock. This is treated as a non-
interruptible atomic transmission, to ensure both full channel utilization and reliability. The
procedure is as follows:

1. Send request message to i + 1 node.
2. Recv request message from i – 1 node.
3. Recv ready message from i + 1 node.
4. Send ready message to i – 1 node.
5. Recv and Send data messages between adjacent nodes.
6. Recv and Send complete messages between adjacent nodes.

Figure 7. Atomic procedure among the body nodes. Reproduced from [22], IEICE: 2014.

3.2. Inter-Node Transmission Order Change Technique

3.2.1. Initial Idea of Transmission Order Change Technique

To maximize broadcast communication performance, this paper proposed the concept of
changing the transmission order. First, the author designed the model of the initial idea, which could
begin the communication faster by reducing the amount of time that passes until the pre-existing
message transmissions in all processing nodes finish. Since the barrier function for communication
synchronization is always performed before the broadcast communication, none of the previous
broadcast algorithms can begin the broadcast communication until all the communication ports of
the processing nodes are free.

Basically, the transmission order should be pre-defined in all broadcast algorithms regardless of
the transmission order change technique being used; this is because the pre-defined order is used as
a reference when the transmission order is determined. Before the transmission order change
technique is presented, the broadcasting algorithms transmit data messages in the pre-defined order.
The transmission order change technique requires a hardware logic to change the transmission order,
and so it references the pre-defined order to determine the order in the same processing node group

i-1

i

i+1

Response

Wait until all data packets arrives.

Figure 7. Atomic procedure among the body nodes. Reproduced from [22], IEICE: 2014.

3.2. Inter-Node Transmission Order Change Technique

3.2.1. Initial Idea of Transmission Order Change Technique

To maximize broadcast communication performance, this paper proposed the concept of changing
the transmission order. First, the author designed the model of the initial idea, which could
begin the communication faster by reducing the amount of time that passes until the pre-existing
message transmissions in all processing nodes finish. Since the barrier function for communication
synchronization is always performed before the broadcast communication, none of the previous

Mathematics 2019, 7, 1159 8 of 22

broadcast algorithms can begin the broadcast communication until all the communication ports of the
processing nodes are free.

Basically, the transmission order should be pre-defined in all broadcast algorithms regardless of
the transmission order change technique being used; this is because the pre-defined order is used
as a reference when the transmission order is determined. Before the transmission order change
technique is presented, the broadcasting algorithms transmit data messages in the pre-defined order.
The transmission order change technique requires a hardware logic to change the transmission order,
and so it references the pre-defined order to determine the order in the same processing node group
and the free and busy groups. In this paper, the pre-defined transmission order followed the numeric
order, according to the processing node names: P0→P1→P2→P3→···→Pn.

Figure 8 shows the transmission orders in the atomic pipelined broadcast algorithm without the
transmission order change technique when P1–P4 have the existing ongoing transmissions. As shown
in the figure, when performing broadcast communication in the situation with the pre-existing
transmissions, a waiting time of three cycles is required, because the root P0 should wait until all the
existing ongoing transmissions of P1–P4 finish.

Mathematics 2019, 7, x 8 of 23

and the free and busy groups. In this paper, the pre-defined transmission order followed the numeric
order, according to the processing node names: P0→P1→P2→P3→···→Pn.

Figure 8 shows the transmission orders in the atomic pipelined broadcast algorithm without the
transmission order change technique when P1–P4 have the existing ongoing transmissions. As shown
in the figure, when performing broadcast communication in the situation with the pre-existing
transmissions, a waiting time of three cycles is required, because the root P0 should wait until all the
existing ongoing transmissions of P1–P4 finish.

Figure 9 shows the transmission orders in the atomic pipelined broadcast algorithm with the
initial transmission order change technique when P1–P4 have the existing ongoing transmissions. All
processing nodes are sorted into the “free” or “busy” group, and the transmission order is
determined in each group as per the pre-defined numeric order. Additionally, the free group is
always in front of the busy group. In this way, the transmission order is changed to
P0→P5→P6→P7→P1→P2→P3→P4, and the root P0 can begin the broadcast communication without
waiting three cycles occurred in the case of Figure 8.

Figure 8. Transmission order in the atomic pipelined broadcast without the transmission order
change technique when P1–P4 have the pre-existing data transmissions.

Figure 9. Changed transmission order in the atomic pipelined broadcast with the initial transmission
order change technique when P1–P4 have the pre-existing data transmissions.

P0

P1

P2

P3

P4

P5

P6

P7

0 1 2 3 4 5 6 7 8 9 10

Root

Tr
an

sm
is

sio
n o

rd
er

P0→P1

Cycles

P0→P1→P2

P1→P2→P3

P2→P3→P4

P3→P4→P5

P4→P5→P6

Waiting until existing all communications finish.

P0

P5

P6

P7

P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9 10

Root

Cycles

P0→P5→P6

P5→P6→P7

P6→P7→P1

P7→P1→P2

P1→P2→P3

Broadcast begins without waiting time

Tr
an

sm
is

sio
n o

rd
er

‘busy’
group

‘free’
group

P0→P5

P2→P3→P4

P3→P4

Figure 8. Transmission order in the atomic pipelined broadcast without the transmission order change
technique when P1–P4 have the pre-existing data transmissions.

Figure 9 shows the transmission orders in the atomic pipelined broadcast algorithm with the
initial transmission order change technique when P1–P4 have the existing ongoing transmissions.
All processing nodes are sorted into the “free” or “busy” group, and the transmission order is determined
in each group as per the pre-defined numeric order. Additionally, the free group is always in front of
the busy group. In this way, the transmission order is changed to P0→P5→P6→P7→P1→P2→P3→P4,
and the root P0 can begin the broadcast communication without waiting three cycles occurred in the
case of Figure 8.

Mathematics 2019, 7, 1159 9 of 22

Mathematics 2019, 7, x 8 of 23

and the free and busy groups. In this paper, the pre-defined transmission order followed the numeric
order, according to the processing node names: P0→P1→P2→P3→···→Pn.

Figure 8 shows the transmission orders in the atomic pipelined broadcast algorithm without the
transmission order change technique when P1–P4 have the existing ongoing transmissions. As shown
in the figure, when performing broadcast communication in the situation with the pre-existing
transmissions, a waiting time of three cycles is required, because the root P0 should wait until all the
existing ongoing transmissions of P1–P4 finish.

Figure 9 shows the transmission orders in the atomic pipelined broadcast algorithm with the
initial transmission order change technique when P1–P4 have the existing ongoing transmissions. All
processing nodes are sorted into the “free” or “busy” group, and the transmission order is
determined in each group as per the pre-defined numeric order. Additionally, the free group is
always in front of the busy group. In this way, the transmission order is changed to
P0→P5→P6→P7→P1→P2→P3→P4, and the root P0 can begin the broadcast communication without
waiting three cycles occurred in the case of Figure 8.

Figure 8. Transmission order in the atomic pipelined broadcast without the transmission order
change technique when P1–P4 have the pre-existing data transmissions.

Figure 9. Changed transmission order in the atomic pipelined broadcast with the initial transmission
order change technique when P1–P4 have the pre-existing data transmissions.

P0

P1

P2

P3

P4

P5

P6

P7

0 1 2 3 4 5 6 7 8 9 10

Root

Tr
an

sm
is

sio
n o

rd
er

P0→P1

Cycles

P0→P1→P2

P1→P2→P3

P2→P3→P4

P3→P4→P5

P4→P5→P6

Waiting until existing all communications finish.

P0

P5

P6

P7

P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9 10

Root

Cycles

P0→P5→P6

P5→P6→P7

P6→P7→P1

P7→P1→P2

P1→P2→P3

Broadcast begins without waiting time

Tr
an

sm
is

sio
n o

rd
er

‘busy’
group

‘free’
group

P0→P5

P2→P3→P4

P3→P4

Figure 9. Changed transmission order in the atomic pipelined broadcast with the initial transmission
order change technique when P1–P4 have the pre-existing data transmissions.

3.2.2. Enhancing Transmission Order Change Technique

This section presents the inter-node transmission order change technique used to derive
performance better than that seen with the initial technique. As described in Section 3.2.1, only
applying the initial transmission order change technique to the atomic pipelined broadcast algorithm
will improve the broadcast performance. This is expected, as the atomic pipelined broadcast improves
the execution time of broadcast communication itself by reducing the number of synchronization;
however, the transmission order change technique reduces the waiting time that occurs before the
broadcast communication begins.

To achieve better performance improvement, one should be aware of the limitation of the initial
transmission order change technique. Figure 10 shows the waiting time in the atomic pipelined
broadcast without the transmission order change technique, when P1’s pre-existing transmission data
size increases. Since P1’s pre-existing data transmission finishes at Cycle 6, the root P0 should wait
until then.

Mathematics 2019, 7, x 9 of 23

3.2.2. Enhancing Transmission Order Change Technique

This section presents the inter-node transmission order change technique used to derive
performance better than that seen with the initial technique. As described in Section 3.2.1., only
applying the initial transmission order change technique to the atomic pipelined broadcast algorithm
will improve the broadcast performance. This is expected, as the atomic pipelined broadcast
improves the execution time of broadcast communication itself by reducing the number of
synchronization; however, the transmission order change technique reduces the waiting time that
occurs before the broadcast communication begins.

