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Abstract: In this paper, we compare a multi-step method and a multi-stage method for stiff initial
value problems. Traditionally, the multi-step method has been preferred than the multi-stage for a
stiff problem, to avoid an enormous amount of computational costs required to solve a massive linear
system provided by the linearization of a highly stiff system. We investigate the possibility of usage
of multi-stage methods for stiff systems by discussing the difference between the two methods in
several numerical experiments. Moreover, the advantages of multi-stage methods are heuristically
presented even for nonlinear stiff systems through several numerical tests.

Keywords: multi-stage method; multi-step method; Runge–Kutta method; backward difference
formula; stiff system

1. Introduction

Most time-dependent differential equations are usually solved by multi-stage (one-step) method or
multi-step method [1–3]. In general, there seems to be no significant difference in the structure between
them when the multi-stage method is applied to get an initial guess for the multi-step method [4].
Nonetheless, a comparison of both methods has attracted quite a lot of interest from the viewpoints of
convergence, stability, practical computations, numerical efficiency, etc. [5–11]. Comparisons in this
regard do not take into account the impact of advances in computer science and technologies such
as artificial intelligence (AI) or parallel computation, etc. Considering the impact, a new perspective
to compare the potentials of both methods should be investigated as well as existing comparative
studies. First of all, it is well known that the highest order of an A-stable multi-step method is two,
so lots of research [12–24] developing higher order methods have focused on either multi-step methods
satisfying some less restrictive stability condition or multi-stage methods which combine A-stability
with high-order accuracy [2,25–29]. In addition, multi-stage methods such as Runge–Kutta (RK) type
methods do not require any additional memory for function values at previous steps since it does not
use any previously computed values [30–32]. On the other hand, multi-step methods require additional
memory in the sense that they use previously computed function values and have insufficient function
values for initial data. Multi-stage methods are comparable with multi-step methods for nonlinear stiff
problems and have no restriction to express initial data contrast to the other. There seems not to be
such a clear a priori distinction between multi-stage and multi-step methods.

Another interesting point of view to find more efficient methods is quite susceptible to stiffness
and nonlinearity of the given problem. For nonlinear stiff problems, a multi-step method is needed
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to evaluate function values only once at each iteration in a nonlinear solver, whereas multi-stage
methods require several function evaluations at each iteration. This disadvantage of the multi-stage
method can be ignored by the authors’ recent research [33]. The authors showed numerically that
one stage of the multi-stage method is equivalent to one step of the multi-step method for simple
ordinary differential equation (ODE) systems. However, the multi-step methods such as the backward
differentiation formula (BDF) are usually recommended to apply nonlinear stiff problems because the
process of solving the nonlinear system of equation is also expensive computationally. In the process
of solving nonlinear stiff problems by a multi-stage method, it generally generates a system Md ⊗Ms,
where d and s represent the dimension of the given problem and the number of stages used in the
multi-stage method, respectively. Here, the notation Mk represents a matrix with the size k× k and the
notation ⊗ denotes a Kronecker product. On the other hand, a multi-step method needs to solve only
a system of size d× d.

The purpose of this paper is to investigate and compare the properties of the multi-stage and the
multi-step methods for d-dimensional stiff problems described by

dy
dt

= f (t, y) ∈ Rd. (1)

Most nonlinear stiff problems are solved by multi-step methods rather than multi-stage methods
since the multi-stage methods usually transform nonlinear stiff problems into bigger nonlinear systems,
as mentioned in the previous paragraph. To solve such nonlinear systems efficiently, one has to
consider both nonlinear and linear solvers. The nonlinear systems are usually solved by using
an iteration technique such as Newton-like iterations, which incur considerable computation costs.
There are various Newton-like iterations. Among them, a simplified Newton iteration is developed in
connection with the development of computer process capacity [34–37]. Different nonlinear system
solvers generate linear systems correspondingly. It means that the nonlinear system solver should be
well-selected to adapt efficient linear solvers such as the eigenvalue decomposition method. Note that
efficient linear solvers have also been well-studied [1,2,38,39]. An eigenvalue decomposition combined
with simplified Newton iteration can apply to a multi-stage method. The resulting multi-stage method
generates the same matrix, regardless of integration or iteration, as an object of decomposition for
solving a linear system induced by the simplified Newton iteration. It allows for decomposing the
matrix only once throughout the whole process. As a result, applying this combination to multi-stage
methods highlights the advantage of multi-stage methods by reducing computational costs to the
level of the costs required from multi-step methods without any loss of the original advantages of
multi-stage methods, which is the main contention of this paper.

