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Abstract: A Pythagorean fuzzy set (PFS) is one of the extensions of the intuitionistic fuzzy set which
accommodate more uncertainties to depict the fuzzy information and hence its applications are more
extensive. In the modern decision-making process, aggregation operators are regarded as a useful tool
for assessing the given alternatives and whose target is to integrate all the given individual evaluation
values into a collective one. Motivated by these primary characteristics, the aim of the present
work is to explore a group of interactive hybrid weighted aggregation operators for assembling
Pythagorean fuzzy sets to deal with the decision information. The proposed aggregation operators
include interactive the hybrid weighted average, interactive hybrid weighted geometric and its
generalized versions. The major advantages of the proposed operators to address the decision-making
problems are (i) to consider the interaction among membership and non-membership grades of
the Pythagorean fuzzy numbers, (ii) it has the property of idempotency and simple computation
process, and (iii) it possess an adjust parameter value and can reflect the preference of decision-makers
during the decision process. Furthermore, we introduce an innovative multiple attribute decision
making (MADM) process under the PFS environment based on suggested operators and illustrate
with numerous numerical cases to verify it. The comparative analysis as well as advantages of the
proposed framework confirms the supremacies of the method.

Keywords: Pythagorean fuzzy sets; aggregation operators; MADM; hybrid operators

1. Introduction

Multiple attribute decision making (MADM) is one of the processes to find the most desirable
alternative among all given alternatives in the light of finite attributes or criteria. In the decision-making
process, it is commonly supposed that the evaluation information of alternatives for attributes described
by decision-makers (DMs) is precise numbers. However, due to the indeterminacy of the practical
environment and human cognition, DMs are usually do not find it easy to use crisp numbers to express
their preferences. An appropriate way to deal with such problems is to adopt uncertain evaluations
rather than crisp ones, for instance, an intuitionistic fuzzy set (IFS) [1] and fuzzy set (FS) [2]. As a
successful extension of the notions of IFS and FS, the Pythagorean fuzzy set (PFS) was put forward
by Yager [3,4]. Similar to the IFS, the PFS is still depicted by the membership and non-membership
degrees, but their square sum within interval (0, 1). Thus, PFS is more versatile than IFS. For instance,
if the membership grade is given as 0.4 by DM, while the non-membership grade is 0.8, it can be seen
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that 0.4 + 0.8 > 1, so IFS cannot solve this issue, but since 0.42 + 0.82 < 1, then the PFS can easily deal
with it. Therefore, in some cases, the PFS can settle a large number of problems, while the IFS cannot.
Since PFS appeared, it has become a useful technique for modeling vagueness and indeterminacy of the
MADM issues or multiple attribute group decision making (MAGDM) issues [5–12]. Some evaluation
methods in the light of PFS are given to solve Pythagorean fuzzy MADM problems. For instance,
Rani et al. [13] extended traditional TOPSIS (technique for an order of preference by similarity to ideal
solution) approach to Pythagorean fuzzy numbers (PFNs) and studied the selection of a sustainable
recycling partner. Considering DM’s psychological characteristics, in the light of the prospect and
regret theories, Peng and Dai [14] explored a stochastic decision approach under Pythagorean fuzzy
setting. Ren et al. [15] extended traditional TODIM (an acronym in Portuguese of interactive and
multiple attribute decision making) approach to PFNs. Chen [16] introduced a Pythagorean fuzzy
VIKOR (vlseKriterijumska optimizacija I Kompromisno Resenje in Serbian) approach for MADM.
Zhang [17] expanded the hierarchical QUALIFLEX (qualitative flexible multiple criteria method)
algorithm to the interval-valued PFSs, and employed it to investigate the industries’ risk evaluation.

The way of evaluation methods in Pythagorean fuzzy decision-making problems is only one
aspect, the other significant aspect is to aggregate these evaluation values. Aggregation operators
(AOs) can integrate all the given individual evaluation values into a collective one, which is regarded as
a useful tool for assessing alternatives. Now AOs are investigated more broadly under the Pythagorean
fuzzy environment, and the research related to AOs are from general categories:

(1) The operation of AOs defined by classical operational rules with PFSs [12]. Wei and Lu [18]
developed six power AOs in Pythagorean fuzzy setting and also discussed desirable properties of
them. Ma and Xu [19] employed the symmetric Pythagorean fuzzy AOs to settle MADM problems.
Garg [20,21] defined exponential operation and logarithms operations for PFSs and discussed
their relevant aggregation operators. In the light of the Einstein t-norm operations, Garg [22,23]
introduced a series of generalized Pythagorean averaging and geometric AOs. With the aid of
the Hamacher operations, Wu and Wei [24] introduced several Hamacher AOs for managing
Pythagorean fuzzy MADM problems. Yu et al. [25] presented a kind of new Pythagorean fuzzy
distance AOs. Wang and Li [26] developed four continuous interval-valued Pythagorean fuzzy
AOs in MAGDM. Taking the relationship of aggregated PFNs into account, Qin [27] introduced
the generalized form of Pythagorean fuzzy Maclaurin symmetric means. With the aid of the
traditional Bonferroni mean (BM), Liang et al. [28] discussed a Pythagorean fuzzy geometric
BM (PFGBM) operator. After that, a partitioned PFGBM operator was introduced by Liang et
al. [29]. Wei and Lu [30] defined the Pythagorean fuzzy Maclaurin symmetric mean AOs for
PFNs. Li et al. [31] proposed a series of Hamy mean operators under a Pythagorean fuzzy context.
Li et al. [32] investigated two Pythagorean fuzzy power Muirhead mean AOs along with their
properties and applied them to deal with the evaluation of domestic airlines.

(2) The operation of AOs defined by the interactive operational rules with PFSs [33]. It is more
reasonable in some situations, because it captures the interactive influence over the membership
and non-membership grades of PFNs. For example, Let α1 = (µα1 , να1) and α2 = (µα2 , να2)

be two PFNs, if membership degrees µα1 = 0 and µα2 , 0, then in the light of operational
rules [12], we get membership degree µα1⊕α2 = 0, which implies that µα2 has no effect on the
result µα1⊕α2 . Similarly, if non-membership degrees να1 = 0 and να2 , 0, then να2 has no effect
on the result non-membership degree να1⊗α2 . To overcome this issue, Wei [33] introduced the
interactive operation for PFNs and also some corresponding interactive AOs were developed.
They are Pythagorean fuzzy interactive weighted average (PFIWA), ordered weighted average
(PFIOWA), hybrid average (PFIHA), weighted geometric (PFIWG), ordered weighted geometric
(PFIOWG) and hybrid geometric (PFIHG) operators. Garg [34,35] presented the concept of
neutrality operational laws for PFNs and the AOs for solving the group decision making problems.
Gao et al. [36] defined some interactive power AOs for PFNs. Yang and Pang [37] presented
interactive Maclaurin symmetric mean AOs and corresponding weighted forms using the different
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PFNs for dealing with MADM problems. Garg [38] presented the generalized interactive weighted
Einstein AOs for PFNs and hence solved the decision-making problems. Yang et al. [39] extended
the traditional BM operator to a Pythagorean fuzzy environment and proposed some interactive
partitioned BM operators as well as their interesting properties.

From these above analyses, we can see that different aggregation operators have different features
and application aspects. The PFIWA and the PFIWG AOs can weigh only the significance of PFNs
themselves, while the PFIOWA and the PFIOWG AOs can weigh the ordered positions of given PFNs
but cannot weigh the PFNs themselves. Moreover, the PFIHA and the PFIHG operators may weigh all
aggregated PFNs and correspond ordered positions of them. Therefore, the PFIHA and the PFIHG
operators have some superiority over the operators described above. However, these two operators
have a drawback that the aggregated value of some identical integrated PFNs relies on the weight
values, that is they do not possess the property of idempotency. It was pointed out by Liao and Xu [40],
hybrid aggregation operators should satisfy the basic property of idempotency, so they presented a
group of hybrid operators under a hesitant fuzzy environment. However, these aggregation operators
are not available to tackle the Pythagorean fuzzy MADM problems. PFS, a valuable generalization
of IFSs, has been shown as a successful means to deal with the indeterminacy and fuzziness which
appear in many real decision problems. The presented research concentrated on the Pythagorean fuzzy
setting. Therefore, it was worth putting forward some novel Pythagorean fuzzy interactive hybrid
operators. Inspired by this idea, the motivation and objective of this manuscript were to

(1) explore novel Pythagorean fuzzy interactive hybrid weighted average (PFIHWA) and geometric
(PFIHWG) operators, discuss some interesting properties and particular cases;

(2) propose novel generalized PFIHWA (GPFIHWA) and generalized PFIHWG (GPFIHWG) operators,
also study their desirable properties and special cases;

(3) introduce some steps for MADM and MAGDM by using the proposed operators;
(4) demonstrate the availability and flexibility of the proposed MADM and MAGDM methods

through some practical examples.

The remaining paper is arranged as follows: Some fundamental notions about PFSs and the AOs
are introduced in Section 2. Novel PFIHWA and PFIHWG operators along with their properties are
given in Section 3. Generalized forms of the AOs are provided in Section 4. In Section 5, we use the
presented AOs to tackle the MADM problems and MAGDM problems, and the availability as well
as flexibility of the proposed methods is illustrated with some real examples. Section 6 summarizes
the paper.

2. Preliminaries

We briefly review some fundamental notions about PFS and Pythagorean fuzzy AOs in this part.

2.1. Pythagorean Fuzzy Sets

Definition 1 [12]. Let Y be a universal set, a PFS P is defined as:

P =
{〈

y, (µP(y), νP(y))
〉∣∣∣y ∈ Y

}
, (1)

where µP(y), νP(y) ∈ [0, 1] meet the condition: (µP(y))2 + (νP(y))2
∈ [0, 1]. µP(y), vP(y) define

degrees of membership and non-membership for every y ∈ Y, respectively. Indeterminacy degree is

πP(y) =
√

1− (µP(y))2
− (νP(y))2.