To achieve better performance improvement, one should be aware of the limitation of the initial
transmission order change technique. Figure 10 shows the waiting time in the atomic pipelined
broadcast without the transmission order change technique, when P1’s pre-existing transmission
data size increases. Since P1’s pre-existing data transmission finishes at Cycle 6, the root P0 should
wait until then.

Figure 11 shows the waiting time in the atomic pipelined broadcast with the initial transmission
order change technique, when P1’s pre-existing transmission data size becomes larger. The
P7→P1→P2 data transmission of P1 is delayed by two cycles, due to its pre-existing data transmission.
Broadcast communications undertakes the synchronization before data transmissions;
synchronization is a process to check if the communication ports of all processing nodes are available
for broadcast communication. As described in Section 2.2, the pipelined broadcast algorithm is
synchronized by propagating the request message from P0 (a head node) to the last processing node
(a tail node), and the ready message from a tail to a head. In the figure, P1 receives the ready message
at Cycle 4, but it remains in a buffer until the earlier messages are transmitted. Finally, P1 performs
the ready message at Cycle 6; which means that the effective beginning cycle of broadcast
communication is Cycle 2, even though it begins at Cycle 0.

Figure 10. Waiting time occurrence in the atomic pipelined broadcast without the transmission order
change technique, when P1’s pre-existing transmission data size becomes larger.

P0

P1

P2

P3

P4

P5

P6

P7

0 1 2 3 4 5 6 7 8 9 10

Root

Tr
an

sm
is

sio
n o

rd
er

P0→P1

Cycles

P0→P1→P2

P1→P2→P3

Waiting until existing all communications finish.

Figure 10. Waiting time occurrence in the atomic pipelined broadcast without the transmission order
change technique, when P1’s pre-existing transmission data size becomes larger.

Mathematics 2019, 7, 1159 10 of 22

Figure 11 shows the waiting time in the atomic pipelined broadcast with the initial transmission
order change technique, when P1’s pre-existing transmission data size becomes larger. The P7→P1→P2
data transmission of P1 is delayed by two cycles, due to its pre-existing data transmission. Broadcast
communications undertakes the synchronization before data transmissions; synchronization is a process
to check if the communication ports of all processing nodes are available for broadcast communication.
As described in Section 2.2, the pipelined broadcast algorithm is synchronized by propagating the
request message from P0 (a head node) to the last processing node (a tail node), and the ready message
from a tail to a head. In the figure, P1 receives the ready message at Cycle 4, but it remains in a buffer
until the earlier messages are transmitted. Finally, P1 performs the ready message at Cycle 6; which
means that the effective beginning cycle of broadcast communication is Cycle 2, even though it begins
at Cycle 0.Mathematics 2019, 7, x 10 of 23

Figure 11. Waiting time occurrence in the atomic pipelined broadcast with the initial transmission
order change technique, when P1’s pre-existing transmission data size becomes larger.

The inter-node transmission order change technique is proposed, to overcome this limitation
inherent in the initial technique. In the proposed technique, a multi-core processor system sorts each
of the processing nodes into the “free” or “busy” group, just as seen in the initial technique. However,
it determines the transmission orders only in the free group as the pre-defined numeric order. For
the busy group, it changes the transmission order according to the remaining pre-existing
transmission data size. Then, it calculates the waiting time by using the processing nodes’ remaining
pre-existing transmission data size. Therefore, the additional hardware logic for the proposed
technique should be added to the multi-core processor systems, but its hardware overhead can be
ignored as the logic area of the message passing engine in multi-core processors is very much smaller
than that of processors. It was only 1.94% in the initial transmission order change technique.

Figure 12 shows the reduced waiting time in the atomic pipelined broadcast with the proposed
inter-node transmission order change technique, when P1’s pre-existing transmission data size
becomes larger. Since the proposed technique does not change the transmission order in the free
group, the transmission order is P0→P5→P6→P7, as seen with the initial technique. In the busy group,
P1, P2, and P3 and P4 have the existing data transmissions for six, three, and two cycles, respectively.
According to the order in the remaining pre-existing transmission data size, the transmission order
is changed to P3→P4→P2→P1. Consequently, the final transmission order is

P0→P5→P6→P7→P3→P4→P2→P1.
As shown in the figure, the broadcast communication begins at Cycle 0; in this respect, it is

identical to the case adopting the initial transmission order change technique; however, the broadcast
communication’s effective beginning cycle also is Cycle 0. If P1’s pre-existing transmission data size
becomes larger, the performance improvement will also increase.

P0

P5

P6

P7

P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9 10

Root

Cycles

P0→P5→P6

P5→P6→P7

P6→P7→P1

P7→P1→P2

P1→P2→P3

Tr
an

sm
is

sio
n o

rd
er

‘busy’
group

‘free’
group

P0→P5

P2→P3→P4

2 cycles delayed

Broadcast begins at Cycle 0

Cycle 2 is effective beginning cycle

Figure 11. Waiting time occurrence in the atomic pipelined broadcast with the initial transmission
order change technique, when P1’s pre-existing transmission data size becomes larger.

The inter-node transmission order change technique is proposed, to overcome this limitation
inherent in the initial technique. In the proposed technique, a multi-core processor system sorts each
of the processing nodes into the “free” or “busy” group, just as seen in the initial technique. However,
it determines the transmission orders only in the free group as the pre-defined numeric order. For the
busy group, it changes the transmission order according to the remaining pre-existing transmission
data size. Then, it calculates the waiting time by using the processing nodes’ remaining pre-existing
transmission data size. Therefore, the additional hardware logic for the proposed technique should be
added to the multi-core processor systems, but its hardware overhead can be ignored as the logic area
of the message passing engine in multi-core processors is very much smaller than that of processors.
It was only 1.94% in the initial transmission order change technique.

Figure 12 shows the reduced waiting time in the atomic pipelined broadcast with the proposed
inter-node transmission order change technique, when P1’s pre-existing transmission data size
becomes larger. Since the proposed technique does not change the transmission order in the free group,
the transmission order is P0→P5→P6→P7, as seen with the initial technique. In the busy group, P1, P2,
and P3 and P4 have the existing data transmissions for six, three, and two cycles, respectively. According
to the order in the remaining pre-existing transmission data size, the transmission order is changed to
P3→P4→P2→P1. Consequently, the final transmission order is P0→P5→P6→P7→P3→P4→P2→P1.

Mathematics 2019, 7, 1159 11 of 22
Mathematics 2019, 7, x 11 of 23

Figure 12. Reduced waiting time in the atomic pipelined broadcast with the proposed inter-node
transmission order change technique, when P1’s pre-existing transmission data size becomes larger.

3.2.3. Analysis of Minimizing Waiting Time with Inter-Node Transmission Order Change
Technique

Figures 13 and 14 show the transmission orders in the atomic pipelined broadcasts without and
with the inter-node transmission order change technique, respectively, when P1 has the pre-existing
data transmission. In Figure 13, the root P0 should wait for eight cycles until P1’s pre-existing data
transmission finishes, because it cannot change the transmission order.

However, as shown in Figure 14, the atomic pipelined broadcast with the proposed inter-node
transmission order change technique waits for only one cycle by virtue of the changed transmission
order, because it can handle the transmission order according to the processing nodes’ remaining
pre-existing transmission data size.

Figure 13. Transmission order in the atomic pipelined broadcast without the transmission order
change technique when P1 has pre-existing data transmission.

P0

P5

P6

P7

P3

P4

P2

P1

0 1 2 3 4 5 6 7 8 9 10

Root

Cycles

P0→P5→P6

P5→P6→P7

P6→P7→P3

P7→P3→P4

P3→P4→P2

Tr
an

sm
is

sio
n o

rd
er

‘busy’
group

‘free’
group

P0→P5

P4→P2→P1

Broadcast begins at Cycle 0

P2→P1

P0

P1

P2

P3

P4

P5

P6

P7

0 1 2 3 4 5 6 7 8 9 10

Root

Tr
an

sm
is

sio
n o

rd
er

P0→P1

Cycles

Waiting until P1’s existing data communication finishs.

Figure 12. Reduced waiting time in the atomic pipelined broadcast with the proposed inter-node
transmission order change technique, when P1’s pre-existing transmission data size becomes larger.

As shown in the figure, the broadcast communication begins at Cycle 0; in this respect, it is
identical to the case adopting the initial transmission order change technique; however, the broadcast
communication’s effective beginning cycle also is Cycle 0. If P1’s pre-existing transmission data size
becomes larger, the performance improvement will also increase.

3.2.3. Analysis of Minimizing Waiting Time with Inter-Node Transmission Order Change Technique

Figures 13 and 14 show the transmission orders in the atomic pipelined broadcasts without and
with the inter-node transmission order change technique, respectively, when P1 has the pre-existing
data transmission. In Figure 13, the root P0 should wait for eight cycles until P1’s pre-existing data
transmission finishes, because it cannot change the transmission order.

