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Abstract: A new generalised Taylor-like explicit method for stiff ordinary differential equations
(ODEs) is proposed. The algorithm is presented in its component and vector forms. The error
and stability analysis of the method are developed showing that it has an arbitrary high order of
convergence and the L-stability property. Moreover, it is verified that several integration schemes are
special cases of the new general form. The method is applied on stiff problems and the numerical
solutions are compared with those of the classical Taylor-like integration schemes. The results show
that the proposed method is accurate and overcomes the shortcoming of the classical Taylor-like
schemes in their component and vector forms.

Keywords: ordinary differential equations; nonlinear high order methods; L-stability; Taylor-like
explicit methods

1. Introduction

Most of the mathematical models describing real-world phenomena are often stiff ordinary
differential equations (SODEs). Such problems involve a wide range of temporal scales and solving
these SODEs requires careful treatment. Efficient numerical and semi-analytical numerical methods for
solving stiff problems must have good accuracy, wide region of stability and low computational effort.
It is well known that explicit linear multistep methods are not absolutely stable. In addition, most of
the implicit methods are absolutely stable and work adequately with SODEs, but they involve a higher
computational load per step than the explicit methods [1–22] Wu and Xia [9–11] presented a vector
form for A-stable explicit one step Taylor-like method for solving stiff ODE systems. Wu and Xia [9]
proposed a vector form for the two low accuracy methods [5] to be applied on stiff ODE systems. Wu
and Xia [10] proposed a vector form for the sixth-order Taylor-like explicit method [7] to be applied
on stiff ODE systems. Wu and Xia [9,10] showed the superiority of the Taylor-like methods when
formulated in vector form compared to their component form. More recently, Wu and Xia [11] derived
a general form of the Taylor-like explicit method and derived its corresponding vector form. One of the
main advantages of using Taylor-like methods is that the approximate solution is given as an arbitrary
order piecewise analytical function defended on the sub-intervals of the whole integration interval.
This property offers different facility for adaptive error control [19,20]. Moreover, the Taylor-like
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method [11] is an arbitrary high order A-stable method that avoids extremely small stepsizes during
the integration procedure. To avoid the analytical computation of the successive derivatives involved
in the Taylor-like methods, numerical differentiation [21,22], automatic differentiation [23], differential
transformation [24–26] and Infinity Computer with a new numeral system [27–32] can be used. In fact,
Taylor-like explicit methods [5,7,9–11] have computational drawbacks with zero-component derivative
or zero-vector norm in their component or vector forms, respectively. Moreover, the computational
errors due to the round-off, particularly in the case of long time intervals or large time-step sizes, may
lead to very small values of the derivatives or very large values of the derivatives’ ratio at some grid
points. Consequently, poor results are obtained. To overcome these limitations a new generalised
Taylor-like explicit method for SODEs and stiff ODE systems is present. The method is developed both
in its component and vector forms. The error and stability analysis of the method are presented. It is
shown that the new method has an arbitrary order of convergence and the L-stability property. Indeed,
many other integration schemes are essentially special cases of the proposed general form method.
The method is applied on stiff test problems and the numerical results are compared with those in the
literature. The results show that the proposed method is accurate and avoids the shortcoming of the
classical Taylor-like explicit methods both in their component and vector forms.

2. Generalised Taylor-Like Method

Consider the initial-value problem given by:

y′(t) = f (t, y(t)) , y(t0) = y0 , (1)

where y(t), f (t, y(t)) ∈ R and t ∈ [t0, T] ⊂ R. The interval [t0, T] is divided into sub-intervals
[tj, tj+1] with tj = t0 + j h, such that h is the time-step size. Assume that the solution of (1) can be
approximated by

ȳ(t) = a(eb (t−tj) − 1) +
m

∑
n=0

cn
(t− tj)

n

n!
, a, b 6= 0 , t ∈ [tj, tj+1], (2)

where a, b and cn are unknowns and determined later from the local truncation error and stability
analysis of the method. By considering Taylor’s expansions of y(t) and ȳ(t) about tj, we have:

yj+1 = yj +
∞

∑
n=1

y(n)j
hn

n!
, (3)

where y(n)j = dny
dtn (tj) and

ȳj+1 = c0 +
m

∑
n=1

(abn + cn)
hn

n!
+

∞

∑
n=m+1

abn hn

n!
. (4)

The approximation in (2) is constructed so that yj+1 and ȳj+1 agree and their derivatives up to order
m + 1, that is(

c0 +
m

∑
n=1

(abn + cn)
hn

n!
+

∞

∑
n=m+1

abn hn

n!

