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* Correspondence: gvilcu@upg-ploiesti.ro; Tel.: +40-244-575-847

Received: 23 October 2019; Accepted: 25 November 2019; Published: 1 December 2019
����������
�������

Abstract: In this work, we first derive a generalized Wintgen type inequality for a Lagrangian
submanifold in a generalized complex space form. Further, we extend this inequality to the case
of bi-slant submanifolds in generalized complex and generalized Sasakian space forms and derive some
applications in various slant cases. Finally, we obtain obstructions to the existence of non-flat generalized
complex space forms and non-flat generalized Sasakian space forms in terms of dimension of the vector
space of solutions to the first fundamental equation on such spaces.
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1. Introduction

The classical Wintgen inequality is a sharp geometric inequality established in [1], according to which
the Gaussian curvature K of any surface N 2 in the Euclidean space E4, the normal curvature K⊥, and also
the squared mean curvature ‖H‖2 of N 2, satisfy

‖H‖2 ≥ K+ |K⊥|

and the equality is attained only in the case when the ellipse of curvature of N 2 in E4 is a circle. Later, this
inequality was extended independently by Rouxel [2] and Gaudalupe and Rodriguez [3] for surfaces of
arbitrary codimension m in real space forms Nm+2

(c) with constant sectional curvature c as

‖H‖2 + c ≥ K+ |K⊥|.

The generalized Wintgen inequality, also known as the DDVV-inequality or the DDVV-conjecture,
is a natural extension of the above inequalities that was conjectured in 1999 by De Smet, Dillen,
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Verstraelen and Vrancken [4] and settled in the general case independently by Ge and Tang [5] and
Lu [6]. The DDVV-conjecture generalizes the classical Wintgen inequality to the case of an isometric
immersion f : Mn → Nn+p(c) from an n-dimensional Riemannian submanifold Mn into a real space
form Nn+p(c) of dimension (n + p) and of constant sectional curvature c, stating that such an isometric
immersion satisfies

ρ + ρ⊥ ≤ ‖H‖2 + c,

where ρ is the normalized scalar curvature, while ρ⊥ denotes the normalized normal scalar curvature.
Notice that there are many examples of submanifolds satisfying the equality case of the above inequality
and these submanifolds are known as Wintgen ideal submanifolds [7].

Recently, the generalized Wintgen inequality was extended for several kinds of submanifolds in many
ambient spaces, e.g., complex space forms [8], Sasakian space forms [9], quaternionic space forms [10],
warped products [11], and Kenmotsu statistical manifolds [12]. In the first part of the present paper,
we obtain generalized Wintgen-type inequalities for different types of submanifolds in generalized complex
space forms and also in generalized Sasakian space forms, generalizing the main results in [8,9], and also
discuss some applications. The last part of the paper is devoted to the investigation of the Hessian equation
on both generalized complex space forms and generalized Sasakian space-forms. In particular, some
obstructions to the existence of these spaces are established. Recall that the notion of generalized complex
space form was introduced in differential geometry by Tricerri and Vanhecke [13], the authors proving
that, if n ≥ 3, a 2n-dimensional generalized complex space form is either a real space form or a complex
space form, a result partially extendable to four-dimensional manifolds. However, the existence of proper
generalized complex space form in dimension 4 was obtained by Olszak [14], using some conformal
deformations of four-dimensional flat Bochner–Kähler manifolds of non-constant scalar curvature. It is
important to note that the generalized complex space forms are a particular kind of almost Hermitian
manifolds with constant holomorphic sectional curvature and constant type in the sense of Gray [15].

On the other hand, Alegre, Blair and Carriazo [16] generalized the notions of Sasakian space form,
Kenmotsu space form and cosymplectic space form, by introducing the concept of generalized Sasakian
space form. Notice that several examples of non-trivial generalized Sasakian space-forms are given
in [16] using different geometric constructions, such as Riemannian submersions, warped products, and
D-conformal deformations. Afterwards, many interesting results have been proved in these ambient spaces
(see, e.g., [17–27]). We only recall that, very recently, Bejan and Güler [28] obtained an unexpected link
between the class of generalized Sasakian space-forms and the class of Kähler manifolds of quasi-constant
holomorphic sectional curvature, providing conditions under which each of these structures induces the
other one.

2. Preliminaries

An almost Hermitian manifold consists in a smooth manifold N endowed with an almost complex
structure J and a Riemannian metric g that is compatible with the structure J. Such a manifold is called
Kähler if ∇J = 0, where ∇ is the Levi–Civita connection of the metric g.

On the other hand, an almost Hermitian manifold N is called a generalized complex space form [13],
denoted by N ( f1, f2), if the Riemannian curvature tensor R satisfies

R(X, Y)Z = f1{g(Y, Z)X− g(X, Z)Y}+ f2{g(X, JZ)JY

−g(Y, JZ)JX + 2g(X, JY)JZ} (1)
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for all vector fields X, Y and Z on N , where f1 and f2 are smooth functions on N . This name is motivated
by the fact that, in the case of a complex space form, viz. a Kähler manifold with constant holomorphic
sectional curvature 4c, the curvature tensor field of the manifold satisfies Equation (1) with f1 = f2 = c.