Mathematics 2019, 7, x 11 of 23

Figure 12. Reduced waiting time in the atomic pipelined broadcast with the proposed inter-node
transmission order change technique, when P1’s pre-existing transmission data size becomes larger.

3.2.3. Analysis of Minimizing Waiting Time with Inter-Node Transmission Order Change
Technique

Figures 13 and 14 show the transmission orders in the atomic pipelined broadcasts without and
with the inter-node transmission order change technique, respectively, when P1 has the pre-existing
data transmission. In Figure 13, the root P0 should wait for eight cycles until P1’s pre-existing data
transmission finishes, because it cannot change the transmission order.

However, as shown in Figure 14, the atomic pipelined broadcast with the proposed inter-node
transmission order change technique waits for only one cycle by virtue of the changed transmission
order, because it can handle the transmission order according to the processing nodes’ remaining
pre-existing transmission data size.

Figure 13. Transmission order in the atomic pipelined broadcast without the transmission order
change technique when P1 has pre-existing data transmission.

P0

P5

P6

P7

P3

P4

P2

P1

0 1 2 3 4 5 6 7 8 9 10

Root

Cycles

P0→P5→P6

P5→P6→P7

P6→P7→P3

P7→P3→P4

P3→P4→P2

Tr
an

sm
is

sio
n o

rd
er

‘busy’
group

‘free’
group

P0→P5

P4→P2→P1

Broadcast begins at Cycle 0

P2→P1

P0

P1

P2

P3

P4

P5

P6

P7

0 1 2 3 4 5 6 7 8 9 10

Root

Tr
an

sm
is

sio
n o

rd
er

P0→P1

Cycles

Waiting until P1’s existing data communication finishs.

Figure 13. Transmission order in the atomic pipelined broadcast without the transmission order change
technique when P1 has pre-existing data transmission.

Mathematics 2019, 7, 1159 12 of 22
Mathematics 2019, 7, x 12 of 23

Figure 14. Transmission order in the atomic pipelined broadcast with the proposed inter-node
transmission order change technique when P1 has pre-existing data transmission.

3.2.4. Process Sequence of Inter-Node Transmission Order Change Technique

To support these transmission order techniques, the local bus requires a status register. In the
initial transmission order change technique, this was 8 bits in total (i.e., 1 bit for each processing node).
To support the proposed inter-node transmission order change technique, this was increased to 2 bits
for each processing node, to identify the pre-existing transmission data size. The 2-bit value means
that “00” was the “free” status and “01”, “10”, and “11” are “busy” with a remaining transmission
data size of under 512 bytes, under 1024 bytes, and over 1024 bytes, respectively. If the size of the
status register for each processing node was increased from 2 bits to 3 bits or more, it would be
possible to classify the communication status of processing nodes at a finer granularity.

Figure 15 briefly shows the process sequence of the inter-node transmission order change
technique, when the root node receives the broadcast operation. Detailed information is provided in
Section 3.3. In this figure, the message passing engine (MPE) of the root P5 orders the local bus to
distribute the value of the status register to all the MPEs. The status register had 2 bits for each
processing node: 16 bits in total. In the initial transmission order change technique, this was 8 bits in
total (i.e., 1 bit for each processing node). To support the proposed transmission order change
technique, the size of the status register was increased to identify the pre-existing transmission data
size. In Step of Figure 15, the local bus distributes the status register value to all MPEs. The MPE
arranges the processing nodes’ physical numbers in order, by the 2-bit value for each MPE. In this
figure, the status register value was assumed to “10 10 10 11 10 00 01 01”; therefore, the processing
nodes’ physical numbers were arranged into P5→P6→P7→P0→P1→P2→P4→P3. Then, the
intermediate control message was generated by using the information of the sequential tree read-
only memory (ROM) and physical/logical (P/L). The intermediate control message was translated to
the final control message, and it was then stored in the issue queue.

P0

P2

P3

P4

P5

P6

P7

P1

0 1 2 3 4 5 6 7 8 9 10

Root

Cycles

P0→P2→P3

P2→P3→P4

P3→P4→P5

P4→P5→P6

P5→P6→P7

Tr
an

sm
is

sio
n o

rd
er

‘busy’
group

‘free’
group

P0→P2

P6→P7→P1

Effective beginning cycle is 1.

P7→P1

Figure 14. Transmission order in the atomic pipelined broadcast with the proposed inter-node
transmission order change technique when P1 has pre-existing data transmission.

However, as shown in Figure 14, the atomic pipelined broadcast with the proposed inter-node
transmission order change technique waits for only one cycle by virtue of the changed transmission
order, because it can handle the transmission order according to the processing nodes’ remaining
pre-existing transmission data size.

3.2.4. Process Sequence of Inter-Node Transmission Order Change Technique

To support these transmission order techniques, the local bus requires a status register. In the
initial transmission order change technique, this was 8 bits in total (i.e., 1 bit for each processing node).
To support the proposed inter-node transmission order change technique, this was increased to 2 bits
for each processing node, to identify the pre-existing transmission data size. The 2-bit value means
that “00” was the “free” status and “01”, “10”, and “11” are “busy” with a remaining transmission data
size of under 512 bytes, under 1024 bytes, and over 1024 bytes, respectively. If the size of the status
register for each processing node was increased from 2 bits to 3 bits or more, it would be possible to
classify the communication status of processing nodes at a finer granularity.

Figure 15 briefly shows the process sequence of the inter-node transmission order change technique,
when the root node receives the broadcast operation. Detailed information is provided in Section 3.3.
In this figure, the message passing engine (MPE) of the root P5 orders the local bus to distribute the
value of the status register to all the MPEs. The status register had 2 bits for each processing node:
16 bits in total. In the initial transmission order change technique, this was 8 bits in total (i.e., 1 bit for
each processing node). To support the proposed transmission order change technique, the size of the
status register was increased to identify the pre-existing transmission data size. In Step 3O of Figure 15,
the local bus distributes the status register value to all MPEs. The MPE arranges the processing nodes’
physical numbers in order, by the 2-bit value for each MPE. In this figure, the status register value was
assumed to “10 10 10 11 10 00 01 01”; therefore, the processing nodes’ physical numbers were arranged
into P5→P6→P7→P0→P1→P2→P4→P3. Then, the intermediate control message was generated by
using the information of the sequential tree read-only memory (ROM) and physical/logical (P/L).
The intermediate control message was translated to the final control message, and it was then stored in
the issue queue.

Mathematics 2019, 7, 1159 13 of 22
Mathematics 2019, 7, x 13 of 23

Figure 15. Process sequence of the inter-node transmission order change technique when the root
node receives the broadcast operation.

3.3. Modified Message Passing Engine Architecture

Generally, multi-core processors do not have an MPE that can handle collective communication;
therefore, compilers may convert collective communication operations into a group of point-to-point
operations. However, multi-core processors with an MPE that can handle them can send the
collective communication operations to the processing node, without converting them into point-to-
point operations [43–48]. Then, they are performed in the MPE of processing nodes, according to the
function and feature of each MPE.

To support the atomic pipelined broadcast and the inter-node transmission change order
technique, the previous MPE architecture also should be modified. The modified MPE can receive
three types of incoming operations, which are Send, Recv, and Bcast. Send and Recv messages are
stored directly in the issue queue and then the communication begins. The broadcast operation is
converted into point-to-point operations by the atomic broadcast algorithm, and then the converted
operations are stored in the issue queue.

Figure 16 is the flow chart for processing the incoming command messages in the modified MPE.
In the case of the broadcast, the root node orders the local bus to distribute the value of the status
register to all the processing nodes in the communicator. After the statuses of the processing nodes
are checked, the MPE reads the pre-defined transmission order from the ROM, translates the logical
node number into the physical node number, and then determines the transmission order. According
to the order, the MPE generates the control messages, which consist of Send, Recv, and Fwd and store
them in the issue queue.

Address
Decoder

Root is P5 4

5

MPE #5

Status register

0 1 2 3 4 5 6 7Node #

Local Bus

2 2 2 3 2 0 1 1

5 6 7 0 1 2 4 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Logical #

Physical #

P/L table

Send to 1
Sequential

Tree
ROM

6

1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1

Send to 6
Existing msg
Existing msg

Issue Queue

7
Translated ‘1’→‘6’

3
2

Broadcast from Processor #5

1

Figure 15. Process sequence of the inter-node transmission order change technique when the root node
receives the broadcast operation.

3.3. Modified Message Passing Engine Architecture

Generally, multi-core processors do not have an MPE that can handle collective communication;
therefore, compilers may convert collective communication operations into a group of point-to-point
operations. However, multi-core processors with an MPE that can handle them can send the collective
communication operations to the processing node, without converting them into point-to-point
operations [43–48]. Then, they are performed in the MPE of processing nodes, according to the function
and feature of each MPE.