)
−
(

yj +
∞

∑
n=1

y(n)j
hn

n!

)
= O

(
hm+2

)
. (5)
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Equating the coefficients of the same powers of hL, L = 0, 1, . . . , m + 1, in (5) by zero, results in the
following system of nonlinear equations

c0 − yj = 0

abn + cn − y(n)j = 0 , n = 1, . . . , m

abm+1 − y(m+1)
j = 0

 . (6)

Solving the first and last equations in (6) results in

c0 = yj , a =
y(m+1)

j

bm+1 . (7)

Consequently, solving the remaining equations in (6) results in

cn = y(n)j −
y(m+1)

j

bm+1−n , n = 1, . . . , m. (8)

From (2), (7) and (8) we obtain the following integration algorithm:

ȳj+1 = yj +
y(m+1)

j

bm+1

(
eb h − 1

)
+

m

∑
n=1

y(n)j −
y(m+1)

j

bm+1−n

 hn

n!
, b 6= 0. (9)

2.1. Local Truncation Error

The local truncation error Tj+1 is readily obtained from subtracting (9) from the Taylor series
expansion in (3) and collecting terms in h

Tj+1 =
∞

∑
s=0

(
y(m+1)

j bs+1 − y(m+2+s)
j

) hm+2+s

(m + 2 + s)!
. (10)

It is clear that relation (9) has at least m + 1 order of accuracy.

2.2. Stability Analysis

In order to examine the integration scheme (9) for the stability, let us consider the differential
equation,

y′ = λy,

where λ is a complex constant and Re(λ) < 0. For this equation, Equation (9) results in

yj+1 = yj + yj
λm+1

bm+1

(
eb h − 1

)
+ yj

m

∑
n=1

(
λn − λm+1

bm+1−n

)
hn

n!
, b 6= 0. (11)

For b =
y(k)j

y(k−1)
j

= λ, k = 1, 2, . . . , m + 1, Equation (11) results in

yj+1 = yj eλ h.

Setting z = λh in the above equation, the amplification factor is given by

R(z) = ez

and thus we have obtained the following A-stable and L-stable method with at least (m + 1) order
of accuracy
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yj+1 =
m

∑
n=0

y(n)j
hn

n!
+ y(m+1)

j

y(k−1)
j

y(k)j

m+1
e

y(k)j h

y(k−1)
j −

m

∑
n=0

 y(k)j h

y(k−1)
j

n
1
n!

 , y(k)j y(k−1)
j 6= 0, (12)

where k = 1, 2, . . . , m + 1.

The local truncation error of (12) is given by

Tj+1 =
∞

∑
s=0

y(m+1)
j

 y(k)j

y(k−1)
j

s+1

− y(m+2+s)
j

 hm+2+s

(m + 2 + s)!
. (13)

2.3. Consistency

Subtracting yj from both sides of (12) and dividing the result by h leads to

yj+1 − yj

h
= y(1)j +

m

∑
n=2

y(n)j
hn−1

n!
+ y(m+1)

j

 y(k−1)
j

y(k)j

m+1

 e

y(k)j h

y(k−1)
j − 1

h
−

 y(k)j

y(k−1)
j

− m

∑
n=2

 y(k)j

y(k−1)
j

n
hn−1

n!

 . (14)

Taking the limit as h tends to zero, on both sides of (14), yields

lim
h→0

yj+1 − yj

h
= y(1)j + y(m+1)

j

 y(k−1)
j

y(k)j

m+1

 lim
h→0

e

y(k)j h

y(k−1)
j − 1

h
−

 y(k)j

y(k−1)
j


 = y(1)j = f (tj, yj), (15)

showing that the method defined in (12) is consistent.
Thus we have the following theorem:

Theorem 1. The generalised Taylor-like explicit method (12) is L-stable and convergent with at least (m + 1)
order of accuracy.