Zhang and Xu [12] called α = (µ, ν) as a PFN, meets the condition µ ∈ [0, 1], ν ∈ [0, 1] and
µ2 + ν2

∈ [0, 1]. Ω denotes all Pythagorean fuzzy numbers (PFNs).
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Some fundamental operational rules for PFNs given by Zhang and Xu [12] as follows:

Definition 2 [12]. Let α = (µ, ν),α1 = (µ1, ν1) and α2 = (µ2, ν2) be three PFNs, then their operational laws
are shown as follows:

(1) αc = (ν,µ);

(2) α1 ⊕ α2 =

(√
(µ1)

2 + (µ2)
2
− (µ1)

2(µ2)
2, ν1ν2

)
;

(3) α1 ⊗ α2 =

(
µ1µ2,

√
(ν1)

2 + (ν2)
2
− (ν1)

2(ν2)
2
)
;

(4) λα =

(√
1− (1− µ2)λ, νλ

)
,λ > 0;

(5) αλ =

(
µλ,

√
1− (1− ν2)λ

)
,λ > 0,

where αc denotes complement operation of α. ⊕ and ⊗ denote addition and multiplication between α1 and
α2, respectively.

Definition 3 [33]. Let α = (µ, ν),α1 = (µ1, ν1) and α2 = (µ2, ν2) be three PFNs, then the interactive
operational laws are given as follows:

(1) α1 ⊕ α2 =

(√
(µ1)

2 + (µ2)
2
− (µ1)

2(µ2)
2,

√
(ν1)

2 + (ν2)
2
− (ν1)

2(ν2)
2
− (µ1)

2(ν2)
2
− (ν1)

2(µ2)
2
)
;

(2) α1 ⊗ α2 =

(√
(µ1)

2 + (µ2)
2
− (µ1)

2(µ2)
2
− (µ1)

2(ν2)
2
− (ν1)

2(µ2)
2,

√
(ν1)

2 + (ν2)
2
− (ν1)

2(ν2)
2
)
;

(3) λα =

(√
1− (1− µ2)λ,

√
(1− µ2)λ − (1− (µ2 + ν2))λ

)
,λ > 0;

(4) αλ =

(√
(1− ν2)λ − (1− (µ2 + ν2))λ,

√
1− (1− ν2)λ

)
,λ > 0.

Definition 4 [12]. Let α = (µ, ν) be a PFN, s(α) = µ2
− ν2 and a(α) = µ2 + ν2 denote the score and the

accuracy degree of α, respectively. For two PFNs β1, β2, we have

(1) If s(β1) > s(β2), then β1 � β2;
(2) If s(β1) = s(β2), then:

(a) If a(β1) > a(β2), then β1 � β2;
(b) If a(β1) = a(β2), then β1 = β2.

2.2. Interactive Aggregation Operators for PFNs

With the aid of interactive operational rules given as Definition 3, Wei [33] proposed some
interactive aggregation operators for PFNs:

Definition 5 [33]. Suppose that α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are a family of PFNs and ω =

(ω1,ω2, . . . ,ωn)
T is the collection relevant vector of α j, with ω j ≥ 0,

∑n
j=1 ω j = 1. Then

(1) A PFIWA operator is a function PFIWA : Ωn
→ Ω , and

PFIWA(α1,α2, . . . ,αn) =

n
⊕

j=1
ω jα j =


√

1−
n∏

j=1

(
1− (µ j)

2
)ω j ,

√
n∏

j=1

(
1− (µ j)

2
)ω j
−

n∏
j=1

(
1−

(
(µ j)

2 + (ν j)
2
))ω j

 (2)
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(2) A PFIWG operator is a function PFIWG : Ωn
→ Ω , and

PFIWG(α1,α2, . . . ,αn) =

n
⊗

j=1

(
α j

)ω j
=


√

n∏
j=1

(
1− (ν j)

2
)ω j
−

n∏
j=1

(
1−

(
(µ j)

2 + (ν j)
2
))ω j ,

√
1−

n∏
j=1

(
1− (ν j)

2
)ω j

 (3)

Definition 6 [33]. Suppose that α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are a family of PFNs and ω =

(ω1,ω2, . . . ,ωn)
T is the collection relevant vector of α j, with ω j ≥ 0,

∑n
j=1 ω j = 1. ((1), (2), (3) . . . , (n))

means any permutation of (1, 2, 3, · · · , n) satisfies α( j−1) ≥ α( j). Then
(1) A PFIOWA operator is a function PFIOWA : Ωn

→ Ω , and

PFIOWA(α1,α2, . . . ,αn) =

n
⊕

j=1
ω jα( j) =


√

1−
n∏

j=1

(
1− (µ( j))

2
)ω j ,

√
n∏

j=1

(
1− (µ( j))

2
)ω j
−

n∏
j=1

(
1−

(
(µ( j))

2 + (ν( j))
2
))ω j

. (4)

(2) A PFIOWG operator is a function PFIOWG : Ωn
→ Ω , and

PFIOWG(α1,α2, . . . ,αn) =

n
⊗

j=1

(
α( j)

)ω j
=


√

n∏
j=1

(
1− (ν( j))

2
)ω j
−

n∏
j=1

(
1−

(
(µ( j))

2 + (ν( j))
2
))ω j ,

√
1−

n∏
j=1

(
1− (ν( j))

2
)ω j

 (5)

Especially, if ω = ( 1
n , 1

n , . . . , 1
n ), then the PFIOWA (PFIOWG)operator becomes the PFIWA(PFIWG)

operator.

Definition 7 [33]. Suppose that α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are a family of PFNs and ω =

(ω1,ω2, . . . ,ωn)
T is the collection relevant vector of α j, with ω j ≥ 0,

∑n
j=1 ω j = 1. ((1), (2), (3) . . . , (n))

means any permutation of (1, 2, 3, · · · , n) satisfies α( j−1) ≥ α( j).ε = (ε1, ε2, . . . , εn)
T denotes the weight vector

of α j ( j = 1, 2, . . . , n) with ε j ≥ 0,
∑n

j=1 ε j = 1. Thus
(1) A PFIHA operator is a function PFIHA : Ωn

→ Ω , and

PFIHA(α1,α2, . . . ,αn) =

n
⊕

j=1
ω j

.
α( j) =


√

1−
n∏

j=1

(
1− (

.
µ( j))

2)ω j
,

√
n∏

j=1

(
1− (

.
µ( j))

2)ω j
−

n∏
j=1

(
1−

(
(

.
µ( j))

2
+ (

.
ν( j))

2))ω j

 (6)

in which,
.
α( j) is the j-th largest value of weighted PFNs {nε1α1, nε2α2, · · · , nεnαn}, n indicates the balancing

coefficient.
(2) A PFIHG operator is a function PFIHG : Ωn

→ Ω , and

PFIHG(α1,α2, . . . ,αn) =

n
⊗

j=1

( .
α( j)

)ω j
=


√

n∏
j=1

(
1− (

.
ν( j))

2)ω j
−

n∏
j=1

(
1−

(
(

.
µ( j))

2
+ (

.
ν( j))

2))ω j
,

√
1−

n∏
j=1

(
1− (

.
ν( j))

2)ω j

 (7)

in which,
.
α( j) is the j-th largest value of weighted PFNs

{
(α1)

nε1 , (α2)
nε2 , · · · , (αn)

nεn
}
, n indicates the

balancing coefficient.
Especially, if ω = ( 1

n , 1
n , . . . , 1

n ), then the PFIHA (PFIHG)operator becomes the PFIWA (PFIWG)operator.
If ε = ( 1

n , 1
n , . . . , 1

n ), then the PFIHA(PFIHG)operator becomes the PFIOWA (PFIOWG) operator.
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3. Some Novel Pythagorean Fuzzy Interactive Hybrid Weighted Aggregation Operators

Although PFIHA (PFIHG) possesses both the advantages of the PFIWA (PFIWG) operator and the
PFIOWA (PFIOWG) operator, have a shortcoming which is that the AOs do not meet the prominent
property, that is idempotency.

3.1. Shortcoming of the Existing Operators

In the below example, we illustrate with a numerical example that the existing aggregation
operators do not own the feature of the idempotency.

Example 1. Let α1 = (0.6, 0.5), α2 = (0.6, 0.5), α3 = (0.6, 0.5) be three PFNs, the corresponding weight vector
is ε = (ε1, ε2, ε3)

T = (0.7, 0.2, 0.1)T. ω = (ω1,ω2,ω3)
T = (0.3, 0.5, 0.2)T is the aggregation associated

vector. From Definition 3, we have

.
α1 = nε1α1 = 3× 0.7⊗ (0.6, 0.5) = 2.1⊗ (0.6, 0.5)

=

(√
1− (1− 0.62)2.1,

√
(1− 0.62)2.1

− (1− 0.62 − 0.52)2.1
)
= (0.7799, 0.5033),

.
α2 = nε2α2 = 3× 0.2⊗ (0.6, 0.5) = 0.6⊗ (0.6, 0.5)

=

(√
1− (1− 0.62)0.6,

√
(1− 0.62)0.6

− (1− 0.62 − 0.52)0.6
)
= (0.4847, 0.4435),

.
α3 = nε3α3 = 3× 0.1⊗ (0.6, 0.5) = 0.3⊗ (0.6, 0.5)

=

(√
1− (1− 0.62)0.3,

√
(1− 0.62)0.3

− (1− 0.62 − 0.52)0.3
)
= (0.3540, 0.3475).