LetN be a submanifold of real dimension n in a generalized complex space formN ( f1, f2) of complex
dimension m. If ∇ and ∇ are the Levi–Civita connections on N and N ( f1, f2), respectively, then the
fundamental formulas of Gauss and Weingarten are [29]

∇XY = ∇XY + h(X, Y),

∇Xξ = −Sξ X +∇⊥XY,

where X, Y are vector fields tangent to N , ξ is a vector field normal to N , and ∇⊥ represents the normal
connection. Recall that, in the above basic formulas, h denotes the second fundamental form and S is the
shape operator, they being connected by

g(h(X, Y), ξ) = g(Sξ X, Y).

On the other hand, the Gauss’ equation is expressed by [30]

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W))

−g(h(X, W), h(Y, Z)) (2)

for all vector fields X, Y, Z, W tangent to N , where R denotes the curvature tensor of N ( f1, f2), while
R represents the curvature tensors of N . Let us point out now that the Ricci equation in our setting is
expressed as

R⊥(X, Y, ξ, η) = f2[g(X, Jξ)g(JY, η)− g(JX, η)g(Y, Jξ)]

−g([Sξ , Sη ]X, Y), (3)

for all vector fields X, Y tangent to N and ξ, η normal to N .
If N is a submanifold of real dimension n in a generalized complex space form N ( f1, f2) of complex

dimension m, then, for any X ∈ TN , we have the decomposition JX = PX + QX, where P and Q denote
the tangential component and the normal component of JX, respectively. We recall that, in the case
P = 0, the submanifold N is called anti-invariant, while, in the case f Q = 0, the submanifold N is called
invariant.

Now, let {e1, . . . , en} be a tangent orthonormal frame on N and let {ξ1, . . . , ξ2m−n} be a normal
orthonormal frame on N . Then, the squared norm of P at p ∈ N is defined as

‖P‖2 =
n

∑
i,j=1

g2(Pei, ej), (4)

while the mean curvature vector field is given by

H =
1
n

n

∑
i=1

h(ei, ei). (5)
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We also set

hr
ij = g(h(ei, ej), ξr), i, j = 1, . . . , n, r = 1, . . . , 2m− n. (6)

and

‖h‖2 =
n

∑
i,j=1

g(h(ei, ej), h(ei, ej)). (7)

3. Generalized Wintgen Inequality for Lagrangian Submanifolds in Generalized Complex
Space Form

LetN be a submanifold of real dimension n in a generalized complex space formN ( f1, f2) of complex
dimension m. In the following, let {e1, . . . , en} and {ξ1, . . . , ξ2m−n} be tangent orthonormal frame and
normal orthonormal frame onN , respectively. If we denote by K the sectional curvature function and by τ

the scalar curvature, then the normalized scalar curvature ρ of N can be expressed as [8]

ρ =
2τ

n(n− 1)
=

2
n(n− 1) ∑

1≤i<j≤n
K(ei ∧ ej). (8)

On the other hand, the normalized normal scalar curvature of N is given by [8]

ρ⊥ =
2τ⊥

n(n− 1)
=

2
n(n− 1)

√
∑

1≤i<j≤n
∑

1≤r<s≤2m−n
(R⊥(ei, ej, ξr, ξs))2, (9)

where R⊥ denotes the normal curvature tensor on N .
The scalar normal curvature of N can be defined following [31] as

KN =
1
4

2m−n

∑
r,s=1

(Trace[Sr, Ss])
2. (10)

Now, the normalized scalar normal curvature can be defined with the help of KN by [8]

ρN =
2

n(n− 1)

√
KN .

Obviously

KN =
1
2 ∑

1≤r<s≤2m−n
(Trace[Sr, Ss])

2

= ∑
1≤r<s≤2m−n

∑
1≤i<j≤n

(g([Sr, Ss]ei, ej))
2. (11)

It is easy to verify now that KN can be expressed by

KN = ∑
1≤r<s≤2m−n

∑
1≤i<j≤n

( n

∑
k=1

hr
jkhs

ik − hs
jkhr

ik
)2. (12)

Among the classes of submanifolds in complex geometry, we can distinguish two fundamental
families depending on the behavior of J: holomorphic and totally real submanifolds. A submanifold N of
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a generalized complex space form N ( f1, f2) is said to be a holomorphic submanifold if each tangent space
of N is carried into itself by J, i.e., J(TpN ) ⊂ TpN , for all p ∈ N . Similarly, the submanifold N is called a
totally real submanifold if J maps each tangent space of N into the normal space, i.e., J(TpN ) ⊂ T⊥p N ,
for all p ∈ N . In particular, if n = m, then N is said to be a Lagrangian submanifold.

Next, we prove the following lemma, which is required in the proof of the main result of this section.

Lemma 1. Let N be a totally real submanifold of dimension n in a generalized complex space form N ( f1, f2) of
complex dimension m. Then, we have

ρN ≤ ‖H‖2 − ρ + f1, (13)

and the equality holds at a point p ∈ N if and only if the shape operator S of N in N ( f1, f2) with respect to some
suitable orthonormal bases {e1, . . . , en} of TpN and {ξ1, . . . , ξ2m−n} of T⊥p N takes the following forms

Sξ1 =



γ1 ν 0 . . . 0
ν γ1 0 . . . 0
0 0 γ1 . . . 0
...

...
... . . . ...

0 0 0 . . . γ1


,

Sξ2 =



γ2 + ν 0 0 . . . 0
0 γ2 − ν 0 . . . 0
0 0 γ2 . . . 0
...

...
... . . . ...

0 0 0 . . . γ2


,

Sξ3 =



γ3 0 0 . . . 0
0 γ3 0 . . . 0
0 0 γ3 . . . 0
...