For a fixed value of m and different values of k (k = 1, 2, . . . , m + 1) the method formulated in (12)
results in (m + 1) L-stable different integration schemes with the same order of accuracy O(m + 1).

Remark 1. For m = 0 and k = 1 the Equation (12) is reduced to

yj+1 = yje
y(1)j /yjh , yjy

(1)
j 6= 0, (16)

which is the first order L-stable method in [5,9].

Remark 2. For m = 0 and k = 2 the Equation (12) is reduced to

yj+1 = yj+
(y(1)j )2

y(2)j

(
ey(2)j /y(1)j h − 1

)
, y(1)j y(2)j 6= 0, (17)

which is the second order L-stable methods in [5,9].
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Remark 3. For m = 5 and k = 6 the Equation (12) is reduced to

yj+1 =
5

∑
n=0

y(n)j
hn

n!
+ y(6)j

y(5)j

y(6)j

6
e

y(6)j h

y(5)j −
5

∑
n=0

y(6)j h

y(5)j

n
1
n!

 , y(6)j y(5)j 6= 0, (18)

which is the sixth-order L-stable method in [7].

Remark 4. For m = 4 and k = 6 the Equation (12) is reduced to

yj+1 =
4

∑
n=0

y(n)j
hn

n!
+ y(5)j

y(5)j

y(6)j

6
e

y(6)j h

y(5)j −
4

∑
n=0

y(6)j h

y(5)j

n
1
n!

 , y(6)j y(5)j 6= 0, (19)

which is the sixth-order L-stable method in [9].

Remark 5. For m = 5 and k = 7 the Equation (12) is reduced to

yj+1 =
5

∑
n=0

y(n)j
hn

n!
+ y(6)j

y(6)j

y(7)j

6
e

y(7)j h

y(6)j −
5

∑
n=0

y(7)j h

y(6)j

n
1
n!

 , y(6)j y(7)j 6= 0, (20)

which is the seventh-order L-stable method in [8].

Remark 6. When k is set to m + 2, Equation (12) is reduced to

yj+1 =
m

∑
n=0

y(n)j
hn

n!
+ y(m+1)

j

 y(m+1)
j

y(m+2)
j

m+1
e

y(m+2)
j h

y(m+1)
j −

m

∑
n=0

 y(m+2)
j h

y(m+1)
j

n
1
n!

 , y(m+2)
j y(m+1)

j 6= 0, (21)

and the local truncation error (13) is reduced to

Tj+1 =
∞

∑
s=0

y(m+1)
j

y(m+2)
j

y(m+1)
j

s+2

− y(m+3+s)
j

 hm+3+s

(m + 3 + s)!
, (22)

that is the classical general form of Taylor-like m + 2 order L-stable method in [11].

3. Extension to Vector Form

The method (12) can also be extended directly to systems of ODEs by using the new definitions of
vector product and quotient defined in [9,12] as

b.
( a

b

)n
=


ρn − κn

ρ− κ
a +

ρκn − κρn

ρ− κ
b, ρ 6= κ

nρn−1a− (n− 1)ρnb, ρ = κ

, n = 1, 2, . . . (23)

b.ea/b =


eρ − eκ

ρ− κ
a +

ρeκ − κeρ

ρ− κ
b, ρ 6= κ

eρa + (1− ρ)eρb, ρ = κ

, (24)
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where a, b ∈ Cm and ρ = 1
2

(
β +

√
β2 + 4α

)
, κ = 1

2

(
β−

√
β2 + 4α

)
, α = − (a,a)

(b,b) , β = 2 Re(a,b)
(b,b) .

The vector version of the proposed method is of the form

yj+1 =
m

∑
n=0

y(n)j
hn

n!
+ y(k)j .

y(k−1)
j

y(k)j

m

.

y(k−1)
j . e

y(k)j h

y(k−1)
j −

m

∑
n=0

y(k−1)
j .

 y(k)j h

y(k−1)
j

n
1
n!

 .
y(m+1)

j

(y(k)j )
2 , (25)

where
∥∥∥y(k)j

∥∥∥
2
×
∥∥∥y(k−1)

j

∥∥∥
2
6= 0.