To support the atomic pipelined broadcast and the inter-node transmission change order technique,
the previous MPE architecture also should be modified. The modified MPE can receive three types of
incoming operations, which are Send, Recv, and Bcast. Send and Recv messages are stored directly
in the issue queue and then the communication begins. The broadcast operation is converted into
point-to-point operations by the atomic broadcast algorithm, and then the converted operations are
stored in the issue queue.

Figure 16 is the flow chart for processing the incoming command messages in the modified MPE.
In the case of the broadcast, the root node orders the local bus to distribute the value of the status
register to all the processing nodes in the communicator. After the statuses of the processing nodes are
checked, the MPE reads the pre-defined transmission order from the ROM, translates the logical node
number into the physical node number, and then determines the transmission order. According to the
order, the MPE generates the control messages, which consist of Send, Recv, and Fwd and store them
in the issue queue.

Figure 17 shows the process sequence for the broadcast command in the modified MPE when the
communicator has eight processing nodes. In this figure, the case of MPE #5 (left side) is the process
sequence for the root node; the right side is for the leaf node. The process sequence is as follows.

1O All MPEs receive the broadcast command from their own cores. The command indicates the
root node; in this case, the root is P5. Therefore, all MPEs know the node number.

2O The root MPE orders the local bus to distribute the value of the status register to all MPEs.
The status register has 2 bits for each MPE; it is 16 bits in total. In the initial transmission order change
technique, it is 8 bit in total (i.e., 1 bit for each MPE). To support the inter-node transmission order
change technique, this is increased to identify the pre-existing transmission data size. The 2-bit value
for each MPE means that “00” is “free” status, and “01”, “10”, and “11” are “busy” with a remaining
transmission data size of under 512 bytes, under 1024 bytes, and over 1024 bytes, respectively. In leaf
nodes, this step is ignored.

Mathematics 2019, 7, 1159 14 of 22

3O The local bus distributes the status register value to all the MPEs. The MPE arranges the
nodes’ physical numbers, in the order of the 2-bit value for each MPE. If any 2-bit values are identical,
they are arranged in numerical order. In this figure, the status register value is “10 10 10 11 10 00 01
01”; therefore, the nodes’ physical numbers are arranged into P5→P6→P7→P0→P1→P2→P4→P3.
Then, the MPE writes the information pertaining to the arranged nodes’ physical numbers in the
physical-to-logical number map table (P/L table).

4O and 5O The address decoder generates and provides the physical address corresponding to each
logical address, according to the P/L table. This step is needed because the sequential tree ROM has the
information pertaining to the pre-defined transmission order based on the logical address. Therefore,
to change the transmission order, the corresponding physical addresses are required.

6O The intermediate control message is generated. The sequential tree ROM has the
information pertaining to the pre-defined transmission order based on the logical address; this
is P0→P1→P2→P3→P4→P5→P6→P7. In the root MPE #5, the physical address is “5”, and the
corresponding logical address is “0”. Therefore, MPE #5 generates the intermediate control message
for P0→P1 (Send to 1). In the leaf MPE #2, the intermediate control message for P4→P5→P6 (Fwd 4–6)
is generated because the logical address is “5”.

7O The intermediate control message is translated into the final control message, and it is then
stored in the issue queue. In MPE #5, the intermediate control message is “Send to 1”; it is translated
into “Send to 6” because the physical address for the logical address “1” is “6”. In this way, in MPE #2,
the intermediate control message “Fwd 4 to 6” is translated into “Fwd 1 to 4”. Then, the translated
control message is stored in the issue queue.Mathematics 2019, 7, x 14 of 23

Figure 16. Flow chart for processing incoming command messages in the modified message passing
engine (MPE).

Figure 17 shows the process sequence for the broadcast command in the modified MPE when
the communicator has eight processing nodes. In this figure, the case of MPE #5 (left side) is the
process sequence for the root node; the right side is for the leaf node. The process sequence is as
follows.

 All MPEs receive the broadcast command from their own cores. The command indicates the
root node; in this case, the root is P5. Therefore, all MPEs know the node number.

 The root MPE orders the local bus to distribute the value of the status register to all MPEs.
The status register has 2 bits for each MPE; it is 16 bits in total. In the initial transmission order change
technique, it is 8 bit in total (i.e., 1 bit for each MPE). To support the inter-node transmission order
change technique, this is increased to identify the pre-existing transmission data size. The 2-bit value
for each MPE means that “00” is “free” status, and “01”, “10”, and “11” are “busy” with a remaining
transmission data size of under 512 bytes, under 1024 bytes, and over 1024 bytes, respectively. In leaf
nodes, this step is ignored.

 The local bus distributes the status register value to all the MPEs. The MPE arranges the nodes’
physical numbers, in the order of the 2-bit value for each MPE. If any 2-bit values are identical, they
are arranged in numerical order. In this figure, the status register value is “10 10 10 11 10 00 01 01”;
therefore, the nodes’ physical numbers are arranged into P5→P6→P7→P0→P1→P2→P4→P3. Then,
the MPE writes the information pertaining to the arranged nodes’ physical numbers in the physical-
to-logical number map table (P/L table).

 and The address decoder generates and provides the physical address corresponding to
each logical address, according to the P/L table. This step is needed because the sequential tree ROM
has the information pertaining to the pre-defined transmission order based on the logical address.
Therefore, to change the transmission order, the corresponding physical addresses are required.

Command message
from Processor

Message == ?

Yes

Broadcast

No

Read the status value &
Make logical/physical

table

Read the predefined
order from ROM

Change logical node #
to physical node #

Convert to Send, Recv
or Fwd

Read the predefined
order from ROM

Change logical node #
to physical node #

Convert to Send, Recv
or Fwd

Read the status value &
Make logical/physical

table

Send or Recv

Wait until the status
values are received

Order a local bus to
distribute the status

register value

Root node ?

Store in issue queueStore in issue queue

Store in issue queue

Figure 16. Flow chart for processing incoming command messages in the modified message passing
engine (MPE).

Mathematics 2019, 7, 1159 15 of 22

Mathematics 2019, 7, x 15 of 23

 The intermediate control message is generated. The sequential tree ROM has the information
pertaining to the pre-defined transmission order based on the logical address; this is
P0→P1→P2→P3→P4→P5→P6→P7. In the root MPE #5, the physical address is “5”, and the
corresponding logical address is “0”. Therefore, MPE #5 generates the intermediate control message
for P0→P1 (Send to 1). In the leaf MPE #2, the intermediate control message for P4→P5→P6 (Fwd 4–
6) is generated because the logical address is “5”.

 The intermediate control message is translated into the final control message, and it is then
stored in the issue queue. In MPE #5, the intermediate control message is “Send to 1”; it is translated
into “Send to 6” because the physical address for the logical address “1” is “6”. In this way, in MPE
#2, the intermediate control message “Fwd 4 to 6” is translated into “Fwd 1 to 4”. Then, the translated
control message is stored in the issue queue.

Figure 17. Processing sequence for the broadcast command in the modified MPE when the
communicator has eight processing nodes.

4. Simulation Results and Discussion

This section discussed the performance improvements offered by the atomic pipelined broadcast
algorithm with the inter-node transmission order change technique, along with the simulation results.
The simulation was performed with the multi-core processor system and the bus functional models
that support each broadcast algorithm. The total communication time for data message broadcasting
among multiple cores in the system was also measured and compared.

As described previously, the atomic pipelined broadcast was developed to reduce the execution
delay of the broadcast communication. In addition, the proposed inter-node transmission order
change technique was proposed to reduce the waiting time. In order to evaluate performance
improvement in terms of both execution time and waiting time, seven broadcast algorithms were
implemented and compared in this section.

To explore the multi-core processor system architectures, the system architecture and the bus
functional models (BFMs) were modeled with SystemC while considering the latencies of the
functional blocks. They generated communication traffics in each specific simulation environment.
To simplify the simulation, the operating clock frequency of this system was defined as 100 MHz.
AMBA bus protocol can support 32 processors without the increase of clock cycles to transceiver data.
As more processors are connected to the bus system, the hardware complexity of the bus system
block also increases. The increased hardware complexity can make the timing closure worse in
register-transfer level to graphic database system (RTL-to-GDS) application specific integrated circuit
(ASIC) design flow. However, the sign-off timing closure for the bus system block in the commercial
SoCs such as Samsung Exinos and Qualcomm Snapdragon was finished with about three times
slower clock frequency than that of CPU. The three times slower clock frequency was enough to
support 32 processors in AMBA. The bus bandwidth could transmit 4 bytes per clock cycle. All
processing nodes in the system were interconnected with each other via a crossbar bus.

Address
Decoder

Root is P5 4

5

MPE #5

Status register

0 1 2 3 4 5 6 7Node #

Local Bus

2 2 2 3 2 0 1 1

5 6 7 0 1 2 4 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Logical #

Physical #

P/L table

Send to 1
Sequential

Tree
ROM

6

1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1

Send to 6
Existing msg
Existing msg

Issue Queue

7
Translated ‘1’→‘6’

Address
Decoder

Root is P5 4

5

MPE #2

2 2 2 3 2 0 1 1

5 6 7 0 1 2 4 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Logical #

Physical #

P/L table

Fwd 4 to 6
Sequential

Tree
ROM

6

Fwd 1 to 4
Existing msg
Existing msg

Issue Queue

7
Translated ‘4’→‘1’

‘6’→’4’

3
2

3

Broadcast from Processor #5

1

Broadcast from Processor #2)

1

Figure 17. Processing sequence for the broadcast command in the modified MPE when the communicator
has eight processing nodes.