...
... . . . ...

0 0 0 . . . γ3


, Sξ4 = · · · = Sξ2m−n = 0,

where γ1, γ2, γ3, and ν are real functions on N .
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Proof. We know that

n2‖H‖2 =
2m−n

∑
r=1

( n

∑
i=1

hr
ii
)2

=
1

n− 1

2m−n

∑
r=1

∑
1≤i<j≤n

(hr
ii − hr

jj)
2

+
2n

n− 1

2m−n

∑
r=1

∑
1≤i<j≤n

hr
iih

r
jj. (14)

Further, from [6], we have

2m−n

∑
r=1

∑
1≤i<j≤n

(hr
ii − hr

jj)
2 + 2n

2m−n

∑
r=1

∑
1≤i<j≤n

(hr
ij)

2

≥ 2n

[
∑

1≤r<s≤2m−n
∑

1≤i<j≤n

( n

∑
k=1

(hr
jkhs

ik − hr
ikhs

jk)
)2
] 1

2

. (15)

Now, combining Equations (12), (14) and (15), we find

n2‖H‖2 − n2ρN ≥
2n

n− 1

2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (16)

In addition, due to the fact that N is a totally real submanifold, we get from Equation (2):

τ =
n(n− 1)

2
f1 +

2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (17)

Next, using Equations (8) and (17) in Equation (16), we obtain the inequality in Equation (13).
Moreover, it follows easily that the equality case holds in Equation (13) if and only if the shape operator
takes the above stated forms.

Now, we prove the following.

Theorem 1. Let N be a Lagrangian submanifold of a generalized complex space form N ( f1, f2) of complex
dimension n. Then,

(ρ⊥)2 ≤
(
‖H‖2 − ρ + f1

)2

+
2

n(n− 1)
f 2
2 +

4 f2

n(n− 1)
(
ρ− f1

)
(18)

and the equality in Equation (18) holds at a point p ∈ N if and only if the shape operator takes similar forms as in
Lemma 1 with respect to some suitable tangent and normal orthonormal bases.

Proof. Let N be a Lagrangian submanifold of a generalized complex space form N ( f1, f2). We choose
{e1, . . . , en} and {ξ1 = Je1, . . . , ξn = Jen} as orthonormal frame and orthonormal normal frame on N ,
respectively. Putting X = W = ei, Y = Z = ej, i 6= j in Equation (1), we obtain

R(ei, ej, ej, ei) = f1{g(ej, ej)g(ei, ei)− g(ei, ej)g(ej, ei)}. (19)



Mathematics 2019, 7, 1151 7 of 20

Combining Equations (2) and (19), we derive

R(ei, ej, ej, ei) = f1{δiiδjj − δ2
ij} − g(h(ei, ej), h(ej, ei))

+g(h(ei, ei), h(ej, ej)). (20)

By taking summation for 1 ≤ i, j ≤ n in Equation (20) and making use of Equations (5) and (7),
we obtain

2τ = n(n− 1) f1 + n2‖H‖2 − ‖h‖2. (21)

Using Equation (8) in Equation (21), we get

ρ = f1 +
n

n− 1
‖H‖2 − 1

n(n− 1)
‖h‖2, (22)

which implies

n2‖H‖2 − ‖h‖2 = n(n− 1)(ρ− f1). (23)

Further, Equation (3) gives

R⊥(ei, ej, ξr, ξs) = f2{−(δirδjs − δjrδis)} − g([Sξr , Sξs ]ei, ej), (24)

for any indices i, j, r, s ∈ {1, . . . , n}.
Next, by taking summation for 1 ≤ r < s ≤ n and 1 ≤ i < j ≤ n in Equation (24), we derive easily the

following relation:

(τ⊥)2 =
n(n− 1)

2
f 2
2 +

n2(n− 1)2

4
ρ2

N − f2‖h‖2 + f2n2‖H‖2. (25)

However, the above Equation (25) can be rewritten as

(ρ⊥)2 =
2

n(n− 1)
f 2
2 + ρ2

N −
4 f2

n2(n− 1)2 ‖h‖
2 +

4 f2

(n− 1)2 ‖H‖
2.

(26)

Now, from Equations (23) and (26), we have

(ρ⊥)2 =
2

n(n− 1)
f 2
2 + ρ2

N +
4 f2

n(n− 1)
(ρ− f1). (27)

Combining now Equations (13) and (27), we obtain the required inequality and the equality case of
the inequality is also clear from Lemma 1.

Remark 1. Theorem 2 generalizes the main result of [8], namely the generalized Wintgen inequality for the class of
Lagrangian submanifolds in a complex space form. Indeed, if in the statement of Theorem 2 one particularizes the
generalized complex space form by putting f1 = f2 = c, then N reduces to a complex space form and one arrives
at ([8] Theorem 2.3).
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4. Generalized Wintgen Inequality for bi-Slant Submanifolds in Generalized Complex Space Form

A submanifold N of an almost Hermitian manifold (N , J, g) is said to be a slant submanifold if for
any point p ∈ N and any non-zero vector X ∈ TpN , the angle θ between the vector JX and the tangent
space TpN is constant, i.e., this angle does not depend on the choice of p ∈ N and X ∈ TpN . Moreover,
θ ∈ [0, π

2 ] is called the slant angle of N in N . Recall that both invariant and anti-invariant submanifolds
are particular examples of slant submanifolds with slant angle θ = 0 and θ = π

2 , respectively. Moreover,
if 0 < θ < π

2 , then N is said to be a θ-slant submanifold or a proper slant submanifold. It is known that
any proper slant submanifold has even dimension. The concept of slant submanifold originally introduced
by Chen [32,33] was later generalized as follows.