Based on Definition 4, we obtain s(
.
α1) = 0.3549, s(

.
α2) = 0.0382, s(

.
α3) = 0.0046 , Since, s(

.
α1) >

s(
.
α2) > s(

.
α3), then

.
α(1) =

.
α1,

.
α(2) =

.
α2,

.
α(3) =

.
α3. From Equation (6) in Definition 7, we obtain

PFIHA(α1,α2,α3) =
3
⊕

j=1
ω j

.
α( j) =

√
1− (1− 0.77992)0.3(1− 0.48472)0.5(1− 0.35402)0.2,√√√√ (

1− 0.77992
)0.3(

1− 0.48472
)0.5(

1− 0.35402
)0.2
−

(
1− 0.77992

− 0.53032
)0.3(

1− 0.48472
− 0.44352

)0.5(
1− 0.3540− 0.34752

)0.2


= (0.5976, 0.4992) , (0.6, 0.5).

Similarly,

α′1 = (α1)
nε1 = (0.6, 0.5)3×0.7 = (0.6, 0.5)2.1 =(√

(1− 0.52)2.1
− (1− 0.62 − 0.52)2.1,

√
1− (1− 0.52)2.1,

)
= (0.6388, 0.6734),

α′2 = (α2)
nε2 = (0.6, 0.5)3×0.2 = (0.6, 0.5)0.6

=

(√
(1− 0.52)0.6

− (1− 0.62 − 0.52)0.6,
√

1− (1− 0.52)0.6,
)
= (0.5226, 0.3982),

α′3 = (α3)
nε3 = (0.6, 0.5)3×0.1 = (0.6, 0.5)0.3

=

(√
(1− 0.52)0.3

− (1− 0.62 − 0.52)0.3,
√

1− (1− 0.52)0.3,
)
= (0.4042, 0.2876).

Based on Definition 4, we have s(α′1) = −0.0454, s(α′2) = 0.1145, s(α′3) = 0.0807, since, s(α′2) >
s(α′3) > s(α′1), then α′(1) = α′2,α′(2) = α′3,α′(3) = α′1. From Equation (7) in Definition 7, we obtain

PFIHG(α1,α2,α3) =
3
⊗

j=1

(
α′( j)

)ω j
= (0.5589, 4406) , (0.6, 0.5).
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Idempotency is a very significant feature for every operator [40], but the PFIHA (PFIHG) operator
does not have this fundamental property. Hence, it is worth presenting some novel interactive hybrid
AOs which also can reflect the significance of the given PFNs as well as ordered positions of them.
Motivated by the work in Reference [40], in the following, we will present some new interactive
hybrid AOs.

3.2. New Proposed Hybrid Aggregation Operators

In this part, we have presented some novel hybrid AOs for Pythagorean fuzzy sets to settle the
deficiencies of the existing AOs.

Definition 8. Suppose that α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are a family of PFNs, a PFIHWA operator
is a function: PFIHWA : Ωn

→ Ω with associated weighting ω = (ω1,ω2, . . . ,ωn)
T satisfies ω j ≥ 0,∑n

j=1 ω j = 1, and

PFIHWA(α1,α2, . . . ,αn) =

n
⊕

j=1
ω( j)ε jα j∑n

j=1 ω( j)ε j
, (8)

where ((1), (2), (3) . . . , (n)) means any permutation of (1, 2, 3, · · · , n) satisfies α j is the j -th largest value of
collective values α j. The ε = (ε1, ε2, . . . , εn)

T is weight vector of PFNs α j( j = 1, 2, 3, · · · , n) meets ε j ≥ 0,∑n
j=1 ε j = 1.

Theorem 1. For a family of PFNs α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n), then the output via employing PFIHWA
operator remains a PFN, and

PFIHWA(α1,α2, . . . ,αn)

=


√√

1−
n∏

j=1

(
1− (µ j)

2
) ω( j)ε j∑n

j=1 ω( j)ε j ,

√√
n∏

j=1

(
1− (µ j)

2
) ω( j)ε j∑n

j=1 ω( j)ε j
−

n∏
j=1

(
1−

(
(µ j)

2 + (ν j)
2
)) ω( j)ε j∑n

j=1 ω( j)ε j

,
(9)

where ω = (ω1,ω2, . . . ,ωn)
T is anassociated weighting vector of α j( j = 1, 2, 3, · · · , n) with ω j ≥ 0,∑n

j=1 ω j = 1. The ε = (ε1, ε2, . . . , εn)
T stands for weight vector of α j such that ε j ≥ 0,

∑n
j=1 ε j = 1.

Proof. On the basis of Definition 3, for every j ( j = 1, 2, 3, . . . , n) we have

ω( j)ε j∑n
j=1 ω( j)ε j

α j =


√

1− (1− (µ j)
2)

ω( j)ε j∑n
j=1 ω( j)ε j ,

√
(1− (µ j)

2)

ω( j)ε j∑n
j=1 ω( j)ε j

− (1− ((µ j)
2 + (ν j)

2))

ω( j)ε j∑n
j=1 ω( j)ε j

.

Then, based on Equation (2), we can calculate that

PFIHWA(α1,α2, . . . ,αn) =

n
⊕

j=1
ω( j)ε jα j∑n

j=1 ω( j)ε j

=
n
⊕

j=1


√

1− (1− (µ j)
2)

ω( j)ε j∑n
j=1 ω( j)ε j ,

√
(1− (µ j)

2)

ω( j)ε j∑n
j=1 ω( j)ε j

− (1− ((µ j)
2 + (ν j)

2))

ω( j)ε j∑n
j=1 ω( j)ε j



=



√√√√√√
1−

n∏
j=1

1−


√

1− (1− (µ j)
2)

ω( j)ε j∑n
j=1 ω( j)ε j


2,√√√√√√√√√√√√√√√√√√√√√√√√ n∏

j=1

1−


√

1− (1− (µ j)
2)

ω( j)ε j∑n
j=1 ω( j)ε j


2− n∏

j=1


1−




√

1− (1− (µ j)
2)

ω( j)ε j∑n
j=1 ω( j)ε j


2

+


√
(1− (µ j)

2)

ω( j)ε j∑n
j=1 ω( j)ε j

− (1− ((µ j)
2 + (ν j)

2))

ω( j)ε j∑n
j=1 ω( j)ε j


2






=


√√

1−
n∏

j=1

(
1− (µ j)

2
) ω( j)ε j∑n

j=1 ω( j)ε j ,

√√
n∏

j=1

(
1− (µ j)

2
) ω( j)ε j∑n

j=1 ω( j)ε j
−

n∏
j=1

(
1−

(
(µ j)

2 + (ν j)
2
)) ω( j)ε j∑n

j=1 ω( j)ε j

.
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Hence, the Theorem 1 holds. �

Like the characteristic of the PFIHA operator, if ω = ( 1
n , 1

n , . . . , 1
n ), then the PFIHWA

operator becomes PFIWA operator. If ε = ( 1
n , 1

n , . . . , 1
n ), then the PFIHWA operator becomes the

PFIOWA operator.

Example 2. Let α1 = (0.4, 0.7), α2 = (0.3, 0.8), α3 = (0.6, 0.5) be the three PFNs, the aggregation associated
vector is ω = (0.2, 0.4, 0.4)T and ε = (0.25, 0.15, 0.6)T is the weight vector. In line with Definition 4, we
obtain s(α1) = −0.33, s(α2) = −0.55, s(α3) = 0.11 . Since, s(α3) >s(α1) >s(α2), then α3 � α1 � α2.
Hence (1) = 2, (2) = 3, (3) = 1, further

ω(1)ε1∑3
j=1 ω( j)ε j

= 0.4×0.25
0.4×0.25+0.4×0.15+0.2×0.6 = 0.3571

ω(2)ε2∑3
j=1 ω( j)ε j

= 0.2143,
ω(3)ε3∑3
j=1 ω( j)ε j

= 0.4286. According to Equation (9), we obtain

PFIHWA(α1,α2,α3)

=


√

1− (1− 0.42)0.3571(1− 0.32)0.2143(1− 0.62)0.4286,√
(1− 0.42)0.3571(1− 0.32)0.2143(1− 0.62)0.4286

− (1− 0.42 − 0.72)0.3571(1− 0.32 − 0.22)0.2143(1− 0.62 − 0.52)0.4286


= (0.4894, 0.6432).

Theorem 2 (Idempotency). If all α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are equal to α = (µ, ν), then

PFIHWA(α1,α2, . . . ,αn) = α. (10)

Proof. From Equation (9), we obtain

PFIHWA(α1,α2, . . . ,αn)

=


√√

1−
n∏

j=1
(1− µ2)

ω( j)ε j∑n
j=1 ω( j)ε j ,

√√
n∏

j=1
(1− µ2)

ω( j)ε j∑n
j=1 ω( j)ε j

−

n∏
j=1

(1− (µ2 + ν2))

ω( j)ε j∑n
j=1 ω( j)ε j


=

(√
1− (1− µ2),

√
(1− µ2) − (1− (µ2 + ν2))

)
= (µ, ν) = α.

Hence, the Theorem 2 holds. �

Example 3. Let us employ the PFIHWA operator in Definition 8 to recalculate Example 1. We obtain

PFIHWA(α1,α2,α3) =
(√

1− (1− 0.62),
√
(1− 0.62) − (1− (0.62 + 0.52))

)
= (0.6, 0.5) = α1 = α2 = α3.

In what follows, we shall present the novel interactive hybrid weighted geometric AOs for PFNs.