4. Simulation Results and Discussion

This section discussed the performance improvements offered by the atomic pipelined broadcast
algorithm with the inter-node transmission order change technique, along with the simulation results.
The simulation was performed with the multi-core processor system and the bus functional models
that support each broadcast algorithm. The total communication time for data message broadcasting
among multiple cores in the system was also measured and compared.

As described previously, the atomic pipelined broadcast was developed to reduce the execution
delay of the broadcast communication. In addition, the proposed inter-node transmission order change
technique was proposed to reduce the waiting time. In order to evaluate performance improvement in
terms of both execution time and waiting time, seven broadcast algorithms were implemented and
compared in this section.

To explore the multi-core processor system architectures, the system architecture and the bus
functional models (BFMs) were modeled with SystemC while considering the latencies of the functional
blocks. They generated communication traffics in each specific simulation environment. To simplify
the simulation, the operating clock frequency of this system was defined as 100 MHz. AMBA bus
protocol can support 32 processors without the increase of clock cycles to transceiver data. As more
processors are connected to the bus system, the hardware complexity of the bus system block also
increases. The increased hardware complexity can make the timing closure worse in register-transfer
level to graphic database system (RTL-to-GDS) application specific integrated circuit (ASIC) design flow.
However, the sign-off timing closure for the bus system block in the commercial SoCs such as Samsung
Exinos and Qualcomm Snapdragon was finished with about three times slower clock frequency than
that of CPU. The three times slower clock frequency was enough to support 32 processors in AMBA.
The bus bandwidth could transmit 4 bytes per clock cycle. All processing nodes in the system were
interconnected with each other via a crossbar bus.

The broadcast communication performance of the broadcast algorithms was evaluated by
simulating communication traffics with their own BFM. The execution time was measured as the
variation in the data message size from 4 to 2048 bytes, when the number of processing nodes was 4, 8,
16, or 32. The simulation environment was based on the circumstances as described in Table 1.

Mathematics 2019, 7, 1159 16 of 22

Table 1. Summary of simulation environment.

Simulation Environment Circumstances

Clock frequency 100 MHz
Bus bandwidth 4 bytes per clock cycle

Root node P0 (Always)
Number of nodes 4, 8, 16, or 32
Data message size 4–2048 bytes

Pre-existing transmission data size 32, 128, 512, 1536 bytes

The simulations describe the performance improvements in terms of reducing the waiting time
before broadcast communication begins. In any broadcast communication without the pre-existing
data transmission, the transmission order change technique was unnecessary, because the changed
transmission order would be identical to the pre-defined order; therefore, to evaluate the performance
of the transmission order change technique, the simulation environment was carefully prepared.
Then, the simulations were performed to compare the atomic pipelined broadcast algorithm with the
proposed transmission order change technique (APOC) and the atomic pipelined broadcast algorithm
without the technique (AP).

Figures 18–21 show the speed-up ratios of the APOC algorithm when 4, 8, 16, and 32 processing
nodes were in the communicator with the pre-existing data transmission, respectively, compared to the
AP algorithm. In these simulations, only the P1 processing node had the pre-existing data transmission,
and the pre-existing transmission data sizes were 32, 128, 512, and 1536 bytes, respectively.

Mathematics 2019, 7, x 17 of 23

results; its advantage was that the transmission order of processor nodes could be changed in the
busy group also.

Table 2. Best speed-up ratios by adopting the transmission order change technique, according to the
simulation results.

of Nodes Data msg size Pre-existing
Transmission

Total Communication Time Speed-up
Ratio AP APOC

4 nodes 4 bytes 32 bytes 210 ns 190 ns 1.105
8 nodes 4 bytes 32 bytes 290 ns 230 ns 1.261

16 nodes 4 bytes 128 bytes 690 ns 550 ns 1.255
32 nodes 4 bytes 128 bytes 1010 ns 710 ns 1.423

Figure 18. The atomic pipelined broadcast algorithm without the technique (AP) vs. the atomic
pipelined broadcast algorithm with the proposed transmission order change technique (APOC; four
nodes, only P1 w/ the pre-existing data transmission).

Figure 19. AP vs. APOC (eight nodes, only P1 w/ the pre-existing data transmission).

0.9

0.95

1

1.05

1.1

1.15

4 8 16 32 64 128 256 512 1024 2048

Sp
ee

d-
up

 ra
tio

Case1 (32 bytes)

Case2 (128 bytes)

Case3 (512 bytes)

Case4 (1536 bytes)

Data message size (bytes)

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

4 8 16 32 64 128 256 512 1024 2048

Sp
ee

d-
up

 ra
tio

Case1 (32 bytes)

Case2 (128 bytes)

Case3 (512 bytes)

Case4 (1536 bytes)

Data message size (bytes)

Figure 18. The atomic pipelined broadcast algorithm without the technique (AP) vs. the atomic pipelined
broadcast algorithm with the proposed transmission order change technique (APOC; four nodes, only
P1 w/ the pre-existing data transmission).

Mathematics 2019, 7, x 17 of 23

results; its advantage was that the transmission order of processor nodes could be changed in the
busy group also.

Table 2. Best speed-up ratios by adopting the transmission order change technique, according to the
simulation results.

of Nodes Data msg size Pre-existing
Transmission

Total Communication Time Speed-up
Ratio AP APOC

4 nodes 4 bytes 32 bytes 210 ns 190 ns 1.105
8 nodes 4 bytes 32 bytes 290 ns 230 ns 1.261

16 nodes 4 bytes 128 bytes 690 ns 550 ns 1.255
32 nodes 4 bytes 128 bytes 1010 ns 710 ns 1.423

Figure 18. The atomic pipelined broadcast algorithm without the technique (AP) vs. the atomic
pipelined broadcast algorithm with the proposed transmission order change technique (APOC; four
nodes, only P1 w/ the pre-existing data transmission).

Figure 19. AP vs. APOC (eight nodes, only P1 w/ the pre-existing data transmission).

0.9

0.95

1

1.05

1.1

1.15

4 8 16 32 64 128 256 512 1024 2048

Sp
ee

d-
up

 ra
tio

Case1 (32 bytes)

Case2 (128 bytes)

Case3 (512 bytes)

Case4 (1536 bytes)

Data message size (bytes)

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

4 8 16 32 64 128 256 512 1024 2048

Sp
ee

d-
up

 ra
tio

Case1 (32 bytes)

Case2 (128 bytes)

Case3 (512 bytes)

Case4 (1536 bytes)

Data message size (bytes)

Figure 19. AP vs. APOC (eight nodes, only P1 w/ the pre-existing data transmission).

Mathematics 2019, 7, 1159 17 of 22Mathematics 2019, 7, x 18 of 23

Figure 20. AP vs. APOC (16 nodes, only P1 w/ the pre-existing data transmission).

Figure 21. AP vs. APOC (32 nodes, only P1 w/ the pre-existing data transmission).

5. Implementation and Synthesis Results

To support the atomic pipelined broadcast algorithm with the inter-node transmission order
change technique, a modified MPE was modeled by using Verilog-HDL and synthesized. Figure 22
shows the structure of the multi-core processor system that included the modified MPE. The multi-
core processor system consisted of four processing nodes and the local bus. Each of the processing
nodes comprised of a processor core, 16-KByte instruction memory, 16-Kbyte data memory, and the
modified MPE. The processor core was the Yonsei Multi-Processor Unit for Extension (YMPUE),
which was designed by the processor laboratory at Yonsei University. It was a five-stage pipeline
RISC type, based on MIPS DLX (DeLuXe) architecture [49].

When the instruction regarding message passing is fetched from instruction memory, the
processor core transferred it to the modified MPE after the decode stage. The modified MPE stores
the Send and Recv commands directly in the issue queue. When the Bcast command is received, the
root node orders the local bus to distribute the value of the status register to all the processing nodes
in the communicator. After the communication statuses of the processing nodes are checked, the MPE
reads the pre-defined transmission order from the ROM, translates the logical node number into the
physical node number, and then determines the transmission order. According to the changed order,
the MPEs generate the control messages, which consist of Send (for a head node), Recv (for a tail
node), and Fwd (for a body node), and then store them in the issue queue.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

4 8 16 32 64 128 256 512 1024 2048

Sp
ee

d-
up

 ra
tio

Case1 (32 bytes)

Case2 (128 bytes)

Case3 (512 bytes)

Case4 (1536 bytes)

Data message size (bytes)

0.9

1

1.1

1.2

1.3

1.4

1.5

4 8 16 32 64 128 256 512 1024 2048

Sp
ee

d-
up

 ra
tio

Case1 (32 bytes)

Case2 (128 bytes)

Case3 (512 bytes)

Case4 (1536 bytes)

Data message size (bytes)

Figure 20. AP vs. APOC (16 nodes, only P1 w/ the pre-existing data transmission).