Definition 1. ([34]) A submanifold N of an almost Hermitian manifold N is said to be a bi-slant submanifold,
if there exist two orthogonal distributions D1 and D2, such that:

(i) TN admits the orthogonal direct decomposition:

TN = D1 ⊕ D2.

(ii) JD1 ⊥ D2 and JD2 ⊥ D1.

(iii) For i = 1, 2, the distribution Di is slant with slant angle θi.

It is easy to see that the class of bi-slant submanifolds of almost Hermitian manifolds naturally
englobes not only the class of slant submanifolds, but also the classes of semi-slant submanifolds [35],
hemi-slant submanifolds [36], and CR-submanifolds [37], as synthesized in ([38] Table 1).

In the following, let us denote d1 = dimD1 and d2 = dimD2. We say that a bi-slant submanifold N of
an almost Hermitian manifoldN with slant angles θ1 and θ2, respectively, is a proper bi-slant submanifold
if d1d2 6= 0 and 0 < θi <

π
2 , for i = 1, 2. If N is a proper bi-slant submanifold in a generalized complex

space form N ( f1, f2), then one can check that

n

∑
i,j=1

g2(Jei, ej) = (d1cos2θ1 + d2cos2θ2). (28)

Now, we state and prove the generalized Wintgen inequality for proper bi-slant submanifolds in
generalized complex space forms.

Theorem 2. Let N be a proper bi-slant submanifold of dimension n in a generalized complex space form N ( f1, f2)

of complex dimension m, with slant angles θ1, θ2 and di = dimDi, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ + f1

+
3 f2

n(n− 1)
(d1cos2θ1 + d2cos2θ2). (29)

Proof. Let {e1, . . . , en−1, en} be an orthonormal frame on N and {ξ1, . . . , ξ2m−n} be a normal orthonormal
frame on N .
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Equation (2) can be re-written in view of Equation (1) as

R(X, Y, Z, W) = f1{g(Y, Z)g(X, W)− g(X, Z)g(Y, W)}
+ f2{g(X, JZ)g(JY, W)− g(Y, JZ)g(JX, W)

+2g(X, JY)g(JZ, W)}
−g(h(X, Z), h(Y, W)) + g(h(X, W), h(Y, Z)) (30)

and this implies

τ = ∑
1≤i<j≤n

R(ei, ej, ej, ei)

=
n(n− 1)

2
f1 +

3
2

f2 ∑
1≤i<j≤n

g2(Jej, ei)

+
2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]

=
n(n− 1)

2
f1 +

3
2

f2(d1cos2θ1 + d2cos2θ2)

+
2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (31)

However, we know from the proof of Lemma 1 that

n2‖H‖2 − n2ρN ≥
2n

n− 1

2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (32)

Combining Equations (31) and (32), we find

ρN ≤ ‖H‖2 − (ρ− f1)

+
3 f2

n(n− 1)
(d1cos2θ1 + d2cos2θ2) (33)

and the proof is now complete.

Remark 2. If in the statement of the above theorem one takes f1 = f2 = c, then N reduces to a complex space form
and we can immediately see that Theorem 2 generalizes the generalized Wintgen inequality for the class of proper
slant submanifolds in a complex space form, namely ([8] Theorem 3.1).

5. Generalized Wintgen Inequalities for Submanifolds in Generalized Sasakian Space Form

LetN be an almost contact metric manifold of dimension (2m + 1), equipped with the almost contact
structure (φ, ξ, η, g). Then, it is known that the (1, 1) tensor field φ, the structure vector field ξ, the 1-form
η, and the Riemannian metric g on N verify the compatibility relations

φ2 = −I + η ⊗ ξ, η(ξ) = 1,

g(φX, φY) = g(X, Y)− η(X)η(Y).
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These conditions also imply that [39]

φξ = 0, η(φX) = 0, η(X) = g(X, ξ)

and

g(φX, Y) + g(X, φY) = 0,

for all vector fields X, Y on N .
Let (N , φ, ξ, η, g) be an almost contact metric manifold whose curvature tensor satisfies

R(X, Y)Z = f1{g(Y, Z)X− g(X, Z)Y}
+ f2{g(X, φZ)φY− g(Y, φZ)φX + 2g(X, φY)φZ}
+ f3{η(X)η(Z)Y− η(Y)η(Z)X + g(X, Z)η(Y)ξ

−g(Y, Z)η(X)ξ}, (34)

for all vector fields X, Y, Z on N , where f1, f2, f3 are differentiable functions on N . Then, N ( f1, f2, f3) is
said to be a generalized Sasakian space form. It is important to outline that the generalized Sasakian space
forms are an umbrella of the following well known spaces:

i. Sasakian space forms, i.e., Sasakian manifolds with constant φ-sectional curvature c. In this case,
f1 = c+3

4 , f2 = f3 = c−1
4 .

ii. Kenmotsu space forms, i.e., Kenmotsu manifolds of constant φ-sectional curvature c. In this case,
f1 = c−3

4 and f2 = f3 = c+1
4 ).

iii. cosymplectic space forms, i.e., cosymplectic manifolds of constant φ-sectional curvature c. In this case,
f1 = f2 = f3 = c

4 .