Definition 9. Suppose that α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are a family of PFNs, a PFIHWG operator is a
function: PFIHWG : Ωn

→ Ω with associated weighting ω = (ω1,ω2, . . . ,ωn)
T and ω j ≥ 0,

∑n
j=1 ω j = 1,

such that

PFIHWG(α1,α2, . . . ,αn) =
n
⊗

j=1
(α j)

ω( j)ε j∑n
j=1 ω( j)ε j , (11)

where ((1), (2), (3), . . . , (n)) and ε = (ε1, ε2, . . . , εn)
T are the same as in Definition 8.
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Theorem 3. For a family of PFNs α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n), then the output via employing the PFIHWG
operator remains a PFN, and

PFIHWG(α1,α2, . . . ,αn)

=


√√

n∏
j=1

(
1− (ν j)

2
) ω( j)ε j∑n

j=1 ω( j)ε j
−

n∏
j=1

(
1−

(
(µ j)

2 + (ν j)
2
)) ω( j)ε j∑n

j=1 ω( j)ε j ,

√√
1−

n∏
j=1

(
1− (ν j)

2
) ω( j)ε j∑n

j=1 ω( j)ε j

,
(12)

where ω = (ω1,ω2, . . . ,ωn)
T is the associated weighting vector of α j( j = 1, 2, 3, · · · , n) with ω j ≥ 0,∑n

j=1 ω j = 1. The ε = (ε1, ε2, . . . , εn)
T stands for the weight vector of α j meeting ε j ≥ 0,

∑n
j=1 ε j = 1.

Proof. Based on Definition 3, for every j ( j = 1, 2, 3, . . . , n), we obtain

(α j)

ω( j)ε j∑n
j=1 ω( j)ε j =


√
(1− (ν j)

2)

ω( j)ε j∑n
j=1 ω( j)ε j

− (1− ((µ j)
2 + (ν j)

2))

ω( j)ε j∑n
j=1 ω( j)ε j ,

√
1− (1− (ν j)

2)

ω( j)ε j∑n
j=1 ω( j)ε j

.

Then, on the basis of Equation (3), we obtain

PFIHWG(α1,α2, . . . ,αn) =
n
⊗

j=1
(α j)

ω( j)ε j∑n
j=1 ω( j)ε j

=
n
⊕

j=1


√
(1− (ν j)

2)

ω( j)ε j∑n
j=1 ω( j)ε j

− (1− ((µ j)
2 + (ν j)

2))

ω( j)ε j∑n
j=1 ω( j)ε j ,

√
1− (1− (ν j)

2)

ω( j)ε j∑n
j=1 ω( j)ε j



=



√√√√√√√√√√√√√√√√√√√√√√√√ n∏
j=1

1−


√

1− (1− (ν j)
2)

ω( j)ε j∑n
j=1 ω( j)ε j


2− n∏

j=1


1−




√

1− (1− (ν j)
2)

ω( j)ε j∑n
j=1 ω( j)ε j


2

+


√
(1− (ν j)

2)

ω( j)ε j∑n
j=1 ω( j)ε j

− (1− ((µ j)
2 + (ν j)

2))

ω( j)ε j∑n
j=1 ω( j)ε j


2


,

√√√√√√
1−

n∏
j=1

1−


√

1− (1− (ν j)
2)

ω( j)ε j∑n
j=1 ω( j)ε j


2


=


√√

n∏
j=1

(
1− (ν j)

2
) ω( j)ε j∑n

j=1 ω( j)ε j
−

n∏
j=1

(
1−

(
(µ j)

2 + (ν j)
2
)) ω( j)ε j∑n

j=1 ω( j)ε j ,

√√
1−

n∏
j=1

(
1− (ν j)

2
) ω( j)ε j∑n

j=1 ω( j)ε j

.

Hence, the Theorem 3 holds. �

Like the character of the PFIHG operator, if ω = ( 1
n , 1

n , . . . , 1
n ), then the PFIHWG operator becomes

the PFIWG operator. If ε = ( 1
n , 1

n , . . . , 1
n ), then the PFIHWG operator becomes the PFIOWG operator.

Example 4. Let us employ PFIHWG operator to compute Example 2. According to Equation (12), we obtain

PFIHWG(α1,α2,α3)

=


√√√

3∏
j=1

(
1− (ν j)

2
) ω( j)ε j∑3

j=1 ω( j)ε j
−

3∏
j=1

(
1−

(
(µ j)

2 + (ν j)
2
)) ω( j)ε j∑3

j=1 ω( j)ε j ,

√√√
1−

3∏
j=1

(
1− (ν j)

2
) ω( j)ε j∑3

j=1 ω( j)ε j


=


√
(1− 0.72)0.3571(1− 0.82)0.2143(1− 0.52)0.4286

− (1− 0.42 − 0.72)0.3571(1− 0.32 − 0.22)0.2143(1− 0.62 − 0.52)0.4286,√
1− (1− 0.72)0.3571(1− 0.82)0.2143(1− 0.52)0.4286


= (0.4600, 0.6645).

Theorem 4 (Idempotency). If all α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are equal to α = (µ, ν), then

PFIHWG(α1,α2, . . . ,αn) = α. (13)
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Proof. From Equation (12), we obtain

PFIHWG(α1,α2, . . . ,αn)

=


√√

n∏
j=1

(1− ν2)

ω( j)ε j∑n
j=1 ω( j)ε j

−

n∏
j=1

(1− (µ2 + ν2))

ω( j)ε j∑n
j=1 ω( j)ε j ,

√√
1−

n∏
j=1

(1− ν2)

ω( j)ε j∑n
j=1 ω( j)ε j


=

(√
(1− ν2) − (1− (µ2 + ν2)),

√
1− (1− ν2)

)
= (µ, ν) = α.

Therefore, the statement of Theorem 4 holds. �

Example 5. Let us employ the PFIHWG operator in Definition 9 to recalculate Example 1. We obtain

PFIHWG(α1,α2,α3) =(√
(1− 0.52) − (1− (0.62 + 0.52)),

√
1− (1− 0.52)

)
= (0.6, 0.5) = α1 = α2 = α3.

4. Generalized Pythagorean Fuzzy Interactive Hybrid Weighted Aggregation Operators

Yang and Pang [37] presented the generalized PFIWA (GPFIWA) and the generalized PFIWG
(GPFIWG) operators. Next, we can extend the PFIHWA and PFIHWG operators into generalized forms.

Definition 10. Let α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) be a group of PFNs, a GPFIHWA operator is a function:
GPFIHWA : Ωn

→ Ω with associated weighting vector ω = (ω1,ω2, . . . ,ωn)
T and ω j ≥ 0,

∑n
j=1 ω j = 1,

such that

GPFIHWA(α1,α2, . . . ,αn) =


n
⊕

j=1
ω( j)ε j(α j)

λ

∑n
j=1 ω( j)ε j


1/λ

, (14)

where ε = (ε1, ε2, . . . , εn)
T the weight vector of α j satisfies ε j ≥ 0,

∑n
j=1 ε j = 1.

Theorem 5. For a family of PFNs α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n), then the output via employing the
GPFIHWA operator remains a PFN, and

GPFIHWA(α1,α2, . . . ,αn) =

√√√√1−
n∏

j=1
(c j)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

−

 n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

,√√√√
1−

1−
n∏

j=1
(c j)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ


(15)

where c j = 1 − (1− (ν j)
2)
λ
+ (1− ((µ j)

2 + (ν j)
2))

λ
, d j =

(
1− ((µ j)

2 + (ν j)
2)

)λ
. The ω =

(ω1,ω2, . . . ,ωn)
T is the associated weighting vector of α j( j = 1, 2, 3, · · · , n) and satisfies ω j ≥ 0,

∑n
j=1 ω j = 1.

The ε = (ε1, ε2, . . . , εn)
T is the weight vector of α j andmeets ε j ≥ 0,

∑n
j=1 ε j = 1.
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Proof. Since (α j)
λ =

(√
(1− (ν j)

2)
λ
− (1− ((µ j)

2 + (ν j)
2))

λ
,
√

1− (1− (ν j)
2)
λ
)
, then from

Definition 3, we have

ω( j)ε j∑n
j=1 ω( j)ε j

(α j)
λ =

√
1−

(
1− (1− (ν j)

2)
λ
+ (1− ((µ j)

2 + (ν j)
2))

λ
) ω( j)ε j∑n

j=1 ω( j)ε j ,√(
1− (1− (ν j)

2)
λ
+ (1− ((µ j)

2 + (ν j)
2))

λ
) ω( j)ε j∑n

j=1 ω( j)ε j
−

(
(1− ((µ j)

2 + (ν j)
2))

λ
) ω( j)ε j∑n

j=1 ω( j)ε j


Let c j = 1− (1− (ν j)

2)
λ
+ (1− ((µ j)

2 + (ν j)
2))

λ
, d j =

(
1− ((µ j)

2 + (ν j)
2)

)λ
, then

ω( j)ε j∑n
j=1 ω( j)ε j

(α j)
λ =


√

1− (c j)

ω( j)ε j∑n
j=1 ω( j)ε j ,

√
(c j)

ω( j)ε j∑n
j=1 ω( j)ε j

− (d j)

ω( j)ε j∑n
j=1 ω( j)ε j

.

Based on Equation (2), we have

n
⊕

j=1
ω( j)ε j(α j)

λ

∑n
j=1 ω( j)ε j

=


√√√√

1−
n∏

j=1

(c j)

ω( j)ε j∑n
j=1 ω( j)ε j ,

√√√√ n∏
j=1

(c j)

ω( j)ε j∑n
j=1 ω( j)ε j

−

n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j

.

Further, we get


n
⊕

j=1
ω( j)ε j(α j)

λ

∑n
j=1 ω( j)ε j


1/λ

=



√√√√1−
n∏

j=1
(c j)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

−

 n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

,√√√√
1−

1−
n∏

j=1
(c j)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ


.

Therefore

GPFIHWA(α1,α2, . . . ,αn) =



√√√√1−
n∏

j=1
(c j)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

−

 n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

,√√√√
1−

1−
n∏

j=1
(c j)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ


.

Hence, the Theorem 5 holds. �

Theorem 6 (Idempotency). If all α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are equal to α = (µ, ν), then

GPFIHWA(α1,α2, . . . ,αn) = α. (16)
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Proof. Since α j = (µ j, ν j) = α = (µ, ν), so c = 1 − (1− ν2)
λ
+ (1− (µ2 + ν2))

λ, d = (1− (µ2 + ν2))
λ.