The remaining parts of this paper are as follows. We briefly describe the multi-step and multi-stage
methods and simplified Newton iteration in Section 2. To support theoretical analysis, we present
preliminary numerical results in Section 3. Finally, in Section 4, all results are summarized and further
possibilities are discussed.

2. Preliminary

2.1. Methods

In this subsection, we briefly describe ODE solvers classified by mathematical theory. Numerical
methods for ODEs fall naturally into two categories: one is ‘multi-stage method’ using one starting
value at each step and the other is ‘multi-step method’ or ‘multi-value method’ based on several
values of the solution. We deal with the theories of two methods in terms of convergence and stability.
The multi-step method has a critically bad stability property with a higher convergence rate that can
not actually be used. Due to these reasons, the third-order RK method (RK3) and the third-order BDF
(BDF3) are considered as examples of multi-stage methods and multi-step methods. Note that the
higher order multi-step method is also available, but it has very low practical use.
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The general form of the multi-step methods [1,3,7,26,38,40,41] is described by

yn+1 =
s

∑
j=0

ajyn−j + h
s

∑
j=−1

bj f (tn−j, yn−j), n ≥ s. (2)

Here, the coefficients a0, . . . , as, b−1, b0, . . . , bs are constants. If method (2) use s + 1 previous
solution values with either as 6= 0 or bs 6= 0, the method is called an s + 1 step method. A BDF
method is the most efficient linear multi-step methods among several multi-step methods [40]. It is
composed of the coefficients bp−1 = · · · = b0 = 0 and the others chosen such that the method with
the convergence order of s convergence order s. Thus, the s-step BDF has s-th convergence order.
The BDF3 is given by

yn+3 −
18
11

yn+2 +
9

11
yn+1 −

2
11

yn =
6

11
h f (tn+3, yn+3). (3)

Since implicit A-stable linear multi-step methods have convergence order of at most 2,
second-order BDF can be A-stable, but the method can not be A-stable with order more than 3.
The stability of BDF3 is almost A-stable [38].

An explicit RK method has been developed by Runge, Heun, and Kutta based on a Euler
method [3,40]. Later, an implicit RK was developed for stiff problems based on several quadrature
rules. RK methods have the following form:

yn+1 = yn + h
s

∑
i=1

biki,

ki = f (tn + cih, yn + h
s

∑
j=1

aijk j), i = 1, . . . , s,
(4)

or an equivalent form of Butcher tableau

c A
b

.

One can specify a particular RK method by providing the number of stage s and all elements of
the Butcher tableau, aij (1 ≤ i, j ≤ s), bi and ci (i = 1, . . . , s). There is a popular implicit RK method for
solving the stiff problem, which is called a collocation method. The collocation method is changed
depending on the choice of the collocation points. For more details on the collocation method, one can
refer to [3,38]. If we select uniform collocation points defined by ci = i/3 (1 ≤ i ≤ 3), we can obtain a
third-order collocation method with having the following butcher table:

1
3

23
36 − 4

9
5

36
2
3

7
9 − 2

9
1
9

1 3
4 0 1

4
3
4 0 1

4

. (5)

Note that the order of the stage and convergence for the method (5) are both three as shown in
the convergence analysis in [3,38]. Furthermore, the stability of (5) demonstrated through Dahlquist’s
problem is almost L-stable.