Mathematics 2019, 7, x 18 of 23

Figure 20. AP vs. APOC (16 nodes, only P1 w/ the pre-existing data transmission).

Figure 21. AP vs. APOC (32 nodes, only P1 w/ the pre-existing data transmission).

5. Implementation and Synthesis Results

To support the atomic pipelined broadcast algorithm with the inter-node transmission order
change technique, a modified MPE was modeled by using Verilog-HDL and synthesized. Figure 22
shows the structure of the multi-core processor system that included the modified MPE. The multi-
core processor system consisted of four processing nodes and the local bus. Each of the processing
nodes comprised of a processor core, 16-KByte instruction memory, 16-Kbyte data memory, and the
modified MPE. The processor core was the Yonsei Multi-Processor Unit for Extension (YMPUE),
which was designed by the processor laboratory at Yonsei University. It was a five-stage pipeline
RISC type, based on MIPS DLX (DeLuXe) architecture [49].

When the instruction regarding message passing is fetched from instruction memory, the
processor core transferred it to the modified MPE after the decode stage. The modified MPE stores
the Send and Recv commands directly in the issue queue. When the Bcast command is received, the
root node orders the local bus to distribute the value of the status register to all the processing nodes
in the communicator. After the communication statuses of the processing nodes are checked, the MPE
reads the pre-defined transmission order from the ROM, translates the logical node number into the
physical node number, and then determines the transmission order. According to the changed order,
the MPEs generate the control messages, which consist of Send (for a head node), Recv (for a tail
node), and Fwd (for a body node), and then store them in the issue queue.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

4 8 16 32 64 128 256 512 1024 2048

Sp
ee

d-
up

 ra
tio

Case1 (32 bytes)

Case2 (128 bytes)

Case3 (512 bytes)

Case4 (1536 bytes)

Data message size (bytes)

0.9

1

1.1

1.2

1.3

1.4

1.5

4 8 16 32 64 128 256 512 1024 2048

Sp
ee

d-
up

 ra
tio

Case1 (32 bytes)

Case2 (128 bytes)

Case3 (512 bytes)

Case4 (1536 bytes)

Data message size (bytes)

Figure 21. AP vs. APOC (32 nodes, only P1 w/ the pre-existing data transmission).

In the figures, APOC shows better performance than AP, which cannot change the transmission
order. Since APOC features the transmission order change technique, it did not wait (or waited a short
time) until the pre-existing data transmission finishes; rather, it performed broadcast communication
immediately. Additionally, the synchronization time could be hidden for the communication time for
the pre-existing data transmission.

Table 2 shows the best speed-up ratios made by adopting the transmission order change technique,
according to the simulation results. When four processing nodes were broadcasting with 4-byte data
message and a 32 bytes pre-existing data transmission, the best speed-up ratio (1.105) occurred. When
eight processing nodes were broadcasting with 4-byte data message and a 32 bytes pre-existing data
transmission, the best speed-up ratio (1.261) occurred. When 16 processing nodes were broadcasting
with 4-byte data message and a 128 bytes pre-existing data transmission, the best speed-up ratio
(1.255) occurred. Finally, when 32 processing nodes were broadcasting with 4-byte data message and a
128 bytes pre-existing data transmission, the best speed-up ratio (1.423) occurred.

Table 2. Best speed-up ratios by adopting the transmission order change technique, according to the
simulation results.

of Nodes Data Msg Size Pre-Existing
Transmission

Total Communication Time Speed-Up
RatioAP APOC

4 nodes 4 bytes 32 bytes 210 ns 190 ns 1.105
8 nodes 4 bytes 32 bytes 290 ns 230 ns 1.261
16 nodes 4 bytes 128 bytes 690 ns 550 ns 1.255
32 nodes 4 bytes 128 bytes 1010 ns 710 ns 1.423

Mathematics 2019, 7, 1159 18 of 22

Where N is the number of processing nodes, the number of reduced waiting clock cycles is up
to N-2 cycles. Even if the transmission order of P1 in the busy group is changed to the last order
and the broadcast communication can begin immediately, P1 will perform the data transmission for
the broadcast communication after at least N-2 cycles. Therefore, the performance improvement
was limited. Additionally, as the data message size was increased, the ratio of synchronization time
to data message transmission time was decreased; therefore, the performance improvement also
was decreased.

These simulation results indicate the levels of performance improvement that derive from the
use of the transmission order change technique. Although the inter-node transmission order change
technique was used in the simulation, the initial change technique would also derive the same levels of
performance, as only one processing node (i.e., P1) belongs to the busy group. Therefore, the advantage
of the inter-node transmission order change technique was not found in these simulation results; its
advantage was that the transmission order of processor nodes could be changed in the busy group also.

5. Implementation and Synthesis Results

To support the atomic pipelined broadcast algorithm with the inter-node transmission order
change technique, a modified MPE was modeled by using Verilog-HDL and synthesized. Figure 22
shows the structure of the multi-core processor system that included the modified MPE. The multi-core
processor system consisted of four processing nodes and the local bus. Each of the processing nodes
comprised of a processor core, 16-KByte instruction memory, 16-Kbyte data memory, and the modified
MPE. The processor core was the Yonsei Multi-Processor Unit for Extension (YMPUE), which was
designed by the processor laboratory at Yonsei University. It was a five-stage pipeline RISC type, based
on MIPS DLX (DeLuXe) architecture [49].Mathematics 2019, 7, x 19 of 23

Figure 22. Block diagram of the multi-core processor system with the modified MPE.

To obtain hardware overhead information for the modified MPE, the multi-core processor
system was synthesized with a Synopsys Design Compiler, using TSMC 0.18 μm process standard
and memory libraries. Table 3 shows the synthesis results. The modified MPE occupies an area much
smaller than the total chip. The logic area of the modified MPE was 2288.1 (i.e., 9152.5 for four
processing nodes) equivalent NAND gates. As described in [22], the logic area of the MPE supporting
the initial transmission order change technique is 2108.4 (i.e., 8433.6 for four processing nodes)
equivalent NAND gates.

Compared to the previous MPE, the logic area of the modified MPE increased by approximately
8.5%. However, it occupied only 2.1% of the entire chip area. When considering the entire chip area,
the logic area of the modified MPE was negligible; therefore, if the modified MPE were used in a
multi-core processor system, the total system performance could be improved with only a small
increase in the logic area.

Table 3. Logic synthesis results of the multi-core processor system with the modified MPE.

Block Gate count Ratio (%)
mpi_bus 2526.4 0.60

Processing Node #0

ympu 28221.4 6.50
i_mem 38613.7 8.90
d_mem 38775.1 8.93

mpe 2281.7 0.53

Processing Node #1

ympu 28149.1 6.49
i_mem 38613.7 8.90
d_mem 38772.5 8.93

mpe 2281.0 0.53

Processing Node #2

ympu 28157.1 6.49
i_mem 38625.5 8.90
d_mem 38732.8 8.93

mpe 2296.9 0.53

Processing Node #3

ympu 28132.6 6.48
i_mem 38616.4 8.90
d_mem 38796.3 8.94

mpe 2292.8 0.53
Total 433975.06 100

Table 4 is the results of power measurement for the synthesized MPE with Synopsys Power
Compiler. The total dynamic power was 56.587 mW and the total leakage power was 489.443 uW.
The dynamic power of the modified MPE was 4.242 mW and the leakage power was 2.779 uW, which

Message
Passing Engine

comm_msg_en_0
comm_msg_0[31:0]
comm_msg_complete_0

dm_rdata_0[31:0]
dm_read_0
dm_wdata_0[31:0]
dm_addr_0[8:0]
dm_write_0

bus_state_0[3:0]
state_valid_0
sr_req_0

recv_en_0
send_busy_0
recv_data_0[31:0]
send_en_0
recv_busy_0
send_data_0[31:0]

Local Bus

Processor

Data
Memory

Processing node #0

Multi-core Processor

Instruction
Memory

Figure 22. Block diagram of the multi-core processor system with the modified MPE.

When the instruction regarding message passing is fetched from instruction memory, the processor
core transferred it to the modified MPE after the decode stage. The modified MPE stores the Send
and Recv commands directly in the issue queue. When the Bcast command is received, the root node
orders the local bus to distribute the value of the status register to all the processing nodes in the
communicator. After the communication statuses of the processing nodes are checked, the MPE reads
the pre-defined transmission order from the ROM, translates the logical node number into the physical
node number, and then determines the transmission order. According to the changed order, the MPEs
generate the control messages, which consist of Send (for a head node), Recv (for a tail node), and Fwd
(for a body node), and then store them in the issue queue.

To obtain hardware overhead information for the modified MPE, the multi-core processor system
was synthesized with a Synopsys Design Compiler, using TSMC 0.18 µm process standard and memory
libraries. Table 3 shows the synthesis results. The modified MPE occupies an area much smaller

Mathematics 2019, 7, 1159 19 of 22

than the total chip. The logic area of the modified MPE was 2288.1 (i.e., 9152.5 for four processing
nodes) equivalent NAND gates. As described in [22], the logic area of the MPE supporting the
initial transmission order change technique is 2108.4 (i.e., 8433.6 for four processing nodes) equivalent
NAND gates.