According to Equation (15), we have

GPFIHWA(α1,α2, . . . ,αn) =



√√√√1−
n∏

j=1
(c)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(d)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

−

 n∏
j=1

(d)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

,√√√√
1−

1−
n∏

j=1
(c)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(d)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ


=

(√
(1− c + d)1/λ

− (d)1/λ,
√

1− (1− c + d)1/λ
)

=


√(

(1− ν2)λ
)1/λ
−

(
(1− (µ2 + ν2))λ

)1/λ
,

√
1−

(
(1− ν2)λ

)1/λ


=
(√

1− ν2 − 1 + (µ2 + ν2),
√

1− (1− ν2)
)

= (µ, ν) = α.

Therefore, the Theorem 6 holds. �

In what follows, by choosing a different parameter λ, we explored some particular cases of the
GPFIHWA operator.

Remark 1. (1) If ω = ( 1
n , 1

n , . . . , 1
n ), then the GPFIHWA operator becomes the GPFIWA operator [33].

GPFIWA(α1,α2, . . . ,αn) =

(
n
⊕

j=1
ε j(α j)

λ
)1/λ

.

(2) If ε = ( 1
n , 1

n , . . . , 1
n ), then the GPFIHWA operator becomes

GPFIOWA(α1,α2, . . . ,αn) =

(
n
⊕

j=1
ω( j)(α j)

λ
)1/λ

.

We call it a generalized PFIOWA (GPFIOWA) operator.
(3) If λ→ 0 , then the GPFIHWA operator becomes the PFIHWG operator.

PFIHWG(α1,α2, . . . ,αn) =
n
⊗

j=1
(α j)

ω( j)ε j∑n
j=1 ω( j)ε j .

(4) If λ = 1, then the GPFIHWA operator becomes the PFIHWA operator.

PFIHWA(α1,α2, . . . ,αn) =

n
⊕

j=1
ω( j)ε jα j∑n

j=1 ω( j)ε j
.

(5) If ω = ( 1
n , 1

n , . . . , 1
n ) and λ→ 0 , then the GPFIHWA operator becomes the PFIWG operator as given

in Definition 5.

PFIWG(α1,α2, . . . ,αn) =
n
⊗

j=1
(α j)

ε j .

(6) If ω = ( 1
n , 1

n , . . . , 1
n ) and λ = 1, then the GPFIHWA operator becomes the PFIWA operator as given in

Definition 5.

PFIWA(α1,α2, . . . ,αn) =
n
⊕

j=1
ε jα j.
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(7) If ε = ( 1
n , 1

n , . . . , 1
n ) and λ→ 0 , then the GPFIHWA operator becomes the PFIOWG as given in

Definition 6.

PFIOWG(α1,α2, . . . ,αn) =
n
⊗

j=1
(α j)

ω( j) .

(8) If ε = ( 1
n , 1

n , . . . , 1
n ) and λ = 1, then the GPFIHWA operator becomes t e PFIOWA operator as given

in Definition 6.

PFIOWA(α1,α2, . . . ,αn) =
n
⊕

j=1
ω( j)α j.

Definition 11. Suppose that α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are a family of PFNs, a GPFIHWG operator
is a function: GPFIHWG : Ωn

→ Ω with associated weighting vector ω = (ω1,ω2, . . . ,ωn)
T and ω j ≥ 0,∑n

j=1 ω j = 1, such that

GPFIHWG(α1,α2, . . . ,αn) =
1
λ

 n
⊗

j=1
(λα j)

ω( j)ε j∑n
j=1 ω( j)ε j

, (17)

where λ > 0, the ε = (ε1, ε2, . . . , εn)
T stands forthe weight vector of α j( j = 1, 2, 3, · · · , n) meeting ε j ≥ 0,∑n

j=1 ε j = 1.

Theorem 7. For a family of PFNs α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n), then the output via employing the
GPFIHWG operator remains a PFN, and

GPFIHWG(α1,α2, . . . ,αn) =

√√√√
1−

1−
n∏

j=1
(a j)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(b j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

,√√√√1−
n∏

j=1
(a j)

ω( j)ε j∑n
j=1 ω( j)ε j +

n∏
j=1

(b j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

−

 n∏
j=1

(b j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/λ

,


(18)

where a j = 1 − (1− (µ j)
2)
λ
+ (1− ((µ j)

2 + (ν j)
2))

λ
, b j =

(
1− ((µ j)

2 + (ν j)
2)

)λ
. The ε =

(ε1, ε2, . . . , εn)
T stands for the weight vector of α j( j = 1, 2, 3, · · · , n) meeting ε j ≥ 0,

∑n
j=1 ε j = 1.

Proof. Analogous to Theorem 5, the proof is omitted. �

Theorem 8 (Idempotency). If all α j = (µ j, ν j) ( j = 1, 2, 3, . . . , n) are equal to α = (µ, ν), then

GPFIHWG(α1,α2, . . . ,αn) = α. (19)

Proof. Analogous to Theorem 6, the proof is omitted. �

In the following, by choosing a different parameter λ, we explored some particular cases of the
GPFIHWG operator.

Remark 2. (1) If ω = ( 1
n , 1

n , . . . , 1
n ), then the GPFIHWG operator becomes the GPFIWG operator.

GPFIWG(α1,α2, . . . ,αn) =
1
λ

(
n
⊗

j=1
(λα j)

ε j

)
.
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(2) If ε = ( 1
n , 1

n , . . . , 1
n ), then the GPFIHWG operator becomes

GPFIOWG(α1,α2, . . . ,αn) =
1
λ

(
n
⊗

j=1
(λα j)

ω( j)

)
.

We call it a generalized PFIOWG(GPFIOWG) operator.
(3) If λ→ 0 , then the GPFIHWG operator becomes the PFIHWA operator.

PFIHWA(α1,α2, . . . ,αn) =

n
⊕

j=1
ω( j)ε jα j∑n

j=1 ω( j)ε j
.

(4) If λ = 1, then the GPFIHWG operator becomes the PFIHWG operator.

PFIHWG(α1,α2, . . . ,αn) =
n
⊗

j=1
(α j)

ω( j)ε j∑n
j=1 ω( j)ε j .

(5) If ω = ( 1
n , 1

n , . . . , 1
n ) and λ→ 0 , then the GPFIHWG operator becomes thePFIWA operator as given

in Definition 5.
(6) If ω = ( 1

n , 1
n , . . . , 1

n ) and λ = 1, then the GPFIHWG operator becomes the PFIWG operator as given
in Definition 5.

(7) If ε = ( 1
n , 1

n , . . . , 1
n ) and λ→ 0 , then the GPFIHWG operator becomes thePFIOWA operator as given

in Definition 6.
(8) If ε = ( 1

n , 1
n , . . . , 1

n ) and λ = 1, then the GPFIHWG operator becomes the PFIOWG operator as given
in Definition 6.

Example 6. Let us employ the GPFIHWA and GPFIHWG operators to recalculate Example 2. Without loss of
generality, suppose λ = 2. In the light of Equation (15) we can obtain

c1 = 1− (1− 0.72)
2
+ (1− (0.42 + 0.72))

2
= 0.8624, d1 =

(
1− (0.42 + 0.72)

)2
= 0.1225,

c2 = 1− (1− 0.82)
2
+ (1− (0.32 + 0.82))

2
= 0.9433, d2 =

(
1− (0.32 + 0.82)

)2
= 0.0729,

c3 = 1− (1− 0.52)
2
+ (1− (0.62 + 0.52))

2
= 0.5896, d3 =

(
1− (0.62 + 0.52)

)2
= 0.1521

and
ω(1)ε1∑3
j=1 ω( j)ε j

= 0.4×0.25
0.4×0.25+0.4×0.15+0.2×0.6 = 0.3571,

ω(2)ε2∑3
j=1 ω( j)ε j

= 0.2143,
ω(3)ε3∑3
j=1 ω( j)ε j

= 0.4286.

Then

GPFIHWA(α1,α2,α3) =

√√√√1−
3∏

j=1
(c j)

ω( j)ε j∑n
j=1 ω( j)ε j +

3∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/2

−

 3∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/2

,√√√√
1−

1−
3∏

j=1
(c j)

ω( j)ε j∑n
j=1 ω( j)ε j +

3∏
j=1

(d j)

ω( j)ε j∑n
j=1 ω( j)ε j


1/2


=


√√√√ (

1− 0.86240.3571
× 0.94330.2143

× 0.58960.4286 + 0.12250.3571
× 0.07290.2143

× 0.15210.4286
)1/2
−(

0.12250.3571
× 0.07290.2143

× 0.15210.4286
)1/2 ,√

1− (1− 0.86240.3571 × 0.94330.2143 × 0.58960.4286 + 0.12250.3571 × 0.07290.2143 × 0.15210.4286)1/2


=

(√
(1− 0.7469 + 0.1203)1/2

− 0.12031/2,
√

1− (1− 0.7469 + 0.1203)1/2
)
= (0.5140, 0.6237).
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Similarly, with the aid of Equation (18), we can derive

GPFIHWG(α1,α2,α3) =
√

1− (1− 0.41690.3571 × 0.24480.2143 × 0.74250.4286 + 0.12250.3571 × 0.07290.2143 × 0.15210.4286)1/2,√√√√ (
1− 0.41690.3571

× 0.24480.2143
× 0.74250.4286 + 0.12250.3571

× 0.07290.2143
× 0.15210.4286

)1/2
−(

0.12250.3571
× 0.07290.2143

× 0.15210.4286
)1/2


=

(√
1− (1− 0.4763 + 0.1203)1/2,

√
(1− 0.4763 + 0.1203)1/2

− 0.12031/2

)
= (0.4445, 0.6750).