2.2. Simplified Newton Iteration and Eigenvalue Decomposition Method

To explicate a simplified Newton iteration proposed by Liniger and Willoughby [10], we consider
the following nonlinear system obtained by RK-type methods,
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zi = h
s

∑
j=1

aij f (x0 + cjh, y0 + zj), i = 1, . . . , s. (6)

Equation (6) is equivalent to a system of equations described by

Z = h(A⊗ Id))F(Z), (7)

where
Z = [z1, . . . , zs]

T ,

A = (aij)
s
i,j=1,

F(Z) = [ f (x0 + c1h, y0 + z1), . . . , f (x0 + csh, y0 + zs)]
T ,

and Id is d-dimensional identity matrix. By applying Newton iteration to the nonlinear system of
Equation (7), we can get a linear system of the form

(Isd − h(A⊗ Id)J )∆Zk = −Zk + h(A⊗ Id)F(Zk),

Zk+1 = Zk + ∆Zk,
(8)

where J is a block diagonal matrix that consists of Jacobians ∂ f
∂y (tn + cih, yn + zi), i = 1, . . . , s, Zk =

(zk
1, . . . , zk

s)
T is the k-th iterated solution, ∆Zk = (∆zk

1, . . . ∆zk
s)

T is the increment, and F(Zk) denotes for

F(Zk) = ( f (x0 + c1h, y0 + zk
1), . . . , f (x0 + csh, y0 + zk

s))
T .

Usually, one Newton iteration needs several calculations of the Jacobian which requires lots of
computational costs. To reduce such costs, all Jacobians ∂ f

∂y (tn + cih, yn + zi) are replaced by ∂ f
∂y (tn, yn).

This process is called ’simplified Newton iteration’. The simplified Newton iteration for (7) leads (9) to
the formula

(Isd − hA⊗ J)∆Zk = −Zk + h(A⊗ Id)F(Zk),

Zk+1 = Zk + ∆Zk,
(9)

where J := ∂ f
∂y (tn, yn). Each iteration requires s times evaluation of f and the calculations of a

d · s-dimensional linear system.
Note that, by using the simplified Newton iteration, the matrix (I − hA⊗ J) is the same for all

iterations, so the decomposition method for solving the resulting linear system can be needed only
once. For the linear system, we consider an eigenvalue decomposition technique in that it decomposes
the given d · s dimensional linear system into several s-dimensional linear systems. In the view of
computational efficiency, it is more efficient to calculate several small size systems even if it is a
complex system, rather than to calculate one big size system. Note that only a simplified Newton
iteration (9) enables usage of eigenvalue decompositions that cannot be applicable to traditional
Newton iteration (8). The eigenvalue decomposition method for (9) is proposed independently by
Butcher [31] and Bickart [30]. The main ideas of the method are eigenvalue decomposition of the
matrix A−1 = TΛT−1 and linear transformation of the vector Zk. By transforming Wk = (T−1 ⊗ I)Zk,
the iteration (9) becomes equivalent to

(h−1Λ⊗ Id − I3 ⊗ J)∆Wk = −h−1(Λ⊗ Id)Wk + (T−1 ⊗ Id)F
(
(T ⊗ I)Wk

)
,

Wk+1 = Wk + ∆Wk.
(10)
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In a general case of the three-stage implicit RK method such as (5), the inverse matrix of A has an
eigenvalue decomposition as follows:

A−1 = TΛT−1 =
[
u0, u1, −v1

] γ̂ 0 0
0 α̂ −β̂

0 β̂ α̂

 [u0, u1, −v1

]−1
, (11)

where γ̂ is one real real eigenvalue, α̂± iβ̂ are one complex eigenvalue pair and u0, and u1 ± v1 are
eigenvectors corresponding to γ̂, α̂± iβ̂, respectively. Therefore, the matrix in (10) can be rewritten asγId − J 0 0

0 αId − J −βId
0 βId αId − J

 (12)

with γ = γ̂/h, α = α̂/h, β = β̂/h so that (10) can be split into two linear systems of dimension d
and 2d, respectively. Moreover, the 2d-dimensional real valued subsystem can be transformed to the
following d-dimensional complex valued system(