For definitions, basic results, and examples of such spaces, the readers are referred to the
monographs [39,40].

A Riemannian manifoldN isometrically immersed in an almost contact metric manifold (N , φ, ξ, η, g))
is called a C-totally real submanifold of N if the structure vector field ξ is a normal vector field on N .
As an immediate consequence of the definition of a C-totally real submanifold, we deduce that φ maps any
tangent space ofN into the normal space. We recall that, if the dimension of the C-totally real submanifold
N is n = dimN−1

2 , then N is said to be a Legendrian submanifold. Notice that Legendrian submanifolds
are the counterpart in odd dimension of Lagrangian submanifolds investigated in Section 3.

The first aim of this section is to obtain the generalized Wintgen inequality for Legendrian
submanifolds in generalized Sasakian space forms. Similar to the case of Lemma 1, we can prove
the following.

Lemma 2. Let N be a C-totally real submanifold of dimension n in a generalized Sasakian space form N ( f1, f2, f3)

of dimension (2m + 1). Then, we have

ρN ≤ ‖H‖2 − ρ + f1, (35)
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with the equality case holding at p ∈ N if and only if the shape operator S of N in N ( f1, f2, f3) with respect to
some suitable orthonormal bases {e1, . . . , en} of TpN and {ξ1, . . . , ξ2m−n+1} of T⊥p N takes the following forms

Sξ1 =



γ1 ν 0 . . . 0
ν γ1 0 . . . 0
0 0 γ1 . . . 0
...

...
... . . . ...

0 0 0 . . . γ1


,

Sξ2 =



γ2 + ν 0 0 . . . 0
0 γ2 − ν 0 . . . 0
0 0 γ2 . . . 0
...

...
... . . . ...

0 0 0 . . . γ2


,

Sξ3 =



γ3 0 0 . . . 0
0 γ3 0 . . . 0
0 0 γ3 . . . 0
...

...
... . . . ...

0 0 0 . . . γ3


, Sξ4 = · · · = Sξ2m−n+1 = 0,

where γ1, γ2, γ3, and ν are real functions on N .

Next, we can state a generalized Wintgen-type inequality for Legendrian submanifolds in a
generalized Sasakian ambient.

Theorem 3. If N is a Legendrian submanifold of a (2n + 1)-dimensional generalized Sasakian space form
N ( f1, f2, f3), then

(ρ⊥)2 ≤
(
‖H‖2 − ρ + f1

)2
+

2
n(n− 1)

f 2
2

+
4 f2

n(n− 1)
(
ρ− f1

)
(36)

and the equality holds at a point p ∈ N if and only if the shape operator takes the forms as in Lemma 2 with respect
to some suitable tangent and normal orthonormal bases.

Proof. Let {e1, . . . , en} be an orthonormal frame onN . Due to the fact thatN is a Legendrian submanifold
of N , it follows that {ξ1 = φe1, . . . , ξn = φen, ξn+1 = ξ} is an orthonormal frame in the normal bundle of
N . Next, the proof is similar to the one of Theorem 2, being based on Lemma 2 instead of Lemma 1, so we
omit it.
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Remark 3. We note that function f3 does not appear in the generalized Wintgen inequality in Equation (36) for a
Legendrian submanifold N in a generalized Sasakian space form N ( f1, f2, f3). This is a consequence of the fact that
ξ is normal to N . However, for a submanifold tangent to the structure vector field ξ, the corresponding generalized
Wintgen inequality will depend on f3, as we can see in the second part of this section.

Remark 4. Theorem 3 generalizes the main result of [9], namely the generalized Wintgen inequality for the class
of Legendrian submanifolds in a Sasakian space form. Actually, if in the statement of Theorem 3, one considers
f1 = c+3

4 and f2 = f3 = c−1
4 , then N reduces to a Sasakian space form and Theorem 3 becomes nothing but

([9] Theorem 3.2).

Corollary 1. Let N be a Legendrian submanifold of a (2n + 1)-dimensional Kenmotsu space form N (c). Then

(ρ⊥)2 ≤
(
‖H‖2 − ρ +

c− 3
4

)2
+

(c + 1)2

8n(n− 1)

+
c + 1

n(n− 1)

(
ρ− c− 3

4

)
(37)

and the equality holds at a point p ∈ N if and only if the shape operator takes the forms as in Lemma 2 with respect
to some suitable tangent and normal orthonormal bases.

Proof. The proof follows immediately from Theorem 3 by replacing f1 = c−3
4 and f2 = f3 = c+1

4 .

Corollary 2. Let N be a Legendrian submanifold of a (2n + 1)-dimensional cosymplectic space form N (c). Then,

(ρ⊥)2 ≤
(
‖H‖2 − ρ +

c
4

)2
+

c2

8n(n− 1)

+
c

n(n− 1)

(
ρ− c

4

)
(38)

and the equality holds at a point p ∈ N if and only if the shape operator takes the forms as in Lemma 2 with respect
to some suitable tangent and normal orthonormal bases.

Proof. The proof follows immediately from Theorem 3 by putting f1 = f2 = f3 = c
4 .

Remark 5. We note that the proof of Theorem 3.3 of [41] contains an error. Consequently, Theorem 3.3 of [41] must
be replaced by Corollary 1 of the present article.