5. MADM Approach with PFNs by Employing the Presented AOs

In this section, we adopted our developed PFIHWA, PFIHWAG, GPFIHWA and GPFIHWG
operators to handle multiple attribute single person decision making and MAGDM based on
PFNs, respectively.

5.1. MADM Method by Using the PFIHWA and the PFIHWG Operators

For a Pythagorean fuzzy MADM issue. Suppose A = {A1, A2, . . . , Am} is a group of decision
alternatives. Assume C = {C1, C2, . . . , Cn} is a group of attributes, ε = (ε1, ε2, . . . , εn)

T stands for the
weight of C j meeting ε j ≥ 0,

∑n
j=1 ε j = 1. ω = (ω1,ω2, . . . ,ωn)

T is the aggregation associated vector for
ω j ≥ 0,

∑n
j=1 ω j = 1. The decision information matrix takes the form of R = (ri j)m×n = (µri j , νri j)m×n

provided by the DM, where µri j expresses the grade that alternative Ai meets attribute C j, νri j expresses

the grade that alternative Ai doesnot meet attribute C j. µri j , νri j ∈ [0, 1], and (µri j)
2 + (νri j)

2
∈ [0, 1].

Then, the procedure of the MADM problem (Algorithm 1) is listed below:

Algorithm 1. The procedure of the MADM problem using PFIHWA and PFIHWG operators.

Step 1. Compute the normalized decision information matrix P = (pi j)m×n of R = (ri j)m×n. The
transformation is given as follows [41]:

pi j =

 ri j, for the benefit attribute of C j(
ri j

)c
, for the cos t attribute of C j

in which,
(
ri j

)c
= (νri j ,µri j ), (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n) be the complement of pi j.

Step 2. Aggregate whole attribute values pi j(i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n) to the comprehensive values
pi (i = 1, 2, 3, . . . , m) with the PFIHWA operator

pi= PFIHWA(pi1, pi2, . . . , pin)

or the PFIHWG operator
pi= PFIHWG(pi1, pi2, . . . , pin).

Step 3. Compute the scores s(pi) and accuracy degrees h(pi) (i = 1, 2, 3, . . . , m) in light of Definition 4.
Step 4. Sort whole alternatives {A1, A2, . . . , Am} and hence obtain the optimal one(s) based on s(pi) and
a(pi)(i = 1, 2, 3, . . . , m).

Remark 3. In MADM issues, attribute information is often divided into benefit and cost types. In order to
facilitate calculation, some methods are needed to standardize the attribute information [41].

Example 7. Consider that an organization wants to evaluate emerging technology enterprises (adapted from
Reference [18]), the experts of the organization are given five potential alternatives A1, A2, A3, A4, A5. After
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careful analysis, the experts evaluate the five potential alternatives in accordance with the four attributes
{C1, C2, C3, C4}. C1 represents technical advancement; C2 represents the likely market and market risk; C3

represents the financial conditions and human resources; C4 represents the science and technology development
and employment creation. Suppose ε = (0.15, 0.2, 0.3, 0.35)T is the weight vector. ω = (0.2, 0.4, 0.3, 0.1)T

stands for the associated weight vector of four attributes, which assigns more weight to the attribute obtained for
the optimal performance. The decision values take the form of PFNs, as listed in Table 1.

Table 1. Pythagorean fuzzy decision matrix R.

C1 C2 C3 C4

A1 (0.5, 0.8) (0.6, 0.3) (0.3, 0.6) (0.5, 0.7)
A2 (0.7, 0.5) (0.7, 0.2) (0.9, 0.2) (0.8, 0.5)
A3 (0.6, 0.6) (0.5, 0.2) (0.5, 0.3) (0.6, 0.3)
A4 (0.4, 0.2) (0.6, 0.3) (0.3, 0.4) (0.5, 0.4)
A5 (0.6, 0.4) (0.4, 0.8) (0.7, 0.6) (0.5, 0.8)

5.1.1. Process of MADM based on the PFIHWA Operator

To choose the optimal emerging technology enterprise, the following procedures are summarized:
Step 1. Since every attribute is a benefit type, no transformation is needed. The evaluation matrix

is P = R = (ri j)5×4, described in Table 1.
Step 2. Utilizethe PFIHWA operator to acquire the comprehensive values pi (i = 1, 2, 3, 4, 5):
From Definition 4, we obtain s(p11) = −0.39,s(p12) = 0.27,s(p13) = −0.27 , s(p14) =−0.24.

Since, s(p12) > s(p14) > s(p13) > s(p11), so p12 � p14 � p13 � p11, then (1) = 4,
(2) =1,(3) = 3, (4) = 2. Further

ω(1)ε1∑4
j=1 ω( j)ε j

= 0.1×0.15
0.1×0.15+0.2×0.2+0.3×0.3+0.4×0.35 = 0.0526,

ω(2)ε2∑4
j=1 ω( j)ε j

=

0.1404,
ω(3)ε3∑4
j=1 ω( j)ε j

= 0.3158,
ω(4)ε4∑4
j=1 ω( j)ε j

= 0.4912. According to Equation (9), we obtain p1 =

PFIHWA(p11, p12, p13, p14) = (0.4694, 0.6557), similarly, p2= (0.8045, 0.3983), p3= (0.5691, 0.2726),
p4= (0.4793, 0.3471), p5= (0.6098, 0.6882).

Step 3. Acquire the scores of PFNs pi (i = 1, 2, 3, 4, 5):

s(p1) = − 0.2096, s(p2) = 0.4885, s(p3) = 0.2496, s(p4) = 0.1093, s(p5) = − 0.1018.

Step 4. Since s(p2) > s(p3) > s(p4) > s(p5) > s(p1), then we obtain

A2 � A3 � A4 � A5 � A1.

Thus, the optimal emerging technology enterprise is A2.

5.1.2. Process of MADM based on the PFIHWG Operator

In order to choose the optimal one(s) based on the PFIHWG operator, the following procedures of
the proposed approach are summarized as below.

Step 1. It is identical with Step 1 in Section 5.1.1.
Step 2. Utilizethe PFIHWG operator to obtain the comprehensive values pi (i = 1, 2, 3, 4, 5).
On the basis of Definition 4, we have s(p11) = −0.39,s(p12) = 0.27,s(p13) = −0.27, s(p14) = −0.24.

Since, s(p12) > s(p14) > s(p13) > s(p11), so p12 � p14 � p13 � p11, then (1) = 4,(2) = 1,(3) = 3, (4) = 2.
Further

ω(1)ε1∑4
j=1 ω( j)ε j

= 0.1×0.15
0.1×0.15+0.2×0.2+0.3×0.3+0.4×0.35 = 0.0526,

ω(2)ε2∑4
j=1 ω( j)ε j

= 0.1404,
ω(3)ε3∑4
j=1 ω( j)ε j

= 0.3158,
ω(4)ε4∑4
j=1 ω( j)ε j

= 0.4912. From Equation (12), we obtain p1 = PFIHWG(p11, p12, p13, p14) = (0.4835, 0.6454),

similarly, p2= (0.8139, 0.3787), p3= (0.5703, 0.2702), p4= (0.4810, 0.3449), p5= (0.5942, 0.7017).
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Step 3. Acquire the scores of PFNs pi (i = 1, 2, 3, 4, 5).

s(p1) = − 0.1827, s(p2) = 0.5191, s(p3) = 0.2522, s(p4) = 0.1124, s(p5) = − 0.1394.

Step 4. Since s(p2) > s(p3) > s(p4) > s(p5) > s(p1), then we obtain

A2 � A3 � A4 � A5 � A1.

Then, the optimal emerging technology enterprise is A2.

5.1.3. Comparison and Discussion

To demonstrate the feasibility of the presented approach, we compare our methods with the
PFIHA and PFIHG operators developed by Wei [33], the SPFWA (symmetric Pythagorean fuzzy
weighted averaging) and SPFWG(symmetric Pythagorean fuzzy weighted geometric) operators
developed by Ma and Xu [19], and the PFEWA(Pythagorean fuzzy Einstein weighted averaging)
and PFEWG(Pythagorean fuzzy Einstein weighted geometric) operators developed by Garg [22] and
Garg [23], respectively. These methods were used to solve the above example, and the aggregating
values and sort outcomes are given in Table 2.

Table 2. The aggregating and ranking results by different operators.

A1 A2 A3 A4 A5 Ranking

PFIHA [33] (0.4437,
0.7020)

(0.8461,
0.3521)

(0.5891,
0.2955)

(0.4453,
0.3550)

(0.5435,
0.7402)

A2 � A3 � A4 �

A5 � A1

PFIHG [33] (0.4900,
0.6345)

(0.7720,
0.3736)

(0.5857,
0.3022)

(0.4475,
0.3552)

(0.5936,
0.6811)

A2 � A3 � A4 �

A5 � A1

SPFWA [19] (0.4940,
0.5657)

(0.7774,
0.3232)

(0.5321,
0.2450)

(0.4768,
0.3283)

(0.5551,
0.6742)

A2 � A3 � A4 �

A1 � A5

SPFWG [19] (0.4712,
0.5211)

(0.7842,
0.2686)

(0.5297,
0.2358)

(0.4509,
0.3124)

(0.5376,
0.6679)

A2 � A3 � A4 �

A1 � A5

PFEWA [22] (0.4991,
0.5012)

(0.7915,
0.2657)

(0.5328,
0.2355)

(0.4810,
0.3113)

(0.5614,
0.6493)

A2 � A3 � A4 �

A1 � A5

PFEWG [23] (0.4657,
0.5833)

(0.7695,
0.3229)

(0.5288,
0.2450)

(0.4454,
0.3290)

(0.5298,
0.6936)

A2 � A3 � A4 �

A1 � A5

PFIHWA (0.4694,
0.6557)

(0.8045,
0.3983)

(0.5691,
0.2726)

(0.4793,
0.3471)

(0.6098,
0.6882)

A2 � A3 � A4 �

A5 � A1

PFIHWG (0.4835,
0.6454)

(0.8139,
0.3787)

(0.5703,
0.2702)

(0.4810,
0.3449)

(0.5942,
0.7017)

A2 � A3 � A4 �

A5 � A1

The content of Table 2 implies the aggregating results are different from each other, the ranking
of alternative A1 and A5 is slightly different in the SPFWA, SPFWG, PFEWA and PFEWG operators,
but the optimal emerging technology enterprise is still A2 in all operators. Therefore, our methods
are effective and feasible. However, comparing with the PFIHA and PFIHG operators [33] our
methods are simple from the computational point of view. For instance, in the PFIHWA operator,

ω( j)ε j∑n
j=1 ω( j)ε j

are crisp numbers, we only compute the Pythagorean fuzzy value

n
⊕

j=1
ω( j)ε jα j∑n

j=1 ω( j)ε j
. However, in

the PFIHA operator [33], we should first compute Pythagorean fuzzy value
.
α j = nε jα j, then compute

the Pythagorean fuzzy value
n
⊕

j=1
ω j

.
α( j).