(α + iβ)I − J
)
(u + iv) = a + ib. (13)

In terms of computational cost, the number of multiplication to solve (13) is approximately
4d3/3, since the complex multiplication consists of four real multiplications. Then, the total
multiplication number for (12) is about 5d3/3, while the number of multiplications for decomposing
the untransformed matrix (I − hA⊗ J) in (9) is about (3d)3/3. Thus, we can reduce the number of
multiplications to about 80% by calculating (12) instead of directly calculating the inverse of the matrix
of (I − hA⊗ J) in (10). Finally, to solve the transformations Zk = (T ⊗ I)Wk, it additionally requires
a multiplication of O(n). This difference becomes more apparent as the size of the matrix (or the
numbers of stage) increases.

3. Numerical Comparison

In this section, we experiment five commonly used physical examples for comparison of both
methods. In Sections 3.1–3.3, the BDF3 method (3) and RK3 (4) with its butcher table (5) are used as
an example of multi-step and multi-stage methods, respectively. The initial guess for BDF3 is taken
by exact values. Both methods use the traditional Newton iteration for solving nonlinear systems.
In Section 3.3, especially, we measure CPU-time to compare the two methods in terms of accuracy
and efficiency and simplified Newton iteration is used for a nonlinear solver. In Sections 3.4–3.5,
we use RADAU5 and ODE15s representing a multi-stage and a multi-step method, respectively,
which numerical codes are well optimized and open-source. Note that RADAU5, one of multi-stage
methods, has convergence order 5 and stage order 3 [38] and ODE15s, one of multi-step methods,
included MATLAB library, has variable orders from 1 to 5 [42]. Remarkably, RADAU5 has applied the
eigenvalue decomposition and simplified Newton iteration. All numerical simulations are executed
with the software MATLAB 2010b (Mathworks, Natick, MA, USA) under OS WINDOWS 7 (Microsoft,
Redmond, WA, USA). Note that most numerical results in this section are repeatable even if different
computational resources are used.

3.1. Simple Linear ODE

As the first example, we consider the Prothero–Robinson problem [29],

f (t, y(t)) = ν(y(t)− g(t)) + g′(t), t ∈ (0, 10], y(0) = g(0), (14)
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which presents a stiffness by varying the parameter ν. The analytic solution of problem is given
by y(t) = g(t). To compare the error behaviors of the two methods, we set up the parameter
ν = −1.0× 106 so that the given problem can be highly stiff. Here, the exact solution of this problem is
set by g(t) = sin(t). In Figure 1, we display absolute errors |y(ti)− yi| at each integration step in a log
scale obtained by the two methods with different time step sizes h = 2−k, (a) k = 1, (b) k = 2 and (c)
k = 3. One can see that the error of BDF3 (Red) has magnitude (a) 1.0× 10−7, (b) 1.0× 10−8, and (c)
1.0× 10−9. The error of RK3 (Blue) has magnitude (a) 1.0× 10−9, (b) 1.0× 10−10, and (c) 1.0× 10−11.
All three graphs in Figure 1 show that RK3 has better accuracy than BDF3. Additionally, to demonstrate
the meaning of the stage of multi-stage methods and the step of multi-step methods, we set up a time
step size of the multi-step method, BDF3, as h̃ = h/3. The result of BDF3 with h̃ = h/3 is labeled as
BDF3c hereafter. It can be seen that the result from BDF3c (Black) has the same accuracy, compared
with RK3. Therefore, it is sufficient to see a comparison of RK3 and BDF3c for further comparison.
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Figure 1. Prothero–Robinson equation: comparing two methods for accuracy by varying step size
h = 2−k, for (a) k = 1, (b) k = 2, (c) k = 3.