In 1996, Lotta [42] introduced the notion of slant submanifold in almost contact geometry as follows.
A submanifold N of an almost contact metric manifold (N , φ, ξ, η, g) tangent to the structure vector field
ξ is said to be a contact slant submanifold if, for any point p ∈ N and any vector X ∈ TpN linearly
independent on ξp, the angle between the vector φX and the tangent space TpN is constant. This constant,
usually denoted by θ, is said to be the slant angle of N . We recall that invariant and anti-invariant
submanifolds are particular examples of slant submanifolds with slant angle θ = 0 and θ = π

2 , respectively.
A contact slant submanifold is said to be θ-slant or proper if 0 < θ < π

2 . Notice that ([42] Theorem 3.3)
implies the dimension of a contact slant submanifold tangent to the structure vector field ξ and with slant
angle θ 6= π

2 is odd. The concept of contact slant submanifold is further generalized as follows.

Definition 2. [43] A submanifold N of an almost contact metric manifold N is said to be a bi-slant submanifold, if
there exist two orthogonal distributions D1 and D2 on N , such that:
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(i) TN admits the orthogonal direct decomposition TN = D1 ⊕ D2 ⊕ ξ.
(ii) JD1 ⊥ D2 and JD2 ⊥ D1.
(iii) For i=1,2, the distribution Di is slant with slant angle θi.

In the following, we denote by di the dimension of the distribution Di, i = 1, 2. It is easy to check
that, similar to in the case of complex geometry, the class of bi-slant submanifolds of almost contact metric
manifolds naturally includes not only the class of slant submanifolds, but also the classes of semi-slant
submanifolds [44], hemi-slant submanifolds (also named pseudo-slant submanifolds) [45], and contact
CR-submanifolds (also known as semi-invariant submanifolds) [46]. For definitions and basic properties
of the above classes of submanifolds, see also [47]. We only recall here that a bi-slant submanifold is called
proper if d1d2 6= 0 and the slant angles θ1, θ2 6= 0, π

2 . Notice that various examples of proper bi-slant
submanifolds in almost contact metric manifolds can be found in [43,44,48].

Next, we focus on the second aim of this section, that is to derive a generalized Wintgen-type
inequality for bi-slant submanifolds in generalized Sasakian space form.

Theorem 4. Let N be a proper bi-slant submanifold of dimension n in a generalized Sasakian space form
N ( f1, f2, f3) of dimension (2m + 1), with slant angles θ1, θ2 and dimDi = di, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ + f1

+
3 f2

n(n− 1)
(d1cos2θ1 + d2cos2θ2)−

2
n

f3. (39)

Proof. First, we remark that the definition of a bi-slant submanifold implies that d1 + d2 + 1 = n. Next, let
{e1, . . . , ed1 , ed1+1, . . . , ed1+d2 , en = ξ} be an orthonormal frame on N and {ξ1, . . . , ξ2m−n+1} be a normal
orthonormal frame on N .

Using Equations (2) and (34), we obtain

τ = ∑
1≤i<j≤n

R(ei, ej, ej, ei)

=
n(n− 1)

2
f1 +

3
2

f2(d1cos2θ1 + d2cos2θ2)

+(1− n) f3 +
2m−n+1

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (40)

However, as in the proof of Lemma 1, we get

n2‖H‖2 − n2ρN ≥
2n

n− 1

2m−n+1

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (41)

Combining now Equations (40) and (41), we obtain Equation (44) and the conclusion follows.

As immediate consequences of Theorem 4, we derive the following results.
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Corollary 3. Let N be a proper bi-slant submanifold of dimension n in a Sasakian space form N (c) of dimension
(2m + 1), with slant angles θ1, θ2 and dimDi = di, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ +
c + 3

4

+
3(c− 1)

4n(n− 1)
(d1cos2θ1 + d2cos2θ2)−

c− 1
2n

. (42)

Corollary 4. Let N be a proper bi-slant submanifold of dimension n in a Kenmotsu space form N (c) of dimension
(2m + 1), with slant angles θ1, θ2 and dimDi = di, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ +
c− 3

4

+
3(c + 1)

4n(n− 1)
(d1cos2θ1 + d2cos2θ2)−

c + 1
2n

. (43)

Corollary 5. LetN be a proper bi-slant submanifold of dimension n in a cosymplectic space formN (c) of dimension
(2m + 1), with slant angles θ1, θ2 and dimDi = di, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ +
c
4

+
3c

4n(n− 1)
(d1cos2θ1 + d2cos2θ2)−

c
2n

. (44)

Remark 6. Corollary 3 generalizes Theorem 4.1 of [9].

Remark 7. We note that the authors of [8,9] provided non-trivial examples of Lagrangian and Legendrian
submanifolds satisfying the equality case of the corresponding Wintgen-type inequalities stated in this paper, because
the shape operators have the appropriate form (see also [49]).

6. The First Fundamental Equation of Generalized Space Forms

For a given Riemannian manifold (N , g), let us denote by ∇ the Levi–Civita connection of the metric
g and by R the curvature tensor of ∇. We consider the differential operator D∇ defined in the tangent
vector bundle TN with values belonging to the vector bundle hom(⊗2TN , TN ). Hence, for a given vector
field X on N , we have that D∇(X) is a section of the vector bundle TN ⊗ T∗⊗2N defined by

D∇(X) = ∇2X.

Obviously, the complete expression is

D∇(X)(Y, Z) = ∇Y∇ZX−∇∇Y ZX, ∀Y, Z ∈ X (M).