From Figure 1, we observe that the Spearman correlation of SPFWA [19], SPFWG [19], PFEWA [22]
and PFEWG [23] are all −0.6, whereas, the Spearman correlation of proposed operator (PFIHWA,
PFIHWG), PFIHA [33] and PFIHG [33] are all 1. Comparing with PFIHA [33] and PFIHG [33], the
typical characteristics of our techniques are that they possess a small amount of computation and
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idempotency. It further indicates that our approaches are superior. Therefore, our approach is suitable
for settling some practical multiple attribute decision problems with Pythagorean fuzzy information.
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5.2. MAGDM Method by Using GPFIHWA and GPFIHWG Operators

Plenty of practical decision-making problems usually demand multiple DMs rather than a
single DM. PFSs have the successful capacity to handle the indeterminacy under the MAGDM
environment [8,17,25–29,31].

In what follows, we will employ GPFIHWA and GPFIHWG operators to tackle MAGDM problems
with PFNs. Assume A = {A1, A2, . . . , Am} and C = {C1, C2, . . . , Cn} are respectively the group of
alternatives and attributes. The ε = (ε1, ε2, . . . , εn)

T is the weight vector, that meets ε j ≥ 0,
∑n

j=1 ε j = 1.

Suppose ω = (ω1,ω2, . . . ,ωn)
T is the associated vector for ω j ≥ 0,

∑n
j=1 ω j = 1. D = {d1, d2, . . . , dl}

is the group of experts, τ = (τ1, τ2, . . . , τl)
T is the corresponding weight vector that satisfies τk ≥ 0,∑l

k=1 τk = 1. R(k) = (r(k)i j )
m×n

is the assessment matrix, in which r(k)i j = (µ
r(k)i j

, ν
r(k)i j

) is a PFN offered by

the expert dk ∈ D for the alternative Ai ∈ A relevant to the attribute C j ∈ C.µ
r(k)i j

and ν
r(k)i j

means the

grade that alternative Ai meets attribute C j and doesnot meet attribute C j offered by the expert dk,
respectively. Where µri j , νri j ∈ [0, 1], (µ

r(k)i j
)2 + (ν

r(k)i j
)2
∈ [0, 1]. Then, the procedure of the MAGDM

problem (Algorithm 2) is listed below:

Algorithm 2. The procedure of the MAGDM problem using GPFIHWA and GPFIHWG operators.

Step 1. It is identical with Step 1 in Algorithm 1.

Step 2. Utilize the PFIWA operator and decision matrixes P(k) = (p(k)i j )
m×n

to get the group decision matrix

P = (pi j)m×n, where

pi j = PFIWA(p(1)i j , p(2)i j , . . . , p(l)i j ).

Step 3. Utilize the assessment matrix P = (pi j)m×n and the GPFIHWA operator

pi= GPFIHWA(pi1, pi2, . . . , pin)

or the GPFIHWG operator
pi= GPFIHWG(pi1, pi2, . . . , pin)

to obtain the comprehensive evaluation values pi(i = 1, 2, 3, . . . , m).
Step 4. It is identical with Step 3 in Algorithm 1.
Step 5. It is identical with Step 4 in Algorithm 1.
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Example 8. Suppose a company intends to implement the ERP (Enterprise Resource Planning) system
(revised from Reference [28]). Three experts {e1, e2, e3} from different departments form a project team to make
the evaluations, including a CIO(Chief Information Officer) and two senior representatives, whose weight
vector is τ = (1/3, 1/3, 1/3)T. Assume that we have five latent ERP systems {A1, A2, A3, A4, A5}, and four
assessment attributes {C1, C2, C3, C4} were selected, C1 stands for the technology and function; C2 stands for
the strategic adaptability; C3 stands for competence of vendor and C4 stands for renown of vendor. Assume
ε = (0.15, 0.2, 0.3, 0.35)T is the importance degree of attributes. The associated weight vector given by the
project team as ω = (0.2, 0.1, 0.3, 0.4)T, which assigns more weight to the attribute obtaining the optimal
performance. The five potential ERP systems A1, A2, A3, A4, A5 are appraised by PFNs, and are summarized in
Tables 3–5.

Table 3. The Pythagorean fuzzy decision matrix R(1).

C1 C2 C3 C4

A1 (0.4, 0.8) (0.8, 0.5) (0.6, 0.7) (0.3, 0.8)
A2 (0.7, 0.5) (0.8, 0.4) (0.8, 0.5) (0.3, 0.6)
A3 (0.3, 0.4) (0.3, 0.7) (0.7, 0.4) (0.6, 0.4)
A4 (0.6, 0.6) (0.7, 0.5) (0.7, 0.2) (0.4, 0.6)
A5 (0.5, 0.7) (0.6, 0.4) (0.9, 0.3) (0.6, 0.7)

Table 4. The Pythagorean fuzzy decision matrix R(2).

C1 C2 C3 C4

A1 (0.3, 0.9) (0.7, 0.6) (0.5, 0.8) (0.3, 0.6)
A2 (0.7, 0.4) (0.9, 0.2) (0.8, 0.1) (0.3, 0.5)
A3 (0.3, 0.6) (0.7, 0.7) (0.7, 0.6) (0.4, 0.4)
A4 (0.4, 0.8) (0.7, 0.5) (0.6, 0.2) (0.4, 0.7)
A5 (0.2, 0.7) (0.8, 0.2) (0.8, 0.4) (0.6, 0.6)

Table 5. The Pythagorean fuzzy decision matrix R(3).

C1 C2 C3 C4

A1 (0.5, 0.8) (0.7, 0.6) (0.5, 0.8) (0.5, 0.5)
A2 (0.6, 0.5) (0.9, 0.2) (0.8, 0.1) (0.3, 0.5)
A3 (0.4, 0.7) (0.7, 0.5) (0.6, 0.1) (0.2, 0.9)
A4 (0.2, 0.9) (0.5, 0.6) (0.6, 0.2) (0.1, 0.6)
A5 (0.1, 0.6) (0.8, 0.2) (0.9, 0.2) (0.6, 0.5)

5.2.1. Process of MAGDM based on the GPFIHWA Operator

Step 1. Since every attribute is a benefit type, no transformation is needed. The decision matrix
P(k) = (p(k)i j )

5×4
= (r(k)i j )

5×4
, is described in Tables 3–5.

Step 2. Utilize the PFIWA operator, we get the group decision matrix P = (pi j)5×4, see Table 6.

Table 6. The group integrated decision matrix P.

C1 C2 C3 C4

A1 (0.4114, 0.8371) (0.7389, 0.5646) (0.5372, 0.7677) (0.3832, 0.6579)
A2 (0.6707, 0.4706) (0.8746, 0.2646) (0.8000, 0.3493) (0.3000, 0.5375)
A3 (0.3376, 0.6012) (0.6176, 0.6992) (0.6707, 0.4786) (0.4448, 0.6605)
A4 (0.4448, 0.7739) (0.6481, 0.5314) (0.6377, 0.2006) (0.3357, 0.6436)
A5 (0.3267, 0.6840) (0.7509, 0.2642) (0.8746, 0.3015) (0.6000, 0.6213)
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Step 3. Utilize the decision matrix P = (pi j)5×4 and the GPFIHWA operator
(suppose λ = 2), from Definition 4, we obtain s(p11) = −0.5314,s(p12) = 0.2271,s(p13) =

−0.3008 , s(p14) =−0.2861. Since, s(p12) > s(p14) > s(p13) > s(p11), so p12 �

p14 � p13 � p11, then (1) = 4, (2) =1, (3) = 3, (4) = 2. Further,
ω(1)ε1∑4
j=1 ω( j)ε j

=

0.4×0.1
0.4×0.1+0.2×0.2+0.3×0.35+0.1×0.35 =0.1818,

ω(2)ε2∑4
j=1 ω( j)ε j

= 0.1818,
ω(3)ε3∑4
j=1 ω( j)ε j

= 0.4773,
ω(4)ε4∑4
j=1 ω( j)ε j

= 0.1591.

According to Equation (15), we obtain p1 = GPFIHWA(p11, p12, p13, p14) = (0.5671, 0.7247), similarly,
p2= (0.6256, 0.4529),p3= (0.5426, 0.6026),p4= (0.5470, 0.5368), p5= (0.7311, 0.4730).

Step 4. Compute the scores of PFNs pi (i = 1, 2, 3, 4, 5).

s(p1) = − 0.2036, ; s(p2) = 0.1863, s(p3) = − 0.0687, s(p4) = 0.0111, s(p5) = 0.3108.

Step 5. Since s(p5) > s(p2) > s(p4) > s(p3) > s(p1), then we obtain

A5 � A2 � A4 � A3 � A1.

Hence, the optimal ERP system is A5.