3.2. Nonlinear Stiff ODE System: Multi-Mode Problem

As the second example, we consider a nonlinear ODE system based on the Prothero–Robinson
problem. The system is given by

f (t, Y(t)) = −Λ(Y(t)− g(t) · 1N)
δ + g′(t) · 1N , t ∈ (0, 10],

Y(0) = (0, . . . , 0)T ∈ RN ,
(15)

where g(t) = sin(t), 1N = (1, . . . , 1)T ∈ RN and N is the number of dimension. The exact solution is
Y(t) = sin(t) · 1N . The stiffness of (15) can be controlled by the eigenvalues of the matrix Λ, where Λ
is diagonal matrix that has elements λi = 1.0e + ki (i = 1, . . . , N), ki is random integer between 0 and
6. In addition, a linearity of the problem depends on the parameter δ. In this experiment, δ = 1 and
δ = 5 are taken for linear and nonlinear cases, respectively. The parameter set (N, h) = (100, 2−3) is
used for both linear and nonlinear cases.

As similar to the previous subsection, the error behaviors of two methods for both linear and
nonlinear cases are observed over time, and the results are plotted in Figure 2. The error is measured as
L∞-norm at each integration step, ||Y(ti)−Yi||∞. For the nonlinear case, a traditional Newton iteration
is used for a linearization. As mentioned in the previous subsection, BDF3c uses a smaller time step
size h̃ = h/3 and is compared with RK3 with time step h. Just in case, we mention that BDF3 with
time step h is not appropriate to compare RK3 with the same time step size because of the meaning of
the stage, explained in the previous subsection. In the linear case, δ = 1, RK3, and BDF3c have similar
error behaviors as 1.0× 10−5.544 and 1.0× 10−5.253 at the final time point, respectively. In the nonlinear
case, δ = 5, RK3, and BDF3 also have similar error behaviors as 1.0× 10−5.378 and 1.0× 10−5.123 at the
final time, respectively.
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Figure 2. Multi-mode problem: comparing errors of two methods for linear case (left) and nonlinear
case (right).

3.3. Linear PDE—Heat Equation

We consider a linear partial differential equation (PDE), the heat equation generally described by

ut = uxx, (t, x) ∈ [0, 1]× [0, 1] (16)

with initial value u(0, x) = sin(πx) + 1
2 sin(3πx) and boundary conditions u(t, 0) = u(t, 1) = 0.

The exact solution is given by u(x, t) = e−π2t sin(πx) + 1
2 e−(3π)2t sin(3πx). This problem is intended

to compare two methods for solving big size stiff problems induced from PDE by spatial discretization
such as Method of Lines. For the spatial discretization, we use the second-order central difference
after evaluating at x = xj (xj =

j
N ). Then, the resulting system becomes a N-dimensional system

of time dependent ODE. That is, the resulting system can be a big size ODE system depending on
the discretization. Note that, to avoid unnecessary computational costs of the multi-stage methods
described in the previous sections, we employ the multi-stage methods by combining an efficient
linear solver such as an eigenvalue decomposition technique.

To examine the numerical accuracy of two methods for big size stiff systems, we integrate this
problem by setting the system size N = 100, step size h = 1/64 for RK3 and step size h̃ = 1/192 for
BDF3. For the numerical comparison, we measure L∞-norm error Err(ti) = ||u(xj, ti)− ui

j||∞ in each

integration time step where ui
j ≈ u(xj, ti). The error behaviors of two methods are plotted in Figure 3,

which are measured on a logarithmic scale.
It can be seen that the accuracy of the multi-stage method RK3 with time step h is quite similar to

that of the multi-step method BDF3 with time step size h̃. Additionally, to observe of the efficiency for
the two methods, CPU-times, and the absolute error are measured at the final time t = 1 by varying
the resolution of space N = k · 102 from k = 1 to k = 10. The results are plotted by absolute error
versus CPU-time in Figure 4 with time step sizes h = 1/100 and h̃ = 1/300.

Figure 4 can be good evidence of the conclusion that RK3 with eigenvalue decomposition
technique is more efficient than the BDF3 method. More precisely speaking, BDF3 requires more
computational costs to obtain a similar magnitude of accuracy. In addition, RK3 combined with the
eigenvalue decomposition technique can obtain higher accuracy for the same cost.
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Figure 3. Heat equation: comparing two methods for error behaviors over time.
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Figure 4. Heat equation: comparing two methods for CPU-time versus error.