We recall now that the first fundamental equation of (N ,∇) is the second-order differential
equation [50]

D∇(X) = 0. (45)

In the following, we denote by J∇ the sheaf of germs of solutions to Equation (45) and by J∇ the
vector space of sections of J∇.

We would like to investigate next the consequences of the condition dimJ∇ > 0, i.e., the first
fundamental in Equation (45) admits non-null solutions, on the geometry and topology of generalized
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complex space forms and generalized Sasakian space forms. Before answering the above question, we
need the following.

Proposition 1. Let ∇ be the Levi–Civita connection of a Riemannian metric g on a manifold N . If Z is a solution
to the first fundamental equation of (N ,∇), then one has

(i) R(X, Y)Z = 0,
(ii) R(X, Z)Y = 0,

for all vector fields X, Y on M.

Proof. (i) If Z is a solution to the first fundamental equation of (N ,∇), then

D∇(Z)(X, Y) = ∇X∇YZ−∇∇XYZ = 0, (46)

for all vector fields X, Y on M.
However, since the connection ∇ is torsion-free, we can express its Riemann curvature tensor R by

R(X, Y)Z = D∇(Z)(X, Y)− D∇(Z)(Y, X). (47)

Consequently, from Equations (46) and (47), we derive R(X, Y)Z = 0.
(ii) Using (i) and the Bianchi identity, one has

R(Z, X)Y = R(Z, Y)X. (48)

Then, we have

g(R(Z, X)Y, W) = −g(Y, R(Z, X)W)

= −g(Y, R(Z, W)X)

= g(R(Z, W)Y, X)

= g(R(Z, Y)W, X)

= −g(W, R(Z, Y)X)

= −g(W, R(Z, X)Y)

= −g(R(Z, X)Y, W), (49)

which implies
g(R(Z, X)Y, W) = 0

and the conclusion is now clear.

Theorem 5. Let N ( f1, f2) be a generalized complex space form of real dimension 2m > 2. If dimJ∇ > 0, then
N is flat. Moreover, N admits a normal Riemannian covering by a flat 2m-dimensional torus, provided that the
manifold is compact and connected.

Proof. Let Z be a non-null solution of the first fundamental equation of (N ( f1, f2),∇), where ∇ is the
Levi–Civita connection on N ( f1, f2). Then, using Equation (1) and Proposition 1 (i), we get

f1{g(Z, Y)X− g(Z, X)Y}
+ f2{g(JZ, X)JY− g(JZ, Y)JX} = −2 f2g(X, JY)JZ, (50)
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for all vector fields X, Y on N .
In addition, using Equation (1) and Proposition 1 (ii), we obtain

f1g(Z, Y)X + f2{2g(X, JZ)JY− g(Z, JY)JX}
= f1g(X, Y)Z− f2g(X, JY)JZ. (51)

Replacing now X = Z and Y = JZ in Equation (50), we derive:

( f1 + 3 f2)g(Z, Z)JZ = 0

and therefore we obtain

3 f2 + f1 = 0. (52)

Combining Equations (51) and (52), we get

f2{−3g(X, Y)Z− g(X, JY)JZ}
+ f2{3g(Z, Y)X− 2g(X, JZ)JY + g(Z, JY)JX} = 0 (53)

and choosing Y = X in Equation (53) we derive

f2{−3g(X, X)Z + 3g(Z, X)X− 3g(X, JZ)JX} = 0. (54)

Now, because m > 1, we can choose a vector field X on N subjected to

1. g(X, JZ) = 0,
2. g(X, Z) = 0,

and therefore Equation (54) yields

3 f2g(X, X)Z = 0. (55)

Thereby,
f2 = 0

and, from Equation (52), we also derive
f1 = 0.

Thus, Equation (1) implies that N is flat and the conclusion follows immediately (see ([51] Theorem
3.3.1)).

Theorem 6. Let N ( f1, f2, f3) be a generalized Sasakian space form of dimension 2m + 1 > 3. If the first
fundamental equation admits solutions linearly independent on the structure vector field ξ, then N is flat. Moreover,
N admits a normal Riemannian covering by a flat (2m + 1)-dimensional torus, provided that the manifold is
compact and connected.
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Proof. Let Z be a solution to the first fundamental equation of (N ( f1, f2, f3),∇) linearly independent
on the structure vector field ξ, where ∇ is the Levi–Civita connection on N ( f1, f2, f3). Then, using
Equation (34) and Proposition 1, we get the following identities:

f1{g(Y, Z)X− g(X, Z)Y}+ f2{g(X, φZ)φY− g(Y, φZ)φX}
+ f3{η(X)η(Z)Y− η(Y)η(Z)X}
= −2 f2g(X, φY)φZ− f3{g(X, Z)η(Y)− g(Y, Z)η(X)}ξ, (56)

f1g(Z, Y)X + f2{2g(X, φZ)φY− g(Z, φY)φX}
− f3η(Z)η(Y)X = f1g(X, Y)Z− f2g(X, φY)φZ

− f3{η(X)η(Y)Z + g(X, Y)η(Z)ξ − g(Z, Y)η(X)ξ} (57)

for all vector fields X, Y on N .
Choosing now in Equation (56) the vector field X to be orthogonal to Z, φZ, and ξ, we derive

{ f1g(Y, Z)− f3η(Y)η(Z)}X− f2g(Y, φZ)φX + 2 f2g(X, φY)φZ = 0 (58)

and, particularizing Y = φZ in Equation (58), one immediately gets

f2 = 0. (59)