The local truncation error of (25) is given by

Tj+1 = ε +
∞

∑
s=0

y(m+1)
j

 y(k)j

y(k−1)
j

s+1

− y(m+2+s)
j

 hm+2+s

(m + 2 + s)!
, (26)

where ε is a vector and ‖ε‖2 = O(hm+3). The error in (26) is derived in a similar way as in [9,10].
The case k = m + 2 can be found in [11].

It is clear that the new method can overcome the restrictions in the classical Taylor-like explicit
method in its component applicable form (i.e., y(m+2)

j y(m+1)
j 6= 0) and in its vector applicable form (i.e.,∥∥∥y(m+2)

j

∥∥∥× ∥∥∥y(m+1)
j

∥∥∥ 6= 0). With the proposed method, the value of k can be adapted automatically to

use any arbitrary pairs y(k)j y(k−1)
j 6= 0, or

∥∥∥y(k)j

∥∥∥× ∥∥∥y(k−1)
j

∥∥∥ 6= 0 , k = 1, 2, . . . , m + 1, while maintaining
the order of convergence and the L-stability property.

4. Numerical Results

In this section, we provide six numerical experiments to illustrate the theoretical results obtained
in Sections 2 and 3. All numerical experiments are carried out using Matlab 8.3. The test problems
were collected from the literature and the results are compared in the follow-up.

Problem 1. Consider the following SODE [8]:

y′(t) = −100y(t) + 99e2t, y(0) = 0. (27)

The theoretical solution of (27) is given by

y(t) =
33
34

(
e2t − e−100t

)
. (28)

Problem 1 is solved numerically using the generalised Taylor-like method (GTL) in its component
form. The results are shown in Tables 1–3. Table 1 compares the solution error presented in [8]
using the seventh order Sin and Explicit Taylor-like methods (STL7 and ETL7) with one given by
the new method of seventh order (GTL7) having m = 6 and k = 7. The results show that the GTL7
leads to a more accurate solution than the STL7 and ETL7. Table 2 lists the maximum solution error
Emax = max

0≤ti≤0.5
|y(ti)− yi| using the time-step size h = 0.05 at different values of m and k, k ≤ m + 1.

The results show that as the order m + 1, or the value of k, increases, the solution error decreases.
Moreover, increasing k is more effective than increasing m for improving the solution accuracy, and
setting k = m + 1 leads to more accurate results. Table 3 shows the computed order of convergence at
different values of m and k using two different step sizes h = {0.1, 0.05}. The results confirm that the
order of convergence depends only on the value of m for all values of k ≤ m + 1.
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Figure 1 shows the exact and numerical solutions of Problem 1 at h = 0.05. Figure 2 shows the
behaviour of the solution error of different-order GTL component form at h = 0.05.

 

Figure 1. Exact and numerical solutions of Problem 1.

 

Figure 2. Solution error of different-order generalised Taylor-like method (GTL) in solving Problem 1
at h = 0.05.

Table 1. Comparison of the solution error for the STL7, ETL7 and GTL7 in the solution of Problem 1.

Error |y(ti)− yi|
h = 0.025 h = 0.05

ti STL7 [8] ETL7 [8] GTL7 STL7 [8] ETL7 [8] GTL7

0.05 8.883× 10−2 2.676× 10−10 1.484× 10−12 4.920× 10−1 1.813× 10−8 2.505× 10−10

0.10 9.326× 10−3 2.938× 10−10 1.777× 10−12 2.427× 10−1 2.016× 10−8 2.785× 10−10

0.15 9.204× 10−4 2.753× 10−10 1.965× 10−12 1.214× 10−1 2.228× 10−8 3.078× 10−10

0.20 9.045× 10−5 3.559× 10−10 2.172× 10−12 6.073× 10−2 2.444× 10−8 3.402× 10−10

0.25 8.886× 10−6 3.453× 10−11 2.482× 10−12 3.037× 10−2 2.476× 10−8 3.851× 10−10

0.30 8.711× 10−7 3.449× 10−11 3.548× 10−13 1.519× 10−2 2.691× 10−8 4.912× 10−10

0.35 8.325× 10−8 3.754× 10−11 5.329× 10−15 7.597× 10−3 2.967× 10−8 5.333× 10−10

0.40 4.195× 10−9 3.967× 10−11 4.441× 10−16 3.800× 10−3 3.279× 10−8 5.910× 10−10

0.45 1.247× 10−10 1.826× 10−11 4.441× 10−16 1.900× 10−3 3.623× 10−8 6.529× 10−10

0.50 2.690× 10−1 1.613× 10−11 4.441× 10−16 9.506× 10−4 4.005× 10−8 7.216× 10−10
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Table 2. Maximum solution error for different values of m and k, k ≤ m + 1.