5.2.2. Process of MAGDM based on the GPFIHWG Operator

Step 1–2. It is the same as Step 1–2 in Section 5.2.1.
Step 3. Utilize the decision matrix P = (pi j)5×4 and the GPFIHWG operator

(suppose λ = 2), by Definition 4, we obtain s(p11) = −0.5314,s(p12) = 0.2271,s(p13) =

−0.3008 , s(p14) =−0.2861. Since, s(p12) > s(p14) > s(p13) > s(p11), so p12 �

p14 � p13 � p11, then (1) = 4,(2) =1,(3) = 3, (4) = 2. Further,
ω(1)ε1∑4
j=1 ω( j)ε j

=

0.4×0.1
0.4×0.1+0.2×0.2+0.3×0.35+0.1×0.35 =0.1818,

ω(2)ε2∑4
j=1 ω( j)ε j

= 0.1818,
ω(3)ε3∑4
j=1 ω( j)ε j

= 0.4773,
ω(4)ε4∑4
j=1 ω( j)ε j

=

0.1591. Based on Equation (18), we get p1 = GPFIHWG(p11, p12, p13, p14) = (0.5265, 0.7548),
similarly,p2= (0.5568, 0.5352),p3= (0.5167, 0.6249),p4= (0.4733, 0.6028),p5= (0.6284, 0.6029).

Step 4. Compute the scores of PFNs pi (i = 1, 2, 3, 4, 5).

s(p1) = − 0.2925, s(p2) = 0.0236, s(p3) = − 0.1236, s(p4) = − 0.1394, s(p5) = 0.0314.

Step 5. s(p5) > s(p2) > s(p3) > s(p4) > s(p1), therefore we get

A5 � A2 � A3 � A4 � A1.

Hence, the optimal ERP system is A5.

5.2.3. Comparison and Discussion

In Step 3 of Section 5.2.2, if we employ the PFIHA and PFIHG operators [33], then the decision
result is A5 � A2 � A3 � A4 � A1. If we use the SPFWA [19], SPFWG [19], PFEWA [22] and PFEWG [23]
operators, we obtain the following result: A2 � A5 � A4 � A3 � A1. We can obtain that the decision
outcomes by the PFIHA operator [33] and PFIHG operator [33] are the same as our GPFIHWG operator,
and are slightly different with our GPFIHWA operator, but the most desirable alternative by the PFIHA
and PFIHG operators [33] coincide with the proposed operator results, i.e., alternative A5. The most
desirable alternative determined by SPFWA [19], SPFWG [19], PFEWA [22] and PFEWG [23] operators
is A2 for all, the reason is that these AOs do not consider the interaction among membership and
non-membership grades. Therefore, it is available and feasible in the proposed approaches. Moreover,
our approaches are simple from the computational point of view compared with the PFIHA and PFIHG
operators [33]. Further contrast effect can be reflected in Figure 2.
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As provided in Figure 2, the Spearman correlations of SPFWA [19], SPFWG [19], PFEWA [22] and
PFEWG [23] are all 0, which shows that our methods are superior. The main features of the proposed
GPFIHWA and GPFIHWG operators are that: (1) it considers the interaction among membership and
non-membership grades for PFNs, and are more suitable to address actual MADM issues in some
special situations; (2) it has the property of idempotency and simple computation process; (3) it possess
an adjust parameter value and can reflect the preference of DMs during the decision process.

5.2.4. Sensitivity Analysis

Parameter λ plays a significant influence in the decision-making process; it can reflect the mentality
of the DMs. For this, we chose different values of λ from 0 to 30 in Algorithm 2 to solve Example 8, so
as to investigate the flexibility and sensitivity of different λ. The scores as well as decision results are
listed in Tables 7 and 8.

Table 7. The scores and ranking results by the generalized Pythagorean fuzzy interactive hybrid
weighted average (GPFIHWA) operator with different parameter λ.

λ s(p1) s(p2) s(p3) s(p4) s(p5) Ranking

0 −0.2582 0.1449 −0.0889 −0.1180 0.1538 A5 � A2 � A3 � A4 � A1
1 −0.2352 0.2018 −0.0838 −0.0797 0.2686 A5 � A2 � A4 � A3 � A1
2 −0.2036 0.1863 −0.0687 0.0111 0.3108 A5 � A2 � A4 � A3 � A1
4 −0.1277 0.1890 −0.0338 0.1877 0.3623 A5 � A2 � A4 � A3 � A1
7 −0.0422 0.2334 0.0108 0.3015 0.4137 A5 � A4 � A2 � A3 � A1
11 0.0265 0.2732 0.0544 0.3580 0.4574 A5 � A4 � A2 � A3 � A1
16 0.0751 0.3061 0.0906 0.3936 0.4903 A5 � A4 � A2 � A3 � A1
22 0.1085 0.3337 0.1175 0.4183 0.5138 A5 � A4 � A2 � A3 � A1
30 0.1341 0.3586 0.1384 0.4381 0.5326 A5 � A4 � A2 � A3 � A1

Table 8. The scores and ranking results by the generalized Pythagorean fuzzy interactive hybrid
weighted geometric (GPFIHWG) operator with different parameter λ.

λ s(p1) s(p2) s(p3) s(p4) s(p5) Ranking

0 −0.2352 0.2018 −0.0838 −0.0797 0.2686 A5 � A2 � A4 � A3 � A1
1 −0.2582 0.1449 −0.0889 −0.1180 0.1538 A5 � A2 � A3 � A4 � A1
2 −0.2925 0.0236 −0.1236 −0.1394 0.0314 A5 � A2 � A3 � A4 � A1
4 −0.3422 −0.1775 −0.1858 −0.1915 −0.1228 A5 � A2 � A3 � A4 � A1
7 −0.3785 −0.2928 −0.2316 −0.2351 −0.2272 A5 � A3 � A4 � A2 � A1
11 −0.4069 −0.3377 −0.2642 −0.2648 −0.3058 A3 � A4 � A5 � A2 � A1
16 −0.4328 −0.3594 −0.2907 −0.2865 −0.3662 A4 � A3 � A2 � A5 � A1
22 −0.4550 −0.3731 −0.3134 −0.3027 −0.4095 A4 � A3 � A2 � A5 � A1
30 −0.4748 −0.3836 −0.3355 −0.3164 −0.4433 A4 � A3 � A2 � A5 � A1



Mathematics 2019, 7, 1150 22 of 25

Table 7 indicates that the scores in the GPFIHWA operator become bigger with parameter λ
increasing. Therefore, the DMs with optimistic attitude should take larger values of λ. Moreover,
the ranking results are different by using different values of λ, but the best alternative is always A5.
Furthermore, we can find that

(1) (1) when λ ∈ (0, 0.8765], the ranking is A5 � A2 � A3 � A4 � A1.
(2) when λ ∈ (0.8765, 4.0562], the ranking is A5 � A2 � A4 � A3 � A1.
(3) when λ ∈ (4.0562, 30], the ranking is A5 � A4 � A2 � A3 � A1.

Table 8 indicates that the scores in the GPFIHWG operator become smaller with parameter λ
increasing. Therefore, the DMs with optimistic attitude should take smaller values of λ. Moreover, the
ranking results are also different by employing different values of λ, and the best alternative is from A5

to A3, then from A3 to A4 with parameter λ increasing. Furthermore, we can find that

(1) when λ ∈ (0, 0.1235], the ranking is A5 � A2 � A4 � A3 � A1,
(2) when λ ∈ (0.1235, 4.3582], the ranking is A5 � A2 � A3 � A4 � A1,
(3) when λ ∈ (4.3582, 4.5858], the ranking is A5 � A3 � A2 � A4 � A1,
(4) when λ ∈ (4.5858, 7.3828], the ranking is A5 � A3 � A4 � A2 � A1,
(5) when λ ∈ (7.3828, 7.6462], the ranking is A3 � A5 � A4 � A2 � A1,
(6) when λ ∈ (7.6462, 11.6251], the ranking is A3 � A4 � A5 � A2 � A1,
(7) when λ ∈ (11.6251, 15.1215], the ranking is A4 � A3 � A5 � A2 � A1,
(8) when λ ∈ (15.1215, 30], the ranking is A4 � A3 � A2 � A5 � A1.

Therefore, the approach by using the GPFIHWA operator is relatively stable. In the actual decision
environment, the DMs may select a different parameter λ in line with their preferences.

To better distinguish the presented approach with the existing approaches [19,22,23,33,37–39],
we summarize the differences of them in Table 9. Based on Table 9, we can obtain that the presented
approaches possess the property of idempotency, and also embody the interactions among membership
and non-membership during the information aggregation process. Therefore, the novel approaches
can obtain more reasonable ranking results.

Table 9. Characteristic comparisons of different methods.

Methods Considers the Interactions between
Membership and Non-Membership

Possesses the Property of
Idempotency

PFIHA [33] Yes No
PFIHG [33] Yes No
SPFWA [19] No Yes
SPFWG [19] No Yes
PFEWA [22] No Yes
PFEWG [23] No Yes

Liao and Xu [40] No Yes
Our proposed operators Yes Yes

6. Conclusions

In this study, the authors have presented a group of novel Pythagorean fuzzy interactive hybrid
weighted AOs, such as the PFIHWA, PFIHWG, GPFIHWA and GPFIHWG operators. It can be seen that
these novel developed operators have the feature of idempotency, which indicated that the proposed
AOs could overcome the shortcomings of the PFIHA and the PFIHG operators. It was also shown
that some other existing AOs [33,35] were the particular cases of our presented AOs. In addition,
our approaches were simple in view of computational cost and also captured the interaction over
membership and non-membership grades. Afterward, two algorithms to MADM and MAGDM
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by the proposed operators were provided. Lastly, we verified the validity and flexibility with two
practical examples.

In future research work, we can expand the explored operators to neutrosophic set [42–44], q-rung
orthopair fuzzy set [45–47] and other uncertain environments [48–56].
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