Therefore, Equations (56) and (57) become

f1{g(Y, Z)X− g(X, Z)Y}+ f3{η(X)η(Z)Y− η(Y)η(Z)X}
= − f3{g(X, Z)η(Y)− g(Y, Z)η(X)}ξ, (60)

f1g(Z, Y)X− f3η(Z)η(Y)X = f1g(X, Y)Z

− f3{η(X)η(Y)Z + g(X, Y)η(Z)ξ − g(Z, Y)η(X)ξ}, (61)

for all vector fields X, Y on N .
Similarly, considering in Equation (61) the vector field X to be orthogonal to Z, φZ, and ξ, we deduce

f1g(Z, Y)X + f3η(Z)η(Y)X = f1g(X, Y)Z− f3g(X, Y)η(Z)ξ (62)

and, particularizing Y = X in Equation (58), one obtains

f1g(X, X)Z− f3g(X, X)η(Z)ξ = 0. (63)

As Z and ξ are linearly independent, Equation (63) implies

f1 = 0 (64)

and
f3η(Z) = 0. (65)

Now, we have to distinguish two cases.
Case I: η(Z) 6= 0. Then, it follows from Equation (65) that

f3 = 0 (66)
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and replacing Equations (59), (64), and (66) in Equation (1), we conclude that N is flat.
Case II: η(Z) = 0. Then, taking account of Equation (64), we obtain from Equation (60) that

f3{g(X, Z)η(Y)− g(Y, Z)η(X)}ξ = 0. (67)

Particularizing now X = Z and Y = ξ in Equation (67), one obtains also Equation (66) and therefore
we reach again the required conclusion.

Remark 8. Theorems 5 and 6 provide obstructions to the existence of non-flat generalized space forms. Therefore,
the existence of non-null solutions for the first fundamental equation of a generalized complex space form N ( f1, f2)

implies the flatness of this space. On the other hand, the existence of solutions linearly independent on the structure
vector field for the first fundamental equation of a generalized Sasakian space form N ( f1, f2, f3) also implies that its
Riemannian curvature tensor vanishes identically.
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43. Alqahtani, L.S.; Stanković, M.S.; Uddin, S. Warped product bi-slant submanifolds of cosymplectic manifolds.

Filomat 2017, 31, 5065–5071. [CrossRef]

http://dx.doi.org/10.1016/j.difgeo.2008.04.014
http://dx.doi.org/10.11650/twjm/1500405448
http://dx.doi.org/10.1007/s00025-011-0115-z
http://dx.doi.org/10.1007/s00009-010-0024-5
http://dx.doi.org/10.1142/S0219887818501499
http://dx.doi.org/10.1515/advgeom-2012-0043
http://dx.doi.org/10.1017/S1446788700036673
http://dx.doi.org/10.1007/s13348-013-0093-4
http://dx.doi.org/10.1016/j.crma.2015.10.027
http://dx.doi.org/10.1007/s13398-018-0533-9
http://dx.doi.org/10.1017/S0004972700017925
http://dx.doi.org/10.1007/s00009-017-0896-8
http://dx.doi.org/10.4064/ap95-3-2
http://dx.doi.org/10.2307/2043207
http://dx.doi.org/10.5937/KgJMath1804591A
http://dx.doi.org/10.5556/j.tkjm.50.2019.2845
http://dx.doi.org/10.2298/FIL1716065A


Mathematics 2019, 7, 1151 20 of 20

44. Cabrerizo, J.L.; Carriazo, A.; Fernández, L.M.; Fernández, M. Semi-slant submanifolds of a Sasakian manifold.
Geom. Dedicata 1999, 78, 183–199. [CrossRef]

45. Carriazo, A. New Developments in Slant Submanifolds Theory; Narosa Publishing House: New Delhi, India, 2002.
46. Bejancu, A.; Papaghiuc, N. Semi-invariant submanifolds of a Sasakian manifold. An. Ştiinţ. Univ. "Alexandru

Ioan Cuza" Iaşi Secţ. I Mat. 1981, 27, 163–170.
47. Yano, K.; Kon, M. CR Submanifolds of Kaehlerian and Sasakian Manifolds; Birkhäuser: Basel, Switzerland, 1983.
48. Gupta, R.S. B.Y. Chen’s inequalities for bi-slant submanifolds in cosymplectic space forms. Sarajevo J. Math. 2013,

9, 1, 117–128. [CrossRef]
49. Chen, B.-Y.; Dillen, F.; Verstraelen, L.; Vrancken, L. Totally real submanifolds of CPn satisfying a basic equality.

Arch. Math. 1994, 63, 553–564. [CrossRef]
50. Boyom, M.N. Numerical properties of Koszul connections. arXiv 2017, arXiv:1708.01106.
51. Wolf, J.A. Spaces of Constant Curvature, 6th ed.; American Mathematical Society: Providence, RI, USA, 2010.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1005241320631
http://dx.doi.org/10.5644/SJM.09.1.11
http://dx.doi.org/10.1007/BF01202073
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Generalized Wintgen Inequality for Lagrangian Submanifolds in Generalized Complex Space Form
	Generalized Wintgen Inequality for bi-Slant Submanifolds in Generalized Complex Space Form
	Generalized Wintgen Inequalities for Submanifolds in Generalized Sasakian Space Form
	The First Fundamental Equation of Generalized Space Forms
	References