Error Emax

k m = 3 m = 4 m = 5 m = 6

2 3.1315× 10−1 3.6102× 10−1 2.4102× 10−1 2.1939× 10−1

3 6.2574× 10−3 7.2204× 10−3 4.8204× 10−3 4.3878× 10−3

4 1.3071× 10−4 1.4431× 10−4 9.6410× 10−5 8.7756× 10−5

5 2.9867× 10−6 1.9267× 10−6 1.7551× 10−6

6 4.0047× 10−8 3.5082× 10−8

7 7.2161× 10−10

Table 3. Computed order of convergence for different values of m and k, k ≤ m + 1.

Order of Convergence

k m = 3 m = 4 m = 5 m = 6

2 3.7000 4.6003 5.9730 6.6588
3 3.6993 4.6003 5.9730 6.6588
4 3.7300 4.5997 5.9730 6.6588
5 4.6310 5.9727 6.6589
6 5.9898 6.6583
7 6.6845

Problem 2. Consider the oscillating SODE [17]:

y′(t) = 1− 2π sin(2πt)− 1
ε
(y− t− cos(2πt)) , y(0) = 1, t ∈ [0, 0.5], (29)

where ε is a parameter controlling the stiffness.
The theoretical solution is given by

y(t) = t + cos(2πt). (30)

From the theoretical point of view, we have y(k)(0) = 0 , k = 3, 5, 7, . . . , which results in the
computational overflow when adopting the high order classical ETL method. Problem 2 is solved
numerically at ε = 1/200 using the GTL component form with forth, fifth and sixth orders (i.e.,
the GTL4, GTL5, GTL6). The solution error, maximum solution error and the computed order of
convergence are listed in Table 4. The results show that the GTL is not only stable and accurate but also
overcomes the overflow in computation at t = 0 by reducing the value of k from 6 to 2, without losing
the convergence order and the L-stability property. Figure 3 shows the exact and numerical solutions
at h = 0.05 . Figure 4 depicts the solution error of different-order GTL component form at h = 0.05.

 

Figure 3. Exact and numerical solutions of Problem 2.
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Figure 4. Solution error of different-order GTL in solving Problem 2 at h = 0.05.

Table 4. Numerical results for problem 2 using the component form of GTL4, GTL5 and GTL6.

Error |y(ti)− yi|
h = 0.05 h = 0.025

ti GTL4 GTL5 GTL6 GTL4 GTL5 GTL6

0.05 1.1805× 10−4 1.3329× 10−6 2.9825× 10−7 3.4591× 10−5 2.2243× 10−7 1.9292× 10−8

0.10 1.2102× 10−3 1.4098× 10−4 4.2739× 10−6 1.0607× 10−4 5.0636× 10−6 7.8031× 10−8

0.15 1.9675× 10−3 1.4222× 10−4 7.0659× 10−6 1.5377× 10−4 4.6107× 10−6 1.1578× 10−7

0.20 2.5142× 10−3 9.4632× 10−5 9.1280× 10−6 1.8598× 10−4 2.6845× 10−6 1.4094× 10−7

0.25 2.8145× 10−3 3.7845× 10−5 1.0296× 10−5 1.9994× 10−4 5.0224× 10−7 1.5220× 10−7

0.30 2.8391× 10−3 2.2603× 10−5 1.0456× 10−5 1.9429× 10−4 1.8512× 10−6 1.4851× 10−7

0.35 2.5857× 10−3 8.1111× 10−5 9.5920× 10−6 1.6959× 10−4 3.8450× 10−6 1.3023× 10−7

0.40 2.0791× 10−3 1.3136× 10−4 7.7892× 10−6 1.2825× 10−4 5.5345× 10−6 9.9157× 10−8