Table 3. Logic synthesis results of the multi-core processor system with the modified MPE.

Block Gate Count Ratio (%)

mpi_bus 2526.4 0.60

Processing Node #0

ympu 28221.4 6.50
i_mem 38613.7 8.90
d_mem 38775.1 8.93

mpe 2281.7 0.53

Processing Node #1

ympu 28149.1 6.49
i_mem 38613.7 8.90
d_mem 38772.5 8.93

mpe 2281.0 0.53

Processing Node #2

ympu 28157.1 6.49
i_mem 38625.5 8.90
d_mem 38732.8 8.93

mpe 2296.9 0.53

Processing Node #3

ympu 28132.6 6.48
i_mem 38616.4 8.90
d_mem 38796.3 8.94

mpe 2292.8 0.53

Total 433975.06 100

Compared to the previous MPE, the logic area of the modified MPE increased by approximately
8.5%. However, it occupied only 2.1% of the entire chip area. When considering the entire chip
area, the logic area of the modified MPE was negligible; therefore, if the modified MPE were used in
a multi-core processor system, the total system performance could be improved with only a small
increase in the logic area.

Table 4 is the results of power measurement for the synthesized MPE with Synopsys Power Compiler.
The total dynamic power was 56.587 mW and the total leakage power was 489.443 uW. The dynamic
power of the modified MPE was 4.242 mW and the leakage power was 2.779 uW, which show that the
total amount of power consumption used in this multi-core processor system was very low.

Table 4. Results of power measurement for the synthesized MPE.

Block Dynamic Power (mW) Leakage Power (uW)

mpi_bus 1.340 0.690

Processing Node #0

9.097 9.452 6.50
1.982 56.090 8.90
1.712 56.177 8.93
1.059 0.696 0.53

Processing Node #1

9.069 9.437 6.49
1.955 56.090 8.90
1.641 56.173 8.93
1.058 0.692 0.53

Processing Node #2

8.968 9.576. 6.49
1.933 56.107 8.90
1.749 56.030 8.93
1.064 0.698 0.53

Processing Node #3

9.045 9.461 6.48
1.930 56.094 8.90
1.740 56.215 8.94
1.061 0.693 0.53

Total 56.587 489.443

Mathematics 2019, 7, 1159 20 of 22

6. Conclusions

Since the sequential tree algorithm was presented, various broadcast algorithms were proposed;
these include the binary tree, binomial tree, minimum spanning tree, distance minimum spanning tree
algorithms, as well as Van de Gejin’s hybrid broadcast and modified hybrid broadcast algorithms. These
algorithms offer performance efficiency by tuning network topologies in collective communications,
but they cannot utilize the maximum bandwidth for message broadcast, given their restrictive structure.
To utilize maximum bandwidth, pipelined broadcast algorithms were proposed to accelerate the
processing time of broadcast communication in the operating system level and in the cluster system.

This paper proposed an efficient atomic pipelined broadcast algorithm with the inter-node
transmission order change technique. The atomic pipelined broadcast algorithm could drastically reduce
the number of synchronizations on multi-core processor systems. This reduction was accomplished
by developing a light-weight protocol and employing simple hardware logic, so that the message
broadcast could be performed in an atomic fashion with full pipeline utilization.

The proposed inter-node transmission order change technique considered the communication
status of the processing node. This technique sorted each of the processing nodes into the free or busy
group, in a manner similar to that seen in the initial transmission order change technique. Then, this
technique determined the transmission order only in the free group as the pre-defined numeric order;
however, for the busy group, it changed the transmission order according to the remaining pre-existing
transmission data size. Therefore, the synchronization time could be hidden for the remaining time, until
the pre-existing data transmissions finish; as a result, the overall broadcast completion time was reduced.

To validate this approach, the proposed broadcast algorithm was implemented to a bus functional
model with SystemC, and the results with various message data sizes and node number were
evaluated. To evaluate the performance improvements of the proposed atomic pipelined broadcast
algorithm and the proposed inter-node transmission order change technique, many simulations in
various communication environments were performed, in which the number of processing nodes,
the transmission data message size, and the pre-existing transmission data message size were varied.
The simulation results showed that adopting the transmission order change technique could bring
about a 1.423 speed-up ratio.

The message passing engine (MPE) with the atomic pipelined broadcast algorithm with the
inter-node transmission order change technique was designed by using Verilog-HDL, which supports
four processor cores. The logic synthesis results with TSMC 0.18 µm process cell libraries showed that
the logic area of the proposed MPE was 2288.1 equivalent NAND gates, which was approximately 2.1%
of the entire chip area; therefore, performance improvement could be expected with a small hardware
area overhead, if the proposed MPE were to be added to multi-core processor systems.

Funding: This research received no external funding.

Acknowledgments: The author would like to thank Emma for her help with the manuscript submission.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Lotfi-Kamran, P.; Modarressi, M.; Sarbazi-Azad, H. An efficient hybrid-switched network-on-chip for chip
multiprocessors. IEEE Trans. Comput. 2016, 65, 1656–1662. [CrossRef]

2. Homayoun, H. Heterogeneous chip multiprocessor architectures for big data applications. In Proceedings of
the ACM International Conference on Computing Frontiers, Como, Italy, 16–18 May 2016; pp. 400–405.

3. Wilson, S. Methods in Computational Chemistry; Springer Science & Business Media: New York, NY, USA,
2013; Volume 3.

4. Shukla, S.K.; Murthy, C.; Chande, P.K. A survey of approaches used in parallel architectures and multi-core
processors for performance improvement. Prog. Syst. Eng. 2015, 366, 537–545.

5. Fernandes, K. GPU Development and Computing Experiences. Available online: http://docplayer.net/
77930870-Gpu-development-and-computing-experiences.html (accessed on 10 September 2019).

http://dx.doi.org/10.1109/TC.2015.2449846
http://docplayer.net/77930870-Gpu-development-and-computing-experiences.html
http://docplayer.net/77930870-Gpu-development-and-computing-experiences.html

Mathematics 2019, 7, 1159 21 of 22

6. Gong, Y.; He, B.; Zhong, J. Network performance aware MPI collective communication operations in the
cloud. IEEE Trans. Parallel Distrib. Syst. 2013, 26, 3079–3089. [CrossRef]

7. Woolley, C. NCCL: Accelerated Multi-GPU Collective Communications. Available online: https://images.
nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf (accessed on 10 September 2019).

8. Luehr, N. Fast Multi-GPU Collectives with NCCL. Available online: https://devblogs.nvidia.com/

parallelforall/fast-multi-gpu-collectives-nccl (accessed on 10 September 2019).
9. Chiba, T.; Endo, T.; Matsuoka, S. High-performance MPI broadcast algorithm for grid environments utilizing

multi-lane NICs. In Proceedings of the IEEE International Symposium on Cluster Computing and the Grid,
Rio de Janeiro, Brazil, 14–17 May 2007; pp. 487–494.

10. Kumar, S.; Sharkawi, S.S.; Nysal Jan, K.A. Optimization and analysis of MPI collective communication
on fat-tree networks. In Proceedings of the IEEE International Symposium on Parallel and Distributed
Processing Symposium, Chicago, IL, USA, 23–27 May 2016; pp. 1031–1040.

11. Jha, S.; Gabriel, E. Impact and limitations of point-to-point performance on collective algorithms.
In Proceedings of the IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Cartagena, Colombia, 16–19 May 2016. [CrossRef]

12. Vadhiyar, S.S.; Fagg, G.E.; Dongarra, J. Automatically tuned collective communications. In Proceedings of
the ACM/IEEE Conference on Supercomputing, Dallas, TX, USA, 4–10 November 2000. [CrossRef]

13. Seidel, S.R. Broadcasting on Linear Arrays and Meshes; Oak Ridge National Lab: Oak Ridge, TN, USA, 1993.
14. Barnett, M.; Gupta, S.; Payne, D.G.; Shuler, L.; van de Geijn, R. Building a High-performance Collective

Communication Library. In Proceedings of the ACM/IEEE Conference on Supercomputing, Washington, DC,
USA, 14–18 November 1994; pp. 107–116.

15. Matsuda, M.; Kudoh, T.; Kodama, Y.; Takano, R.; Ishikawa, Y. Efficient MPI collective operations for clusters
in long-and-fast networks. In Proceedings of the IEEE International Conference on Cluster Computing,
Barcelona, Spain, 25–28 September 2006; pp. 1–9.

16. Barnett, M.; Payne, D.; Geijn, R.; Watts, J. Broadcasting on meshes with wormhole routing. J. Parallel Distrib.
Comput. 1996, 35, 111–122. [CrossRef]

17. Traff, J.; Ripke, A.; Siebert, C.; Balaji, P.; Thakur, R.; Gropp, W. A simple, pipelined algorithm for large,
irregular all-gather problems. Lect. Notes Comput. Sci. 2008, 5205, 84–93.