3.4. Nonlinear PDE: Medical Akzo Nobel Problem

In this example, we consider one of nonlinear stiff PDE, a reaction-diffusion system with one
spatial dimension, described by{

ut = uxx − kuv

vt = −kuv
0 < x < ∞, 0 < t < T, (17)

along with the following initial and boundary conditions,

u(0, x) = 0, v(0, x) = v0 for x > 0,

where v0 is a constant and

u(t, 0) = φ(t) for 0 < t < T.
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Semi-discretization of this system yields the nonlinear stiff ODE given by

dy
dt

= f (t, y), y(0) = g, y ∈ IR2N , 0 ≤ t ≤ 20. (18)

The function f is given by

f2j−1 = αj
y2j+1 − y2j−3

2∆ζ
+ β j

y2j−3 − 2y2j−1 + y2j+1

(∆ζ)2 − ky2j−1y2j,

f2j = −ky2jy2j−1,

where

αj =
2(j∆ζ − 1)3

c2 , β j =
(j∆ζ − 1)4

c2 , j = 1, . . . , N

with ∆ζ = 1
N , y−1(t) = φ(t), y2N+1 = y2N−1 and

g = (0, v0, 0, v0, . . . , 0, v0)
T ∈ IR2N .

The function φ is given by

φ(t) =

{
2 for t ∈ (0, 5],

0 for t ∈ (5, 20].

The parameters k, v0, and c are set to 100, 1, and 4, respectively. The integer N can be decided by
the user. In this experiment, we set N as 200. Since analytic solutions are unavailable, we use reference
solutions listed in Table 1 excerpted from [43].

Table 1. Reference solutions for Medical Akzo Nobel problem at the end of the integration interval.

Reference Solution Reference Solution

y79 0.2339942217046434× 10−3 y80 −0.2339942217046434× 10−141

y149 0.3595616017506735× 10−3 y150 0.1649638439865233× 10−86

y199 0.11737412926802× 10−3 y200 0.61908071460151× 10−5

y239 0.68600948191191× 10−11 y240 0.99999973258552

Specifically, results independent of computational resources were measured to compare the
efficiency of two methods in this example. The number of times that nonlinear solvers are called
(nsolve) and the number of function evaluations (nfeval) are measured by varying relative tolerance
(Rtol) and absolute tolerance (Atol) as (Rtol, Atol) = (10−n, 10−n−2) (n = 4, . . . , 11). We also measure
an L∞-norm error at the end time for each tolerance and plot the error in a logarithm scale as a
function of nsolve (left) and nfeval (right) in Figure 5. These figures show that RADAU5 generates
smaller errors, compared with ODE15s, for paying a similar computational expenses. From a different
perspective, RADAU5 requires less computational resources than ODE15s to get similar level of errors.
Thus, we can claim that RADAU5 has better performance in terms of computational costs and accuracy
than ODE15s.
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Figure 5. Medical Akzo Nobel problem: nsolve versus error (left) and nfeval versus error (right).

3.5. Kepler Problem

In this subsection, we consider a two-body Kepler’s problem to examine two conservation
properties—the Hamiltonian energy and angular momentum—which are indispensable factors in
physics. The Kepler’s problem describes the Newton’s law of gravity revolving around their center of
mass placed at the origin in elliptic orbits in the (q1, q2)-plan [44]. The equations with unitary masses
and gravitational constant are defined by

p′1(t) = −q1(q2
1 + q2

2)
(−3/2),

p′2(t) = −q2(q2
1 + q2

2)
(−3/2),

q′1(t) = p1,

q′2(t) = p2,

(19)

with initial conditions p1(0) = 0, p2(0) = 2, q1(0) = 0.4, and p1(0) = 0 on the interval [0, 100π].
The dynamics are described by Hamiltonian function given by

H(p1, p2, q1, q2) =
1
2
(p2

1 + p2
2)−

1√
q2

1 + q2
2

together with angular momentum L given by

L(p1, p2, q1, q2) = q1 p2 − q2 p1.