0.45 1.3689× 10−3 1.6884× 10−4 5.2238× 10−6 7.4287× 10−5 6.6865× 10−6 5.8272× 10−8

0.50 5.2450× 10−4 1.8981× 10−4 2.1466× 10−6 1.2760× 10−5 7.1855× 10−6 1.1294× 10−8

Emax 2.8391× 10−3 1.8981× 10−4 1.0456× 10−5 1.9994× 10−4 7.1855× 10−6 1.5220× 10−7

Order 3.8278 4.7233 6.1019

In fact, since the GTL overcomes the overflow in computations by reducing the value of k, the
accuracy may be little decreased while the order of convergence remains constant. Being that the effect
occurs more in the component than in the vector form, we conclude that the component form GTL
is more suitable for scalar stiff problems than for stiff ODE systems where the GTL vector form can
be applied.

Problem 3. Consider the following stiff ODE system [[7,10,16]]:

y
′
1 = −20y1 − 0.25y2 − 19.75y3 , y1(0) = 1

y
′
2 = 20y1 − 20.25y2 − 0.25y3 , y2(0) = 0

y
′
3 = 20y1 − 19.75y2 − 0.25y3 , y3(0) = −1.

(31)

The theoretical solution is given by

y1 = 0.5
[
e−0.5t + e−20t(sin(20t) + cos(20t))

]
y2 = 0.5

[
e−0.5t + e−20t(sin(20t)− cos(20t))

]
y3 = 0.5

[
e−0.5t − e−20t(sin(20t) + cos(20t))

]
.

(32)
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Due to the round-off error in computations, the ratio between y6
j and y5

j , j = 2, 3 may be very
large at some grid points and the classical component form of the ETL6 [7,10] results in low accuracy,
or even in an overflow, as shown in Table 5. On the other hand, the present component form of the
GTL6 can overcome this drawback easily by reducing the value of k from 6 to 5 for h = {0.01, 0.1} at
t = {0.55, 0.3}, respectively. Table 6 reveals that the vector forms of the ETL6 and GTL6 can overcome
the overflow in computations with the component form of the ETL6 at h = 0.1 and both of them have
accurate results since there are no vectors with zero norms. Figure 5 depicts the exact and numerical
solutions at h = 0.1. Figures 6 and 7 show the solution error of different-order vector form GTL at
h = 0.1 and h = 0.01 respectively.

 

Figure 5. Exact and numerical solutions of Problem 3.

 

Figure 6. Solution error of different-order GTL in solving Problem 2 at h = 0.1.
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Figure 7. Solution error of different-order GTL in solving Problem 2 at h = 0.01.

Table 5. Numerical results for Problem 3 using the component forms of the ETL6 and GTL6.

t h Y Theoretical Results Numerical Results

ETL6 [7] Present GTL6

Solution Error Solution Error

50 0.01 y1 6.943 971 932 482 010× 10−12 1.750 801 573 149 305× 10−10 1.68× 10−10 6.943 971 918 388 283× 10−12 1.41× 10−20

y2 6.943 971 932 482 010× 10−12 1.750 801 573 149 305× 10−10 1.68× 10−10 6.943 971 918 388 283× 10−12 1.41× 10−20

y3 −6.943 971 932 482 010× 10−12 −1.750 801 573 149 305× 10−10 1.68× 10−10 −6.943 971 918 388 284× 10−12 1.41× 10−20

100 0.1 y1 9.643 749 239 819 589× 10−23 9.643 749 274 555 274× 10−23 3.47× 10−31

y2 9.643 749 239 819 589× 10−23 Overflow 9.643 749 274 555 277× 10−23 3.47× 10−31

y3 −9.643 749 239 819 589× 10−23 −9.643 749 274 555 273× 10−23 3.47× 10−31

Table 6. Numerical results for Problem 3 using the vector forms of the ETL6 and GTL6 methods.