18. Patarasuk, P.; Yuan, X.; Faraj, A. Techniques for pipelined broadcast on Ethernet switched clusters. J. Parallel
Distrib. Comput. 2008, 68, 809–824. [CrossRef]

19. Zhang, P.; Deng, Y. Design and Analysis of Pipelined Broadcast Algorithms for the All-Port Interlaced Bypass
Torus Networks. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 2245–2253. [CrossRef]

20. Jia, B. Contention Free Pipelined Broadcasting Within a Constant Bisection Bandwidth Network Topology.
U.S. Patent 8873559 B2, 12 August 2013.

21. Watts, J.; Gejin, R. A Pipelined Broadcast for Multidimensional Meshes. Parallel Process. Lett. 1995, 5, 281–292.
[CrossRef]

22. Park, J.; Yun, H.; Moon, S. Enhancing Performance Using Atomic Pipelined Message Broadcast in a Distributed
Memory MPSoC. IEICE Electron. Express 2014, 11, 1–7. [CrossRef]

23. Vamvakas, P.; Tsiropoulou, E.E.; Papavassiliou, S. Dynamic provider selection & power resource management
in competitive wireless communication markets. Mob. Netw. Appl. 2018, 23, 86–99.

24. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Harley, T.; Lillicrap, T.P.; Silver, D.; Kavukcuoglu, K. Asynchronous
methods for deep reinforcement learning. In Proceedings of the International conference on machine learning,
New York, NY, USA, 19–24 June 2016; pp. 1928–1937.

25. Chowdhury, N.; Wight, J.; Mozak, C.; Kurd, N. Intel Core i5/i7 QuickPath Interconnect receiver clocking
circuits and training algorithm. In Proceedings of the International Symposium on VLSI Design, Automation
and Test, Hsinchu, Taiwan, 23–25 April 2012; pp. 1–4.

26. Safranek, R. Intel QuickPath Interconnect Overview. In Proceedings of the IEEE Symposium on Hot Chips,
Stanford, CA, USA, 23–25 August 2009; pp. 1–27.

27. An Introduction to the Intel QuickPath Interconnect. Available online: https://www.intel.com/content/www/us/
en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html (accessed on 10 September 2019).

28. Oliver, N.; Sharma, R.; Chang, S.; Chitlur, B.; Garcia, E.; Grecco, J.; Grier, A.; Ijih, N.; Liu, Y.; Marolia, P.; et al.
A Reconfigurable Computing System Based on a Cache-Coherent Fabric. In Proceedings of the International
Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico, 30 November–2 December 2011; pp. 80–85.

http://dx.doi.org/10.1109/TPDS.2013.96
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl
http://dx.doi.org/10.1109/CCGrid.2016.44
http://dx.doi.org/10.1109/SC.2000.10024
http://dx.doi.org/10.1006/jpdc.1996.0074
http://dx.doi.org/10.1016/j.jpdc.2007.11.003
http://dx.doi.org/10.1109/TPDS.2012.93
http://dx.doi.org/10.1142/S0129626495000266
http://dx.doi.org/10.1587/elex.11.20140357
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html

Mathematics 2019, 7, 1159 22 of 22

29. Sodani, A. Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor. In Proceedings of the IEEE
Symposium on Hot Chips, Cupertino, CA, USA, 22–25 August 2015; pp. 1–24.

30. Amanda, S. Programming and Compiling for Intel® Many Integrated Core Architecture. Available
online: https://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-
core-architecture (accessed on 10 September 2019).

31. Intel Xeon Phi Coprocessor x100 Product Family. Available online: https://www.intel.com/content/dam/www/

public/us/en/documents/specification-updates/xeon-phi-coprocessor-specification-update.pdf (accessed on
10 September 2019).

32. Sodani, A.; Gramunt, R.; Corbal, J.; Kim, H.-S.; Vinod, K.; Chinthamani, S.; Hutsell, S.; Agarwal, R. Knights
Landing: Second-Generation Intel Xeon Phi Product. IEEE Micro 2016, 36, 34–46. [CrossRef]

33. Pasarkar, B.V. A Review on HyperTransport™ Technology. J. Comput. Based Parallel Program. 2016, 1, 1–5.
34. Latest Technologies, Gaming, Graphics and Server, AMD. Available online: http://www.amd.com/en-us/

innovations/software-technologies/hypertransport/ (accessed on 10 September 2019).
35. Conway, P.; Hughes, B. The AMD Opteron Northbridge Architecture. IEEE Micro 2007, 27, 10–21. [CrossRef]
36. Sinha, R.; Roop, P.; Basu, S. The AMBA SOC Platform. In Correct-by-Construction Approaches for SoC Design;

Springer: New York, NY, USA, 2013; pp. 11–23.
37. Shrivastava, A.; Sharma, S.K. Various arbitration algorithm for on-chip (AMBA) shared bus multi-processor

SoC. In Proceedings of the IEEE Conference on Electrical, Electronics and Computer Science, Bhopal, India,
5–6 March 2016; pp. 1–7.

38. Keche, K.; Mankar, K. Implementation of AMBA compliant SoC design for the application of detection
of landmines on FPGA. In Proceedings of the International Conference on Advanced Computing and
Communication Systems, Coimbatore, India, 22–23 January 2016; pp. 1–6.

39. Exynos 9820 Processor: Specs, Features. Available online: https://www.samsung.com/semiconductor/
minisite/exynos/products/mobileprocessor/exynos-9-series-9820/ (accessed on 10 September 2019).

40. Snapdragon 855+ Mobile Platform. Available online: https://www.qualcomm.com/products/snapdragon-
855-plus-mobile-platform (accessed on 10 September 2019).

41. Painkras, E. A Chip Multiprocessor for a Large-Scale Neural Simulator. Doctoral Dissertation, University of
Manchester, Manchester, UK, 2012.

42. Chopra, R. Operating Systems: A Practical Approach; S.Chand Publishing: New Delhi, India, 2009.
43. Gao, S. Hardware Design of Message Passing Architecture on Heterogeneous System; University of North Carolina

at Charlotte: Charlotte, NC, USA, 2013.
44. Gao, S.; Huang, B.; Sass, R. The Impact of Hardware Communication on a Heterogeneous Computing System.

In Proceedings of the IEEE International Symposium on Field-Programmable Custom Computing Machines,
Seattle, WA, USA, 28–30 April 2013; p. 234.

45. Huang, L.; Wang, Z.; Xiao, N. Accelerating NoC-Based MPI Primitives via Communication Architecture
Customization. In Proceedings of the IEEE International Conference on Application-Specific Systems,
Architectures and Processors, Washington, DC, USA, 9–11 July 2012; pp. 141–148.

46. Ly, D.L.; Saldana, M.; Chow, P. The Challenges of Using an Embedded MPI for Hardware-based Processing
Nodes. In Proceedings of the International Conference on Field-Programmable Technology, Sydney, Australia,
9–11 December 2009; pp. 120–127.

47. Mahr, P.; Lorchner, C.; Ishebabi, H.; Bobda, C. SoC-MPI: A Flexible Message Passing Library for Mutliprocessor
Systems-on-Chips. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs,
Cancun, Mexico, 3–5 December 2008; pp. 187–192.

48. Chung, W.Y.; Jeong, H.; Ro, W.W.; Lee, Y.-S. A Low-Cost Standard Mode MPI Hardware Unit for Embedded
MPSoC. IEICE Trans. Inf. Syst. 2011, E94-D, 1497–1501. [CrossRef]

49. Jeong, H.; Chung, W.Y.; Lee, Y.-S. The Design of Hardware MPI Units for MPSoC. J. Korea Inf. Commun. Soc.
2011, 36, 86–92. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
https://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-phi-coprocessor-specification-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-phi-coprocessor-specification-update.pdf
http://dx.doi.org/10.1109/MM.2016.25
http://www.amd.com/en-us/innovations/software-technologies/hypertransport/
http://www.amd.com/en-us/innovations/software-technologies/hypertransport/
http://dx.doi.org/10.1109/MM.2007.43
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-9820/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-9820/
https://www.qualcomm.com/products/snapdragon-855-plus-mobile-platform
https://www.qualcomm.com/products/snapdragon-855-plus-mobile-platform
http://dx.doi.org/10.1587/transinf.E94.D.1497
http://dx.doi.org/10.7840/KICS.2011.36B.1.86
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background Research
	Interconnection Networks on Multi-Core Processors
	Pipelined Broadcast

	Atomic Pipelined Broadcast with Inter-Node Transmission Order Change
	Atomic Pipelined Broadcast
	Inter-Node Transmission Order Change Technique
	Initial Idea of Transmission Order Change Technique
	Enhancing Transmission Order Change Technique
	Analysis of Minimizing Waiting Time with Inter-Node Transmission Order Change Technique
	Process Sequence of Inter-Node Transmission Order Change Technique

	Modified Message Passing Engine Architecture

	Simulation Results and Discussion
	Implementation and Synthesis Results
	Conclusions
	References