The initial Hamiltonian and the initial angular momentum conditions are H0 = −0.5 and L0 = 0.8,
respectively.

The conservation properties for the Hamiltonian energy H and angular momentum L are
investigated by simulating with the two methods, RADAU5 and ODE15s, with time step size h = 0.1
and plot the results in Figure 6. As shown in Figure 6, RADAU5 can conserve both quantities, whereas
ODE15s loses the properties as time is going on.

Next, we also consider the movement of comet in planar regulated three-body problem of
Sun–Jupiter–Comet. To investigate conservation properties of the two methods, we measure the
Hamiltonian energy K and the angular momentum D for the three-body Kepler problem described by

x′′(t) = ν
xS − x

r3
13

+ µ
xJ − x

r3
23

, y′′(t) = ν
yS − y

r3
13

+ µ
yJ − y

r3
23

, (20)
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where
r2

13 = (xS − x)2 + (yS − y)2, r2
23 = (xJ − x)2 + (yJ − y)2,

xS = −µ cos(t− t0), yS = −µ sin(t− t0),

xJ = ν cos(t− t0), yJ = ν sin(t− t0).

The energy and angular momentum of the comet

K/2 =
1
2
(x2 + y2)− 1√

x2 + y2
, D = xy′ − yx′

are constant, when µ = 0 and ν = 1. For this experiment, initial condition is set to

x(0) = 5, y(0) = 1, x′(0) = 0, y′(0) = 1,

and the initial energy and angular momentum are set to K0/2 = 0.3 and D0 = 5 with parameter step
size h = 1/2π and t0 = 0.

0 50 100 150 200 250 300

time
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-0.9

-0.8
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-0.6

-0.5

H

Hamiltonian Energy

Radau5

ODE15s

0 50 100 150 200 250 300

time

0.3

0.4

0.5

0.6

0.7

0.8

L
Angular Momentum

Radau5

ODE15s

Figure 6. Two-body Kepler problem: comparing two methods in terms of conservation of Hamiltonian
and angular momentum.

In Figure 7, one can see that the behaviors of the energy and the momentum over time interval
[0, 100π]. As observed in Figure 7, RADAU5 gives a maximum variation of 8.0356× 10−5 and 0.0013
for the energy and the momentum, whereas ODE15s presents a variation of 5.9063× 10−4 and 0.0173
for them. Therefore, one can conclude that RADAU5 has better conservation properties, compared
with ODE15s.

0 50 100 150 200 250 300

time

0.2998

0.3

0.3002

0.3004

0.3006

K
/2

Energy

Radau5

ODE15s

0 50 100 150 200 250 300

time

4.985

4.99

4.995

5

D

Momentum

Radau5

ODE15s

Figure 7. Three-body Kepler problem: comparing two methods in terms of the conservation of total
energy and angular momentum.
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4. Conclusions and Further Discussion

In this work, we compare multi-stage methods with multi-step methods by investigating the
numerical properties of both methods. In a classical approach, nonlinear stiff systems were usually
solved by multi-step methods to avoid huge computational complexity induced from linearization
of a given nonlinear system. However, the computational costs for the multi-stage method can be
reduced sufficiently without loss of stability and conservation, which is possible by using suitable
nonlinear and linear solvers such as a Newton-type method and eigenvalue decomposition. It means
that the multi-stage method can also be applied to solve nonlinear stiff systems without any damage to
computational costs, compared with the multi-step methods. Moreover, it is seen that the multi-stage
methods preserve the invariants of the energy and angular momentum in Hamiltonian systems.
In addition, it is well-known that a stability property of multi-stage methods is much better than that
of multi-step methods.

Overall, one can conclude that the multi-stage method can be a good candidate to solve nonlinear
stiff systems. It means that, without any damage to computational costs, multi-stage methods can
be applied to long-time simulations and massive physical simulations in fields such as astronomy,
meteorology, nuclear fusion, nuclear power, aerospace, machinery, etc.
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