t h Y Theoretical Results Numerical Results

ETL6 [10] Present GTL6

Solution Error Solution Error

100 0.1 y1 9.643 749 239 819 589× 10−23 9.643 749 287 321 430× 10−23 4.75× 10−31 9.643 749 301 944 275× 10−23 6.21× 10−31

y2 9.643 749 239 819 589× 10−23 9.643 749 287 321 430× 10−23 4.75× 10−31 9.643 749 301 944 272× 10−23 6.21× 10−31

y3 −9.643 749 239 819 589× 10−23 −9.643 749 287 321 429× 10−23 4.75× 10−31 −9.643 749 301 944 270× 10−23 6.21× 10−31

Problem 4. Consider the following stiff ODE system [2,13,15].

y
′
1 = 2y1 + y2 + 2 sin(t) , y1(0) = 2 ,

y
′
2 = 998y1 − 999y2 + 999 (cos(t)− sin(t)) , y2(0) = 3.

(33)

The theoretical solution is given by

y1 = 2e−t + sin(t)
y2 = 2e−t + cos(t).

(34)

Problem 4 is solved using both the component and vector forms of the ETL6 and GTL6.
The numerical results are listed in Tables 7 and 8. Table 7 shows that the component form GTL6
results in more accurate results than the ETL6 for h = 0.005. Furthermore, the GTL6 can overcome the
overflow in computations for h = 0.001 by reducing the value of k from 6 to 5 at t = 0.283. Table 8
shows that the vector form GTL6 leads to the same results as ETL6 for h = 0.01 due to the absence of
zero-vector norms. For h = 0.005, ETL6 exhibits an overflow while GTL6 overcomes this overflow by
reducing the value of k from 6 to 5 at t = 76.93. Figure 8 shows the exact and numerical solutions at
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h = 0.1. Figures 9–11 illustrate the solution error of different-order vector form GTL at h = 0.001, 0.005
and 0.1, respectively.

 

Figure 8. Exact and numerical solutions of Problem 4.

 

Figure 9. Solution error of different-order GTL in solving Problem 4 at h = 0.001.

Table 7. Numerical results for Problem 4 using the component form of the ETL6 and GTL6.

t h Y Theoretical Results Numerical Results

ETL6 GTL6

Solution Error Solution Error

4 0.005 y1 −7.201 712 175 304 599× 10−1 −7.285 780 200 859 474× 10−1 8.41× 10−3 −7.201 712 175 725 966× 10−1 4.21× 10−11

y2 −6.170 123 430 861 436× 10−1 −6.254 191 456 416 346× 10−1 8.41× 10−3 −6.170 123 431 282 837× 10−1 4.21× 10−11

2 0.001 y1 1.179 967 993 298 907 Overflow 1.179 967 993 029 105 2.70× 10−10

y3 −1.454 762 700 739 170× 10−1 −1.454 762 703 437 013× 10−1 2.70× 10−10
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Table 8. Numerical results for Problem 4 using the vector form of the ETL6 and GTL6 methods.

t h Y Theoretical Results Numerical Results

ETL6 GTL6

Solution Error Solution Error

10 0.01 y1 −5.439 303 110 298 448× 10−1 −5.439 303 110 059 717× 10−1 2.39× 10−11 −5.439 303 110 059 727× 10−1 2.39× 10−11

y2 −8.389 807 292 169 275× 10−1 −8.389 807 291 935 291× 10−1 2.34× 10−11 −8.389 807 291 935 302× 10−1 2.34× 10−11

100 0.005 y1 −5.063 656 411 097 588× 10−1 Overflow −5.063 656 411 196 315× 10−1 9.87× 10−12

y3 8.623 188 722 876 839× 10−1 8.623 188 722 778 098× 10−1 9.87× 10−12

 

Figure 10. Solution error of different-order GTL in solving Problem 4 at h = 0.005.

 

Figure 11. Solution error of different-order GTL method in solving Problem 4 at h = 0.1.

Problem 5. Consider the following nonlinear stiff ODE system [10]:

y
′
1 = −1002y1 + 1000y2

2 , y1(0) = 1,
y
′
2 = y1 − y2(1 + y2) , y2(0) = 1,

y
′
3 = y2 − 2y3 , y3(0) = 1− e0.01

64 .
(35)

The theoretical solution is given by
y1 = e−2t,
y2 = e−t,
y3 = e−t − e0.01−2t

64 .
(36)
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Tables 9 and 10 compare the results achieved by ETL6 [7,10] with those obtained by GTL6.
From the theoretical point of view, y(6)3 = 0 at t = 0.01 and so, as shown in Table 9, the component form
ETL6 results in computational overflow, while THE GTL6 overcomes the overflow in computations
at zero derivative component by changing the value of k from 6 to 5 at t = 0.01. Table 10 shows that
both the ETL6 and GTL6 have the same accurate results in their vector forms due to the absence of
zero-vector norms. Figure 12 shows the exact and numerical solutions at h = 0.01. Figure 13 depicts
the solution error of different-order vector form GTL at h = 0.01.

 

Figure 12. Exact and numerical solutions of Problem 5.

 

Figure 13. Solution error of different-order GTL in solving Problem 5 at h = 0.01.

Table 9. Numerical results for Problem 5 using the component forms of the ETL6 and GTL6 methods.

t h Y Theoretical Results Numerical Results

ETL6 [7] GTL6

Solution Error Solution Error

10 0.01 y1 2.061 153 622 438 558× 10−9 2.219 610 845 565 104× 10−9 1.59× 10−10

y2 4.539 992 976 248 485× 10−5 Overflow 4.711 274 610 485 264× 10−5 1.71× 10−6

y3 4.539 989 723 328 859× 10−5 4.711 104 436 407 183× 10−5 1.71× 10−6
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Table 10. Numerical results for Problem 5 using the vector forms of the ETL6 and GTL6 methods.

t h Y Theoretical Results Numerical Results

ETL6 [10] GTL6

Solution Error Solution Error

10 0.01 y1 2.061 153 622 438 558× 10−9 2.061 153 624 612 472× 10−9 2.17× 10−18 2.061 153 624 612 640× 10−9 2.17× 10−18

y2 4.539 992 976 248 485× 10−5 4.539 992 977 820 482× 10−5 1.57× 10−14 4.539 992 977 820 673× 10−5 1.57× 10−14

y3 4.539 989 723 328 859× 10−5 4.539 989 724 900 820× 10−5 1.57× 10−14 4.539 989 724 901 008× 10−5 1.57× 10−14

Problem 6. Consider the following nonlinear chemical reaction system involving eight reactants [1]:

y′1 = −1.71y1 + 0.43y2 + 8.32y3 + 0.0007,
y′2 = 1.71y1 − 8.75y2 ,
y′3 = −10.03y3 + 0.43y4 + 0.035y5 ,
y′4 = 8.32y2 + 1.71y3 − 1.12y4 ,
y′5 = −1.745y5 + 0.43y6 + 0.43y7 ,
y′6 = −280y6y8 + 0.69y4 + 1.71y5 − 0.43y6 + 0.69y7 ,
y′7 = 280y6y8 − 1.81y7 ,
y′8 = −y′7 ,

(37)

with initial conditions y1(0) = 1, y2(0) = y3(0) = y4(0) = y5(0) = y6(0) = y7(0) = y8(0) = 0.

This problem has no known analytical solution, and therefore, a numerical approximate solution
using the built in BVP4C MATLAB solver [33–35] is taken as the reference solution for comparison.
The problem is solved using different-order vector form GTL at h = 0.1 and the solution error is
represented in Figure 14 at h = 0.1. The same results are obtained using the ETL due to the absence
of zero derivatives or zero vectors. Moreover, the exact and numerical solutions are illustrated in
Figure 15.

 

Figure 14. Solution error of different-order GTL in solving Problem 6 at h = 0.1.
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Figure 15. Exact and numerical solutions of Problem 6.

5. Conclusions

This paper presented a new generalised Taylor-like explicit method for SODEs and stiff ODE
systems. The new method was formulated in its general component and vector applicable forms.
The error and stability analysis of the method were discussed showing that it has at least (m + 1) order
of convergence and the L-stability property. It was shown that several other integration schemes are
essentially special cases of the proposed method.The algorithm is applied to six stiff test problems and
the results are analyzed in several figures and tables and compared with those obtained by means of
the classical Taylor-like methods. The results show that the new method is not only stable and accurate
but also overcomes the shortcomings of the classical Taylor-like explicit methods in their component
and vector forms by adapting the value of k during the computations without losing the convergence
order and the L-stability property.
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